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EQUAL SUMS OF LIKE POWERS AND
EQUAL PRODUCTS OF INTEGERS

AJAI CHOUDHRY

ABSTRACT. Several mathematicians have studied the
problem of finding two distinct sets of integers x1, . . . , xs and
y1, . . . , ys, such that

∑s

i=1
xk
i =

∑s

i=1
yki , k = k1, k2, . . . , kn,

where ki are specified positive integers. The particular case
when k = 1, 2, . . . , n is the well-known Tarry-Escott problem.
This paper is the first detailed study of the problem of find-
ing two distinct sets of nonzero integers which, in addition to
the conditions already mentioned, also satisfy the condition
x1x2 · · · xs = y1y2 · · · ys. Parametric or numerical solutions
are given in this paper for many diophantine systems of this

type, two examples being the system of equations
∑5

i=1
xk
i =∑5

i=1
yki , k = 1, 2, 3, 5, and

∏5

i=1
xi =

∏5

i=1
yi, and

the system given by the equations
∑8

i=1
xk
i =

∑8

i=1
yki ,

k = 1, 2, . . . , 6, and
∏8

i=1
xi =

∏8

i=1
yi. It is also shown

that certain diophantine systems with equal sums of powers
and equal products do not have any nontrivial solutions. Some
open problems are mentioned at the end of the paper.

1. Introduction. The general problem of equal sums of like powers
consists in finding two distinct sets of integers xi, yi, i = 1, 2, . . . , s
such that the sums of the kth powers of the integers in both the sets are
equal for several values of k. In other words, the problem is concerned
with finding nontrivial solutions of the diophantine system

(1.1)
s∑

i=1

xk
i =

s∑
i=1

yki , k = k1, k2, . . . , kn,

where the exponents kj , j = 1, 2, . . . , n are specified positive integers.
When the exponents kj are taken as the consecutive integers 1, 2, . . . , n,
we get the well-known Tarry-Escott problem of degree n. This paper is
concerned with obtaining solutions of diophantine systems of type (1.1)
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in nonzero integers xi, yi, i = 1, 2, . . . , s that satisfy the additional
condition

(1.2)

s∏
i=1

xi =

s∏
i=1

yi.

We note that various diophantine systems involving equal sums of
like powers, with the equality holding for certain specified exponents,
have been investigated by several mathematicians (see, for instance,
[2, 3, 10], [12, Chapter XXIV, pages 705 713]). In particular, the
Tarry-Escott problem has attracted considerable attention [1, 5, 13,
14]. However, until now very limited attention has been given to the
problem of equal sums of like powers with the additional condition
(1.2). Diophantine systems involving equal products which have been
considered until now include the system of equations

(1.3)
xk
1 + xk

2 + xk
3 = yk1 + yk2 + yk3 ,

x1x2x3 = y1y2y3,

for which solutions have been given in [6, page 301], [14, page 66] and
[16] when k = 1; in [7], [14, pages 36 38] and [15] when k = 2; in
[8] and [14, page 69] when k = 3; and in [9] when k = 4. In fact,
the complete solution of the diophantine system (1.3) with the first
equation being satisfied for both k = 1 and k = 3 is given in [8, pages
138 139]. It seems that the only other diophantine system involving
equal products for which solutions have been published is the system
of equations,

(1.4)
xk
1 + xk

2 + xk
3 + xk

4 = yk1 + yk2 + yk3 + yk4 , k = 2, 4,

x1x2x3x4 = y1y2y3y4,

for which partial solutions are given in [14, pages 67 68], [17, 21].

We will exclude from consideration any solutions of the simultaneous
equations (1.1) and (1.2) in which any xi, yi is 0 as well as solutions
in which s is even and yi are a permutation of −xi since, in both
these cases, (1.2) is trivially satisfied and the problem reduces to one
involving only equal sums of like powers. We note that, since each of
the equations (1.1) and (1.2) is homogeneous, if xi, yi, i = 1, 2, . . . , s
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is a primitive solution of these simultaneous equations, then ρxi, ρyi,
i = 1, 2, . . . , s, where ρ is any nonzero integer, is also a solution and all
such proportional solutions will be considered equivalent. Further, we
will write x to denote the s-tuple (x1, x2, . . . , xs) and similarly y, X
and Y will denote the corresponding s-tuples with the value of s being
evident in each case from the context.

2. Some general results. We now prove several lemmas giving
general results about diophantine systems involving equal sums of like
powers and equal products.

Lemma 1. If there exist integers ai, bi, i = 1, 2, . . . ,m, satisfying
the relations

(2.1)

m∑
i=1

aki =

m∑
i=1

bki , k = k1, k2, . . . , kn,

then a solution of the simultaneous equations

s∑
i=1

xk
i =

s∑
i=1

yki , k = k1, k2, . . . , kn,(2.2)

and

s∏
i=1

xi =

s∏
i=1

yi,(2.3)

with s = 2m is given in terms of arbitrary parameters p and q by

(2.4)
xi = pai, xm+i = qbi, i = 1, 2, . . . ,m,

yi = qai, ym+i = pbi, i = 1, 2, . . . ,m.

The straightforward proof is omitted. We note that, by a suitable
choice of p and q, we can easily ensure that pai1 = qai2 , for some i1, i2
and, removing this common term from both sides, we can get a solution
of the simultaneous equations (2.2) and (2.3) with s = 2m− 1.
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Lemma 2. If there exists a nontrivial solution of the diophantine
system

(2.5)

s∑
i=1

xk
i =

s∑
i=1

yki , k = 1, 2, . . . , n,

s∏
i=1

xi =

s∏
i=1

yi,

then s ≥ n+ 2.

Proof. If s ≤ n+1, it follows from (2.5) and the well-known relations
between the elementary symmetric functions and sums of powers of
the roots of an equation [4, pages 271 272], that all the elementary
symmetric functions of xi, i = 1, 2, . . . , s, attain the same values as
the corresponding elementary symmetric functions of yi, i = 1, 2, . . . , s;
hence, xi are the roots of the same equation of degree s as yi, and thus
must be a permutation of yi. It follows that if there exists a nontrivial
solution of the diophantine system (2.5), then s ≥ n+ 2.

Lemma 3. If there exist integers ai, bi, i = 1, 2, . . . , n+2, satisfying
the relations

(2.6)

n+2∑
i=1

aki =

n+2∑
i=1

bki , k = 1, 2, . . . , n,

then a solution of the diophantine system

n+2∑
i=1

xk
i =

n+2∑
i=1

yki , k = 1, 2, . . . , n,(2.7)

n+2∏
i=1

xi =

n+2∏
i=1

yi,(2.8)

is given by

(2.9) xi = rai + d, yi = rbi + d, i = 1, 2, . . . , n+ 2,
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with d and r being defined by

(2.10)

d = −ρ

{ n+2∏
i=1

ai −
n+2∏
i=1

bi

}
,

r = ρ

{
a1a2 · · · an+2

n+2∑
i=1

a−1
i − b1b2 · · · bn+2

n+2∑
i=1

b−1
i

}
,

where ρ is a suitably chosen integer.

Proof. If d and r are arbitrary parameters, it follows from a well-
known theorem [13, Theorem 1, page 614] on the Tarry-Escott problem
that xi, yi defined by (2.9) satisfy the relations (2.7). Further,

n+2∏
i=1

xi−
n+2∏
i=1

yi =

n+2∏
i=1

(rai + d)−
n+2∏
i=1

(rbi + d)

=rn+1d

{
a1a2 · · · an+2

n+2∑
i=1

a−1
i −b1b2 · · · bn+2

n+2∑
i=1

b−1
i

}
(2.11)

+rn+2

{ n+2∏
i=1

ai−
n+2∏
i=1

bi

}
,

where in the right-hand side of the above equation, the coefficient
of rjdn+2−j vanishes for j = 0, 1, . . . , n as it works out to be∑

a1a2 · · ·aj −
∑

b1b2 · · · bj which is 0 in view of the relations (2.6).
It immediately follows from (2.11) that, if we take d and r as defined
by (2.10), then xi, yi satisfy condition (2.8) in addition to the relations
(2.7).

We note that, while applying Lemma 3 to symmetric solutions of
(2.6) yields only trivial solutions of the equations (2.7) and (2.8),
nonsymmetric solutions of (2.6) lead to nontrivial solutions of these
equations.
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Lemma 4. The three diophantine systems

n+2∑
i=1

xk
i =

n+2∑
i=1

yki , k = 1, 2, . . . , n, n+ 2,(2.12)

n+2∏
i=1

xi =

n+2∏
i=1

yi,

and,

n+2∑
i=1

xk
i =

n+2∑
i=1

yki , k = 1, 2, . . . , n,(2.13)

n+2∏
i=1

xi =

n+2∏
i=1

yi,

n+2∑
i=1

xi = 0,

and,

n+2∑
i=1

xk
i =

n+2∑
i=1

yki , k = 1, 2, . . . , n, n+ 2,(2.14)

n+2∑
i=1

xi = 0,

are equivalent, that is, a nontrivial solution of any one of the above
three diophantine systems is also a nontrivial solution of the remaining
two.

Proof. We write sk =
∑n+2

i=1 xk
i and note the well-known result [4,

pages 271 272] that the product
∏n+2

i=1 xi can be expressed in terms of
s1, s2, . . . , sn+1, sn+2. Thus, there must exist a relation of the type,

(2.15)
n+2∏
i=1

xi = f(s1, s2, . . . , sn) + λ1s1sn+1 + λ2sn+2,
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where f(s1, s2, . . . , sn) is some function of sj , j = 1, 2, . . . , n, and

λ1, λ2 are necessarily nonzero constants. Again, writing tk =
∑n+2

i=1 yki ,
we get a similar relation,

(2.16)

n+2∏
i=1

yi = f(t1, t2, . . . , tn) + λ1t1tn+1 + λ2tn+2.

For each of the three diophantine systems mentioned in the lemma,
xi, yi, i = 1, 2, . . . , n+2, satisfy the relations sk = tk, k = 1, 2, . . . , n,
and hence, in each case, we get on subtracting (2.16) from (2.15),

(2.17)

n+2∏
i=1

xi −
n+2∏
i=1

yi = λ1s1(sn+1 − tn+1) + λ2(sn+2 − tn+2).

If xi, yi, i = 1, 2, . . . , n+2 is a nontrivial solution of (2.12), it follows
from a theorem of Bastien, quoted by Dickson [12, page 712 ], that
sn+1 �= tn+1, and hence it follows from (2.17) that s1 = 0, and hence
xi, yi also satisfy (2.13) and (2.14). Similarly, it readily follows from
(2.17) that a nontrivial solution of (2.13) or (2.14) also satisfies the
remaining two diophantine systems stated in the lemma.

Lemma 5. If p, q, r, s, X, Y, U, V are nonzero integers satisfying
the relations

(2.18) (Xk−Y k)/(pk−qk)=(Uk−V k)/(rk−sk), k = k1, k2, . . . , kn,

then the nonzero integers xi, yi, i = 1, 2, 3, 4, defined by

(2.19)
x1 = rX, x2 = sY, x3 = qU, x4 = pV,

y1 = sX, y2 = rY, y3 = pU, y4 = qV,

satisfy the simultaneous equations,

(2.20) xk
1+xk

2+xk
3+xk

4=yk1+yk2+yk3+yk4 , k=k1, . . ., kn,

(2.21) x1x2x3x4 = y1y2y3y4.
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Proof. It follows from the relations (2.18) that

(rX)k + (sY )k + (qU)k + (pV )k = (sX)k + (rY )k + (pU)k + (qV )k,

and so xi, yi, as defined by (2.19), satisfy relations (2.20) and (2.21).

3. Solutions of the Tarry-Escott problem with equal prod-
ucts of integers. We will now obtain solutions of the diophantine
system,

(3.1)

s∑
i=1

xk
i =

s∑
i=1

yki , k = 1, 2, . . . , n,

s∏
i=1

xi =

s∏
i=1

yi,

for all positive integer values of n ≤ 6 and, with s = n+2, the minimum
value of s for the existence of nontrivial solutions of (3.1).

3.1. The Tarry-Escott problem of degree 1 with equal
products. While solutions of (3.1) with n = 1 and s = 3, that is,
the equations,

x1 + x2 + x3 = y1 + y2 + y3(3.2)

x1x2x3 = y1y2y3,(3.3)

are given in [6, 14, 16], the solutions given below seem to be better.
To obtain the complete solution of equations (3.2) and (3.3), we write

(3.4) x = (pX, qY, rZ), y = (qX, rY, pZ),

and note that, for any solution x, y of (3.2) and (3.3), there exist
rational numbers p, q, r, X, Y, Z such that (3.4) is satisfied. With
x, y defined by (3.4), equation (3.3) is identically satisfied while (3.2)
gives

(3.5) (p− q)X + (q − r)Y + (r − p)Z = 0.

Two complete solutions of this simple equation are given by

(3.6) X = α+ rβ, Y = α+ pβ, Z = α+ qβ,
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and

(3.7) X = (p+ q)α+ rβ, Y = (q + r)α + pβ, Z = (r + p)α+ qβ,

where α, β, p, q, r are arbitrary parameters. Thus, for the system of
equations (3.2) and (3.3), we get two complete solutions which are
given by (3.4) where X, Y, Z are given either by (3.6) or by (3.7)
and α, β, p, q, r are arbitrary parameters. Taking (α, β, p, q, r) =
(1, 2, 1, 2, 3) in the first of these solutions, we get the numerical
solution x = (7, 6, 15), y = (14, 9, 5) for the simultaneous equations
(3.2) and (3.3).

3.2. The Tarry-Escott problem of degree 2 with equal prod-
ucts. We will now consider the simultaneous diophantine equations,

xk
1 + xk

2 + xk
3 + xk

4 = yk1 + yk2 + yk3 + yk4 , k = 1, 2,(3.8)

x1x2x3x4 = y1y2y3y4,(3.9)

for which we give two parametric solutions, one of which is complete.

3.2.1. It follows from Lemma 5 that a solution of the above
simultaneous equations can be found quite simply by solving the
equations

(3.10)

X − Y

p− q
= 2α,

U − V

r − s
= 2α,

X + Y

p+ q
= 2β,

U + V

r + s
= 2β.

The complete solution of these equations is readily found to be

(3.11)
X = (p− q)α + (p+ q)β, U = (r − s)α+ (r + s)β,

Y = (q − p)α+ (p+ q)β, V = (s− r)α + (r + s)β,

and, with these values, (2.19) gives a parametric solution of the si-
multaneous equations (3.8) and (3.9) in terms of arbitrary parameters
α, β, p, q, r, s. As an example, a numerical solution of these equa-
tions obtained by taking (α, β, p, q, r, s) = (1, 2, 1, 2, 3, 1) is given
by x = (15, 7, 20, 6), y = (5, 21, 10, 12).
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3.2.2. A second solution of the simultaneous equations (3.8) and
(3.9) can be found by writing

(3.12) x = (X1p, X2q, X3r, X4s), y = (X1q, X2r, X3s, X4p).

For any solution x, y of equations (3.8) and (3.9) with xi, yi being
nonzero for each i, there exist rational numbers p, q, r, s, X1, X2, X3,
X4, given by

(p, q, r, s) = (x−1
2 x−1

3 x−1
4 y4, y

−1
2 y−1

3 ,

x−1
2 y−1

3 , x−1
2 x−1

3 ),(3.13)

(X1, X2, X3, X4) = (y1y2y3, x2y2y3, x2x3y3, x2x3x4),

such that the relations (3.12) are satisfied. The values of xi, yi given
by (3.12) satisfy equation (3.9) while on substituting these values in
equations (3.8), we get the conditions,

(3.14) (pk − qk)Xk
1 + (qk − rk)Xk

2 + (rk − sk)Xk
3 + (sk − pk)Xk

4 = 0,

with k = 1, 2. The complete solution of these two equations in
Xi, i = 1, 2, 3, 4, is readily obtained using the obvious solution
X1 = X2 = X3 = X4, and may be written as follows:

X1 = (p− q)(−q + s)sα2 + (q − r)(pr + ps− 2qs

− rs+ s2)αβ + (q − r)(−pr + qs)β2,

X2 = (p− q)(−q + s)pα2 + (p− q)(2pq − pr − ps

− rs+ s2)αβ + (q − r)(−p2 + pq − rs+ s2)β2,
(3.15)

X3 = (p− q)(−q + s)pα2 + (q − r)(p− q)(p+ s)αβ

+ (q − r)(−pr + qs)β2,

X4 = (p− q)(−q + s)qα2 + (q − r)(p− q)(2q + r − s)αβ

+ (q − r)(−pq + q2 − r2 + rs)β2,

where α, β, p, r, s, are arbitrary parameters. It now follows that
the complete solution of equations (3.8) and (3.9) is given by (3.12)
where Xi are defined by (3.15) in terms of the arbitrary parameters
α, β, p, q, r, s. A numerical solution obtained by taking (α, β, p, q, r,
s) = (1, 3, 1, 2, 3, 4) is given by x = (19, 50, 48, 80), y = (38, 75, 64, 20).
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3.3. The Tarry-Escott problem of degree 3 with equal
products. We will now obtain three parametric solutions, including a
complete solution of the simultaneous diophantine equations,

5∑
i=1

xk
i =

5∑
i=1

yki , k = 1, 2, 3,(3.16)

5∏
i=1

xi =

5∏
i=1

yi.(3.17)

3.3.1. If Xi, Yi, i = 1, 2, 3, satisfy the relations,

(3.18) Xk
1 +Xk

2 +Xk
3 = Y k

1 + Y k
2 + Y k

3 , k = 1, 2,

it follows immediately from a well-known theorem on the Tarry-Escott
problem [13, Theorem 3, page 615] that

(3.19) Xk
1 +Xk

2 +Xk
3 + (Y1 + h)k + (Y2 + h)k + (Y3 + h)k

= Y k
1 + Y k

2 + Y k
3 + (X1 + h)k + (X2 + h)k + (X3 + h)k,

where k = 1, 2, 3, and h is arbitrary. We use the following, readily
verifiable, solution of (3.18),

(3.20)
X = (λ1X − λ3Y + d, −λ2X − λ1Y + d, λ3X + λ2Y + d),

Y = (λ3X − λ1Y + d, −λ2X − λ3Y + d, λ1X + λ2Y + d),

where λ1 = p + 2q, λ2 = 2p + q, λ3 = p − q, and d, p, q, X and Y
are arbitrary parameters. Taking h = Y2 − Y3, we get a solution of the
simultaneous equations (3.16), and now applying Lemma 3 gives the
following solution of equations (3.16) and (3.17):

x = (λ1(2X + Y ), λ3(Y −X), λ2(X + 2Y ), −λ1X − λ2Y,

− 2(λ2X + λ3Y )),

y = (λ2X + λ3Y, 2(λ1X + λ2Y ), −λ3(X + 2Y ),

− λ2(2X + Y ), λ1(Y −X)),

where λi are defined as before and p, q, X, Y are arbitrary parameters.
A numerical solution obtained by taking (p, q, X, Y ) = (1, 5, 1, 2) is
given by x = (44, −4, 35, −25, 2), y = (−1, 50, 20, −28, 11).
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3.3.2. A second solution of the simultaneous equations (3.16) and
(3.17) can be found by writing

(3.21)
x = (X1p, X2q, X3r, X4s, X5t),

y = (X1q, X2r, X3s, X4t, X5p),

when equation (3.17) is identically satisfied while substituting these
values in the three equations given by (3.16), we get the three equations,

(3.22) (pk−qk)Xk
1+(q

k−rk)Xk
2+(r

k−sk)Xk
3+(s

k−tk)Xk
4+(t

k−pk)Xk
5 =0.

with k = 1, 2, 3. Three simple solutions of the simultaneous equa-
tions (3.22) are X = (1, 1, 1, 1, 1), X = (s, t, p, q, r), and X =
(rst, stp, tpq, pqr, qrs). We will make use of the first two of these
solutions to solve these three simultaneous equations. A similar proce-
dure can be applied using any two of these three solutions to get more
solutions of these equations.

We write

(3.23) X = (su+ v, tu+ v, pu+ v, qu+ v, ru+ v),

when (3.22) is satisfied identically for k = 1, while it is expressible as

(3.24) (p− q)(p− s)(q − s) = (p− t)(q − r)(p− q − r + t)

for k = 2, and it reduces to the following linear equation in u, v for
k = 3:

(3.25)
(p3r2−p3s2−p2r3+p2s3+q3s2−q3t2−q2s3+q2t3+r3t2−r2t3)u

+(p3r−p3s−pr3+ps3+q3s−q3t−qs3+qt3+r3t−rt3)v=0.

Now (3.24) is equivalent to the three linear equations,

(3.26) p− s = α(p− t), q− s = β(q− r), αβ(p− q) = p− q− r+ t,

and hence is readily solved for r, s, t in terms of arbitrary rational pa-
rameters α, β, p, q, and then (3.25) immediately gives a solution for
u, v. These values of r, s, t, u, v substituted in (3.23) give the values
of Xi and, finally, substituting all these values in (3.21) gives a solution
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of the simultaneous equations (3.16) and (3.17) in terms of arbitrary ra-
tional parameters α, β, p, q. While we omit this cumbersome solution
in terms of polynomials of degree 10, we note that a special case of this
solution when α = 2, β = 3, is given in terms of arbitrary parameters
p and q by (3.21) where

X = (774p−793q, 527p−546q, 280p−299q, 261p−280q, 432p−451q),

and (r, s, t) = (9p − 8q, 27p − 26q, 14p − 13q). A numerical solution
obtained by taking p = 2, q = 1 is given by x = (1510, 508, 2610, 6776,
6195), y = (755, 5080, 7308, 3630, 826).

3.3.3. To obtain the complete solution of (3.16) and (3.17), we write

(3.27)

x1 = d,

x2 = a1α+ (b1 − b2)β + d,

x3 =

( 2∑
i=1

ai

)
α+ (b1 − b3)β + d,

x4 =

( 3∑
i=1

ai

)
α+ (b1 − b4)β + d,

x5 =

( 4∑
i=1

ai

)
α+ b1β + d,

y1 = b1β + d,

y2 = a1α+ d,

y3 =

( 2∑
i=1

ai

)
α+ (b1 − b2)β + d,

y4 =

( 3∑
i=1

ai

)
α+ (b1 − b3)β + d,

y5 =

( 4∑
i=1

ai

)
α+ (b1 − b4)β + d,

where ai, bi, d, α, β are arbitrary parameters with ai �= 0. With these
values, equation (3.16) is satisfied identically for k = 1, and conversely,
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given any known solution Xi, Yi, i = 1, 2, 3, 4, 5, of the equations
(3.16), it is easily seen that there exist values of the parameters
ai, bi, d, α, β which, substituted in (3.27), give xi = Xi, yi = Yi,
i = 1, . . . , 5. Substituting the values of xi, yi, given by (3.27) in (3.16)
with k = 2, we get, on removing the factor 2αβ, the condition

(3.28) a1b1 + a2b2 + a3b3 + a4b4 = 0,

and, accordingly, we take, without loss of generality, the following
values of bi in terms of three arbitrary linear parameters p, q and r:

(3.29) b1 = a−1
1 p, b2 = a−1

2 q, b3 = a−1
3 r, b4 = −a−1

4 (p+ q + r).

Substituting the values of xi, yi given by (3.27) and the above values
of bi in (3.16) with k = 3, we get

(3.30) φ1(p, q, r)α + φ2(p, q, r)β = 0,

where

φ1(p, q, r) = (a1 + 2a2 + 2a3 + a4)p+ (a2 + 2a3 + a4)q + (a3 + a4)r,

φ2(p, q, r) = (a1 + a4)a2a3p
2 + (a2 + a4)a1a3q

2 + (a3 + a4)a1a2r
2

+ 2a1a2a3(pq + qr + rp).

Thus, on taking α = −ρφ2(p, q, r), β = ρφ1(p, q, r), where ρ is an
arbitrary rational number, equation (3.16) is satisfied with k = 3, and
accordingly (3.27) gives a solution of the simultaneous equations (3.16)
where bi, i = 1, 2, 3, 4 are defined by (3.29) and α, β have the values
given above while ai, i = 1, 2, 3, 4 and p, q, r, s are arbitrary integer
parameters with ai �= 0. This solution is complete since we have taken
the complete solution of all the intermediate equations, and we can
accordingly work backwards to determine the values of the arbitrary
parameters that will yield any given solution of the three simultaneous
diophantine equations given by (3.16).

Since we have obtained the complete solution of equations (3.16), on
applying Lemma 3, we obtain the complete solution of the simultaneous
equations (3.16) and (3.17). This solution, as also the complete solution
of the three equations (3.16), is too cumbersome to write, and is hence
omitted.
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3.4. The Tarry-Escott problem of degree 4 with equal prod-
ucts. We will now obtain a parametric solution of the simultaneous
diophantine equations

6∑
i=1

xk
i =

6∑
i=1

yki , k = 1, 2, 3, 4,(3.31)

6∏
i=1

xi =

6∏
i=1

yi.(3.32)

We note that a well-known, readily verifiable, solution of the dio-
phantine system

(3.33)

3∑
i=1

xk
i =

3∑
i=1

yki , k = 1, 2, 4,

is given by

(3.34)

x1 = (p+ 2q)X − (p− q)Y, y1 = (p− q)X − (p+ 2q)Y,

x2 = −(2p+ q)X − (p+ 2q)Y, y2 = −(2p+ q)X − (p− q)Y,

x3 = (p− q)X + (2p+ q)Y, y3 = (p+ 2q)X + (2p+ q)Y.

We use the above values of x1, x2, x3, y1, y2, y3 and, similarly, we write

(3.35)

x4 = (r − s)U − (r + 2s)V, y4 = (r + 2s)U − (r − s)V,

x5 = −(2r + s)U − (r − s)V, y5 = −(2r + s)U − (r + 2s)V,

x6 = (r + 2s)U + (2r + s)V, y6 = (r − s)U + (2r + s)V.

With these values of xi, yi, equation (3.31) is identically satisfied for
k = 1, 2 and 4, while for k = 3, equation (3.31) reduces, by suitable
transpositions, to

(3.36) pq(p+ q)XY (X + Y ) = rs(r + s)UV (U + V ).

WritingX = αU , Y = βV and removing the factor UV , equation (3.36)
reduces to a linear equation in U and V which gives the following
solution of (3.36):

(3.37)

U = p2qαβ2 + pq2αβ2 − r2s− rs2,

V = −p2qα2β − pq2α2β + r2s+ rs2,

X = α(p2qαβ2 + pq2αβ2 − r2s− rs2),

Y = β(−p2qα2β − pq2α2β + r2s+ rs2).
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With these values of U, V X, Y , a nonsymmetric solution of (3.31) is
given by (3.34) and (3.35) where α, β, p, q, r, s are rational parameters.
On applying Lemma 3, we now obtain a multi-parameter solution of
the equations (3.31) and (3.32). As this solution is too cumbersome
to write, we give below a one-parameter solution, obtained by taking
p = 1, q = 2, r = −1, s = 3 and β = 1, and denoting the polynomial
c0α

4 + c1α
3 + · · ·+ c4 by (c0, c1, c2, c3, c4):

x1 = (20, −84, −85, 21, 20), y1 = (20, −84, 41, −105, 20),

x2 = (20, −21, 104, −105, 20), y2 = (20, 105, 104, 21, 20),

x3 = (20, 105, 41, 84, 20), y3 = (20, −21, −85, 84, 20),

x4 = (20, −105, 104, −21, 20), y4 = (20, 84, −85, −21, 20),

x5 = (20, 84, 41, 105, 20), y5 = (20, −105, 41, −84, 20),

x6 = (20, 21, −85, −84, 20), y6 = (20, 21, 104, 105, 20).

Taking α = 3, we get the numerical solution x = (−95, 121, 364, −23,
328, 85), y = (−41, 391, 40, 220, −77, 247).

3.5. The Tarry-Escott problem of degree 5 with equal prod-
ucts. We will now obtain a parametric solution of the simultaneous
equations,

7∑
i=1

xk
i =

7∑
i=1

yki , k = 1, 2, . . . , 5,(3.38)

7∏
i=1

xi =

7∏
i=1

yi.(3.39)

We take xi, yi, i = 1, 2, 3, as defined by (3.34) and write

(3.40)

x4 = Z1 + Z2 + Z3, x5 = Z1 − Z2 − Z3,

x6 = −Z1 + Z2 − Z3, x7 = −Z1 − Z2 + Z3,

y4 = −x4, y5 = −x5, y6 = −x6, y7 = −x7,

when (3.38) is satisfied identically for k = 1, 2, 4, while for k = 3,
equation (3.38) reduces to the equation,

(3.41) 16Z1Z2Z3 = 27pq(p+ q)XY (X + Y ),
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and, for k = 5, equation (3.38) reduces, on using (3.41), to the equation

(3.42) 2(Z2
1 + Z2

2 + Z2
3 ) = 3(p2 + pq + q2)(X2 +XY + Y 2).

To solve equations (3.41) and (3.42), we find a trivial solution of
equations (3.38) by taking Y = X , Z3 = Z1 + Z2, and use it to obtain
the following trivial solution of equations (3.41) and (3.42):

(3.43) Y = X, Z1 = 3pX/2, Z2 = 3qX/2, Z3 = 3(p+ q)X/2.

We now take Z1 = 3pX/2 in the two equations (3.41) and (3.42) so that
they may be treated as two quadratic equations in the four variables
X, Y, Z2, Z3, and one solution of these equations is given by (3.43).
We now substitute

(3.44) X = at+1, Y = bt+1, Z2 = ct+3q/2, Z3 = 3(p+ q)/2,

in (3.41) and (3.42), both of which yield one nonzero solution for
t. We readily find suitable values of a, b, c such that these two
nonzero values of t are equal, and this leads to a solution of (3.41)
and (3.42), and hence to a solution of the simultaneous equations
(3.38) in terms of the parameters p and q. Writing the polynomial
c0p

n + c1p
n−1q + c2p

n−2q2 + · · · + cnq
n as (c0, c1, c2, . . . , cn), this

parametric solution may be written as follows:

x1 = (−24, −174, −507, −735, −612, −432, −324, −108),

x2 = (6, 33, 42, 27, 180, 468, 432, 108),

x3 = (18, 141, 465, 708, 432, −36, −108, 0),

x4 = (−12, −60, −105, −129, −270, −504, −432, −108),

x5 = (−18, −159, −510, −771, −450, 180, 324, 108),

x6 = (12, 102, 264, 216, −162, −324, −108, 0),

x7 = (18, 117, 351, 684, 882, 648, 216, 0),

y1 = (−24, −186, −573, −873, −540, 144, 324, 108),

y2 = (6, 75, 327, 780, 1008, 612, 108, 0),

y3 = (18, 111, 246, 93, −468, −756, −432, −108),

y4 = (12, 60, 105, 129, 270, 504, 432, 108),

y5 = (18, 159, 510, 771, 450, −180, −324, −108),
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y6 = (−12, −102, −264, −216, 162, 324, 108, 0),

y7 = (−18, −117, −351, −684, −882, −648, −216, 0).

Now, on using Lemma 3, we obtain a solution of the diophantine system
given by (3.38) and (3.39) in terms of polynomials of degree 14 which
are not being given explicitly. As a numerical example, when p = 1,
q = 2, we get the following solution of (3.38) and (3.39):

x = (19893, −6407, 4658, 19278, 928, 9563, −5577),

y = (1703, −4437, 20878, −7182, 11168, 2533, 17673).

3.6. The Tarry-Escott problem of degree 6 with equal prod-
ucts. Shuwen [19] found one solution for the diophantine system (3.1)
with n = 6 and s = 8, viz., x = (1899, 1953, 1957, 2079, 2117, 2231,
2241, 2323), y = (1909, 1919, 2001, 2037, 2163, 2187, 2263, 2321). I
obtained by trial a numerical solution of the simultaneous equations∑8

i=1 x
k
i = yki , k = 1, 2, . . . , 6 and, applying Lemma 3, obtained a

second numerical solution of (3.1) with n = 6, s = 8, namely, x =
(−175, −88, −85, 5, 119, 134, 296, 326), y = (−163, −136, −34, 14,
56, 185, 275, 335).

4. An extension of the Tarry-Escott problem with equal
products. In this section we consider the simultaneous diophantine
equations,

(4.1)

n+2∑
i=1

xk
i =

n+2∑
i=1

yki , k = 1, 2, . . . , n, n+ 2

n+2∏
i=1

xi =
n+2∏
i=1

yi,

for positive integer values of n ≤ 4. We obtain parametric solutions
of this system when n = 1, 2 or 3, and infinitely many solutions when
n = 4. We will use the results of the first four subsections of Section 3
together with Lemma 4 to obtain these solutions.

4.1. When n = 1, the diophantine system (4.1) is given by (1.3)
with k = 1 and 3. Two complete parametric solutions of (1.3) with
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k = 1 are given in subsection 3.1. It follows from Lemma 4 that, if we
choose the parameters such that x1 + x2 + x3 = 0, we will obtain a
complete solution of (4.1) with n = 1. Both the parametric solutions
given in subsection 3.1 lead to the following complete solution of the
diophantine system (4.1) with n = 1:

(4.2)
x = (p(pq − r2), q(qr − p2), r(pr − q2)),

y = (q(pq − r2), r(qr − p2), p(pr − q2)).

A numerical solution obtained by taking (p, q, r) = (1, 2, 3) is given
by x = (7, −10, 3), y = (14, −15, 1).

We note that the above complete solution of the diophantine system
(4.1) with n = 1 is much simpler and neater than the complete solution
given in [8].

4.2. We will now obtain a parametric solution of the diophantine
system

(4.3)
xk
1 + xk

2 + xk
3 + xk

4 = yk1 + yk2 + yk3 + yk4 , k = 1, 2, 4,

x1x2x3x4 = y1y2y3y4.

It follows from Lemma 4 that any solution of the simultaneous
equations (3.8) and (3.9) that also satisfies the condition x1 + x2 +
x3 + x4 = 0, will be a solution of the diophantine system (4.3). While
imposing this condition on the solution of (3.8) and (3.9) given in
subsection 3.2.1 leads to trivial solutions of system (4.3), when we
impose this condition on the solution given by (3.12) and (3.15), we
get

(4.4) (p− q)(−q + s)(pq + pr + ps+ qs)α2 + (2p2q2 + p2qr − 2p2r2

− p2rs − 2pq3 + pq2s+ pqr2 + pqs2 − pr2s− 2q3s+ q2rs

+ 2qr2s− qrs2)αβ − (q − r)(q + r)(p+ s)(p− q + r − s)β2 = 0.

Taking s = p−q+r, we easily find nonzero values of α, β satisfying con-
dition (4.4). We thus obtain the following solution of the diophantine
system (4.3):

x1 = (p3r − 2p2q2 − 3p2qr + 3p2r2 + 3pq3 − 3pq2r
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− 3pqr2 + 4pr3 − q4 + 3q3r − 3q2r2 + r4)p,

x2 = (p4 + 4p3r − 3p2q2 − 3p2qr + 3p2r2 + 3pq3

− 3pq2r − 3pqr2 + pr3 − q4 + 3q3r − 2q2r2)q,

x3 = (p3q − 2p2r2 + pq3 + 3pq2r − 2pqr2 − pr3

− q4 + q3r + q2r2 − qr3)r,

x4 = −(p3q + p3r − p2q2 + 2p2qr + 2p2r2 − pq3

− 3pq2r + q4 − q3r − qr3)(p− q + r),

y1 = (p3r − 2p2q2 − 3p2qr + 3p2r2 + 3pq3 − 3pq2r

− 3pqr2 + 4pr3 − q4 + 3q3r − 3q2r2 + r4)q,

y2 = (p4 + 4p3r − 3p2q2 − 3p2qr + 3p2r2 + 3pq3

− 3pq2r − 3pqr2 + pr3 − q4 + 3q3r − 2q2r2)r,

y3 = (p3q − 2p2r2 + pq3 + 3pq2r − 2pqr2 − pr3

− q4 + q3r + q2r2 − qr3)(p− q + r),

y4 = −(p3q + p3r − p2q2 + 2p2qr + 2p2r2 − pq3

− 3pq2r + q4 − q3r − qr3)p,

where p, q, r are arbitrary parameters. A numerical solution obtained
by taking (p, q, r) = (1, −2, 3) is given by x = (9, 62, 67, −138)
and y = (−18, −93, 134, −23). Another parametric solution of the
diophantine system (4.3) may be obtained by taking s such that
pq + pr + ps + qs = 0 when again we can find suitable α, β such
that condition (4.4) is satisfied. This solution of degree 8 in arbitrary
parameters p, q and r is omitted.

4.3. We will now obtain parametric solutions of the simultaneous
diophantine equations,

5∑
i=1

xk
i =

5∑
i=1

yki , k = 1, 2, 3, 5,(4.5)

5∏
i=1

xi =

5∏
i=1

yi.(4.6)

4.3.1. In view of Lemma 4, to solve the above diophantine system,
it suffices to impose the condition

(4.7) x1 + x2 + x3 + x4 + x5 = 0,
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on the parametric solution given in subsection 3.3.1 for the simultane-
ous equations (3.16) and (3.17). This immediately yields the following
solution of the diophantine system given by (4.5) and (4.6):

x = (−p2 − 3pq−2q2, pq − q2, −2p2−pq, p2+pq+q2, 2(p2+pq+q2)),

y = (−p2−pq−q2, −2(p2+pq+q2), p2−pq, 2p2+3pq+q2, pq+2q2).

A numerical solution obtained by taking p = 3 and q = 1 is given by
x = (−20, 2, −21, 13, 26), y = (−13, −26, 6, 28, 5).

4.3.2. As the solution obtained in the previous subsection is some-
what special since it necessarily has y1 = −x4 and y2 = −x5, we will
obtain another parametric solution of the system of equations (4.5)
and (4.6). We first obtain a simple, though not complete, solution of
the equations (4.5) with k = 1, 2, 3, by choosing xi, yi as in (3.27)
and following the same method as in subsection 3.3.3. After obtaining
equation (3.30), we choose the arbitrary parameters ai, i = 1, 2, 3, 4
and p, q, r such that (3.30) is satisfied identically for all values of α
and β. To do this, we first choose p, q, r, as given below,

(4.8)

p = (a2 + 2a3 + a4)(a3 + a4)g,

q = (a1 + 2a2 + 2a3 + a4)(a3 + a4)h,

r = −(a1 + 2a2 + 2a3 + a4)(a2 + 2a3 + a4)(g + h)

when the coefficient of α in (3.30) vanishes, and further taking a4 =
−a2, equation (3.30) reduces to

(4.9) (a21 + 2a1a2 + a1a3 + a22 − a2a3)g + a1(a1 + a2 + 2a3)h = 0,

which is readily solved for g and h leading to the following solution
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which satisfies equation (4.5) simultaneously for k = 1, 2, 3:

(4.10)

x1 = d,

x2 = a1α− (a1 + a2)(a1 + a2 + a3)β + d,

x3 = (a1 + a2)α− 2(a1 + a2 + a3)a2β + d,

x4 = (a1 + a2 + a3)α− (a21 + 2a1a2 + a1a3

+ a22 + 3a2a3)β + d,

x5 = (a1 + a3)α− 2a2a3β + d,

y1 = −2a2a3β + d,

y2 = a1α+ d,

y3 = (a1 + a2)α− (a1 + a2)(a1 + a2 + a3)β + d,

y4 = (a1 + a2 + a3)α− 2(a1 + a2 + a3)a2β + d,

y5 = (a1 + a3)α− (a21 + 2a1a2 + a1a3

+ a22 + 3a2a3)β + d.

We now choose d such that (4.7) is satisfied, and substituting the
resulting values of xi, yi in equation (4.5) with k = 5, and removing the
factor −2a1a2a3αβ(a1+a2)(a1+a2+a3)(α−2a2β){α−(a1+a2+a3)β},
we get the condition,

(4.11) (a21 + a1a3 + a22 − a23)α
2 − (2a31 + 3a21a2 + 3a21a3 + 4a1a

2
2

+ 3a1a2a3 + a1a
2
3 + 3a32 + 2a22a3 − 5a2a

2
3)αβ

+ (2a41 + 4a31a2 + 4a31a3 + 4a21a
2
2 + 6a21a2a3 + 2a21a

2
3

+ 4a1a
3
2 + 4a1a

2
2a3 + 2a1a2a

2
3 + 2a42 + 2a32a3 − 4a22a

2
3)β

2 = 0.

We now choose a1, a2, a3 as follows,

(4.12) a1 = 2uv + v2, a2 = u2 − v2 + uv, a3 = −u2 − v2,

when the coefficient of α2 in equation (4.11) vanishes, and hence (4.11)
is readily solved for α and β, and thereby we obtain a solution of the
simultaneous equations (4.5) with k = 1, 2, 3, 5 in terms of arbitrary
parameters u and v. Since this solution satisfies the condition (4.7),
it follows from Lemma 4 that this solution must satisfy equation (4.6)
as well. Thus, we obtain the following solution of the simultaneous
equations (4.5) and (4.6):

x1 = −2(2u4+6u3v+5u2v2−uv3+2v4)(2u4−4u3v+5u2v2+4uv3−3v4),
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x2 = −(4u4+7u3v+5u2v2−7uv3−v4)(2u4+u3v+5u2v2−6uv3+2v4),

x3 = 2(u4−2u3v−5u2v2−3uv3+v4)(u4−7u3v−5u2v2+7uv3−4v4),

x4 = (4u4+2u3v−5u2v2+8uv3−v4)(3u4+4u3v−5u2v2−4uv3−2v4),

x5 = 2(u4+3u3v−5u2v2+2uv3+v4)(u4+8u3v+5u2v2+2uv3−4v4),

y1 = 2(3u4+4u3v−5u2v2−4uv3−2v4)(2u4+u3v+5u2v2−6uv3+2v4),

y2 = −2(u4−2u3v−5u2v2−3uv3+v4)(4u4+2u3v−5u2v2+8uv3−v4),

y3 = (u4+8u3v+5u2v2+2uv3−4v4)(2u4−4u3v+5u2v2+4uv3−3v4),

y4 = −2(u4+3u3v−5u2v2+2uv3+v4)(4u4+7u3v+5u2v2−7uv3−v4),

y5 = (2u4+6u3v+5u2v2−uv3+2v4)(u4−7u3v−5u2v2+7uv3−4v4),

where u and v are arbitrary parameters. A numerical solution obtained
by taking u = 2, v = −1, is given by x = (−584, −1189, 646, 11, 1116),
y = (116, −209, −1314, 1271, 136).

4.4. We will now obtain numerical solutions of the simultaneous
diophantine equations,

6∑
i=1

xk
i =

6∑
i=1

yki , k = 1, 2, 3, 4, 6,(4.13)

6∏
i=1

xi =

6∏
i=1

yi.(4.14)

To solve this diophantine system, we choose xi, yi as defined by (3.34)
and (3.35) when (4.13) is satisfied identically for k = 1, 2, 4, while for
k = 3, equation (4.13) reduces, as before, to (3.36). When k = 6,
equation (4.13) reduces, on using (3.36), to

(4.15) (p− q)(p+ 2q)(2p+ q)(X − Y )(X + 2Y )(2X + Y )

= (r − s)(r + 2s)(2r + s)(U − V )(U + 2V )(2U + V ).

To solve (3.36) and (4.15), we write X = −2U , Y = V , when these two
equations reduce to the following two equations respectively:

(4.16) (4pq2 + 4p2q − r2s− rs2)U = (2pq2 + 2p2q + r2s+ rs2)V,

(4.17) (16p3 + 24p2q − 24pq2 − 16q3 + 2r3 + 3r2s− 3rs2 − 2s3)U

= (4p3 + 6p2q − 6pq2 − 4q3 + 4r3 + 6r2s− 6rs2 − 4s3)V.
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We eliminate U and V from these two equations, then substitute r =
p, s = 1 in the eliminant and, omitting the factor p(2q+1)(3p+2q+1)
which leads to trivial solutions, we get the condition

(4.18) 6p3 + 6p2q − 4pq2 − 4q3 + 3p2 − 4pq + 4q2 − p− 8q + 2 = 0

which represents an elliptic curve with one rational point on the curve
being (p, q) = (−1, 0). Using the birational transformation defined by
the relations

(4.19)

p =
−9ξ3 + 80ξ2 − 6ξη − 20ξ + 180η + 1400

9ξ3 − 184ξ2 + 1000ξ − 1600
,

q =
−58ξ2 + 33ξη + 550ξ − 300η − 3400

9ξ3 − 184ξ2 + 1000ξ − 1600
,

and

(4.20)

ξ =
100p+ 60q − 40

11p+ 2q + 11
,

η =
−450p2 − 3840pq − 2280q2 − 1920p+ 1320q− 1470

121p2 + 44pq + 4q2 + 242p+ 44q + 121
,

equation (4.18) reduces to the Weierstrass minimal form of the elliptic
curve that is given by

(4.21) η2 = ξ3 + 100.

One rational point P on this elliptic curve is easily seen to be (ξ, η) =
(−4, 6). Doubling this point yields a second rational point 2P given by
(ξ, η) = (24, −118) while 3P is given by (ξ, η) = (−19/49, 3429/343).
As the rational point 3P on the elliptic curve (4.21) does not have
integer co-ordinates, it follows from the Nagell-Lutz theorem on elliptic
curves [20, page 56] that this is not a point of finite order. Thus,
there exist infinitely many rational points on the elliptic curve (4.21),
and these can be obtained by the group law. Further, a reference to
Cremona’s well-known tables [11] on elliptic curves shows that the rank
of this elliptic curve is 1, which reconfirms the existence of infinitely
many rational points on this curve. These infinitely many rational
points on the curve (4.21) yield infinitely many values of p, q satisfying
equation (4.18). With these values of p, q and r = p, s = 1, equations
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(4.16) and (4.17) can be solved for U, V and, working backwards,
we can obtain infinitely many solutions of the simultaneous equations
(4.13).

We also note that the values of xi thus obtained from (3.34) and (3.35)
necessarily satisfy the relation x1 + x2 + x3 + x4 + x5 + x6 = 0, and
hence it follows from Lemma 4 that the solutions obtained above for
equations (4.13) also simultaneously satisfy equation (4.14). We can
thus get infinitely many integer solutions of the diophantine system
given by (4.13) and (4.14).

While the rational points P and 2P on the elliptic curve (4.21) lead
to trivial solutions of the simultaneous equations (4.13) and (4.14), the
point 3P leads to the following nontrivial solution:

x = (10541, 1175, −11716, −1460, 7897, −6437),

y = (11461, −10865, −596, 4700, 3683, −8383).

5. Other diophantine systems with equal sums of like powers
and equal products of integers.

5.1. We will now obtain a parametric solution of the diophantine
system

(5.1)
xk
1 + xk

2 + xk
3 + xk

4 = yk1 + yk2 + yk3 + yk4 , k = 1, 3

x1x2x3x4 = y1y2y3y4,

It follows from Lemma 5 that a solution of this diophantine system
can be found by solving the following equations:

X − Y

p− q
=

U − V

r − s
,(5.2)

X2 +XY + Y 2

p2 + pq + q2
=

U2 + UV + V 2

r2 + rs+ s2
.(5.3)

Equations (5.2) and (5.3) may be considered as a linear and a quadratic
equation in the variablesX, Y, U, V with a known solutionX = p, Y =
q, U = r, V = s. Eliminating V from these two equations, we get a
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quadratic equation in X, Y, U which is readily solved using the known
solution. We thus obtain the following solution of equations (5.2) and
(5.3):

X = (pr − qs)(p2r − q2s)m2 + (ps− qr)(−pr + qs)n2p

− (p3r2 − p3rs− 2p2qrs+ 2pq2r2 + 2pq2s2 − q3r2 − q3rs)mn,

Y = (ps− qr)(−pr + qs)m2q + (ps− qr)(p2s− q2r)n2+

(p3r2 + p3rs− 2p2qr2 − 2p2qs2 + 2pq2rs− q3r2 + q3rs)mn,

U = (ps− qr)(−pr + qs)m2r + (ps− qr)(−pr + qs)n2r

− (p2r2 − p2rs+ p2s2 − 2pqrs+ q2r2 − q2rs+ q2s2)mnr,

V = −(pr − qs)(pr2 − qs2)m2 − (ps− qr)(ps2 − qr2)n2

− (p2r2s+ p2rs2 − 2pqs3 + rq2s2 + sq2r2 − q2r3 − p2r3)mn,

where m, n, p, q, r, s, are arbitrary parameters. With these values
of X, Y, U, V , a solution of the diophantine system (5.1) is given by
(2.19). A numerical solution obtained by taking (m, n, p, q, r, s) =
(2, 9, 1, 2, 1, 3) is given by x = (13, 93, 47, 22) and y = (39, 31, 11, 94).

5.2. As has been mentioned in the introduction, a large number of
results on equal sums of like powers are already known. These can be
used together with Lemma 1 to obtain solutions of diophantine systems
with equal sums of powers and equal products. As an example, we will
show how infinitely many solutions can be obtained for the diophantine
system,

(5.4)

5∑
i=1

xk
i =

5∑
i=1

yki , k = 2, 3, 4,

x1x2x3x4x5 = y1y2y3y4y5,

We will use the known solutions of the diophantine system

(5.5)

3∑
i=1

aki =

3∑
i=1

bki , k = 2, 3, 4,

to obtain solutions of the diophantine system (5.4). As has been shown
in [10], infinitely many integer solutions of (5.5) can be obtained, a nu-
merical example being given by (a1, a2, a3) = (−815, 358, 1224) and



EQUAL SUMS OF POWERS AND EQUAL PRODUCTS 789

(b1, b2, b3) = (−776, −410, 1233). Taking p = 388, q = 205, and ap-
plying Lemma 1 to this solution, we get a numerical solution of the dio-
phantine system (5.4) which is given by x = (−316220, 138904, 474912,
−84050, 252765) and y = (−167075, 73390, 250920, −301088, 478404).
As we know infinitely many solutions of (5.5), we can obtain infinitely
many solutions of (5.4).

6. Some diophantine systems with no nontrivial solutions.
In this section we prove that certain diophantine systems involving
equal sums of powers and equal products have no nontrivial solutions.

Theorem 1. The simultaneous diophantine equations,

x1 + x2 + x3 = y1 + y2 + y3,(6.1)

x4
1 + x4

2 + x4
3 = y41 + y42 + y43 ,(6.2)

x1x2x3 = y1y2y3,(6.3)

have no nontrivial solutions in integers.

Proof. If there exists a nonzero solution of the simultaneous diophan-
tine equations (6.1), (6.2) and (6.3), we may write p = x1 + x2 + x3 =
y1 + y2 + y3, r = x1x2x3 = y1y2y3, q1 = x1x2 + x2x3 + x3x1,
q2 = y1y2 + y2y3 + y3y1. The following identity in symmetric func-
tions of x1, x2, x3 is readily verified:

(6.4) x4
1 + x4

2 + x4
3 = p4 − 4p2q1 + 4pr + 2q21.

Similarly, we have the identity,

(6.5) y41 + y42 + y43 = p4 − 4p2q2 + 4pr + 2q22 .

On subtracting (6.5) from (6.4), we get in view of (6.2),

(6.6) 2(q1 − q2)(q1 + q2 − 2p2) = 0.

Since p2 − 2q1 = x2
1 + x2

2 + x2
3 > 0, it follows that q1 < p2/2, and

similarly, q2 < p2/2. Thus, q1+ q2− 2p2 < −p2 and hence cannot be 0.
It now follows from (6.6) that q1 = q2, that is, x1x2 + x2x3 + x3x1 =



790 AJAI CHOUDHRY

y1y2 + y2y3 + y3y1. This, together with the relations (6.1) and (6.3)
implies that x1, x2, x3 must be a permutation of y1, y2, y3. This proves
the theorem.

It is interesting to note here that if, in the above diophantine system,
we replace equation (6.3) by the cubic equation x3

1 + x3
2 + x3

3 =
y31 + y32 + y33 , the resulting diophantine system, namely,

(6.7) xk
1 + xk

2 + xk
3 = yk1 + yk2 + yk3 , k = 1, 3, 4,

has nontrivial solutions in integers [6, pages 305 306].

Theorem 2. The diophantine system

(6.8)

n∑
i=1

x2k
i =

n∑
i=1

y2ki , k = 1, 2, . . . , n− 1,

x1x2 · · ·xn = y1y2 · · · yn,

has no nontrivial solutions in integers.

Proof. Writing Xi = x2
i , Yi = y2i , i = 1, 2, . . . , n, a nontrivial solution

of system (6.8) implies the existence of a nontrivial solution of the
diophantine system,

(6.9)

n∑
i=1

Xk
i =

n∑
i=1

Y k
i , k = 1, 2, . . . , n− 1,

X1X2 · · ·Xn = Y1Y2 · · ·Yn.

It follows from Lemma 2 that the system (6.9) has no nontrivial
solutions and the theorem follows.

Corollary. The diophantine system

(6.10)

x2
1 + x2

2 + x2
3 = y21 + y22 + y23 ,

x4
1 + x4

2 + x4
3 = y41 + y42 + y43 ,

x1x2x3 = y1y2y3,

has no nontrivial solutions in integers.
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The corollary is simply a special case of Theorem 2 with n = 3. It is
mentioned here since, just as in the case of the diophantine system of
Theorem 1, we do have nontrivial solutions of the diophantine system
(5.5) obtained by replacing the condition of equal products in the
system (6.10) by the condition x3

1 + x3
2 + x3

3 = y31 + y32 + y33 .

We also note that Piezas, in his online book on algebraic identities
[18, Chapter 028, subsection 8.4], has given a theorem on equal sums
of like powers based on the existence of nontrivial integer solutions of
the diophantine system (6.8) with n = 4. Since the system (6.8) has
no nontrivial solutions, the theorem of Piezas is of no help in obtaining
new results on equal sums of like powers.

7. Some open problems. There remain several open problems
concerning equal sums of like powers and equal products of integers.
Some of these are as follows:

(i) Find parametric/numerical solutions of the diophantine system
(3.1) when n > 6, and with s = n+ 2.

(ii) Do there exist nontrivial solutions of the diophantine system
(3.1) with s = n + 2 for any arbitrary n? If not, for given n, find the
least value of s for which the diophantine system (3.1) has nontrivial
solutions.

(iii) Find parametric/numerical solutions of the diophantine system
(4.1) when n > 4. Do there exist nontrivial solutions of the diophantine
system (4.1) for any arbitrary n?

It would indeed be very interesting to find solutions of the diophantine
system (4.1) for any arbitrary value of n.
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