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A CONTRACTION OF THE PRINCIPAL SERIES
BY BEREZIN-WEYL QUANTIZATION

BENJAMIN CAHEN

ABSTRACT. We study a contraction of the principal series
representations of a noncompact semisimple Lie group to the
unitary irreducible representations of its Cartan motion group
by means of the Berezin-Weyl quantization on the coadjoint
orbits associated with these representations.

1. Introduction. In the pioneering paper [19], Inönü and Wigner
introduced the notion of contraction of Lie groups and of Lie group
representations on physical grounds: If two physical theories are related
by a limiting process, then the associated invariance groups and their
representations should also be related by a limiting process called
contraction. For example, the Galilei group is a contraction, that
is, a limiting case, of the Poincaré group and the unitary irreducible
representations of the Galilei group are limits of unitary irreducible
representations of the Poincaré group [19].

The systematic study of the contractions of Lie group representations
began with the work of Mickelsson and Niederle [24]. In [24], a proper
definition of the contraction of unitary representations of Lie groups
was given for the first time. The non-zero mass representations of the
Euclidean group Rn+1�SO(n+1) and the positive mass-squared rep-
resentations of the Poincaré group Rn+1 �SO0(n, 1) were obtained by
contraction (i.e., as limits in the sense defined in [24]) of the principal
series representations of SO0(n + 1, 1). These results were partially
generalized by Dooley and Rice in [15, 16] by following an idea of
Mackey [23]. In [16], a contraction of the principal series of a noncom-
pact semisimple Lie group to the unitary irreducible representations of
its Cartan motion group was established.
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In fact, a contraction of Lie group representations provides a link be-
tween the Harmonic Analysis on two different Lie groups. In particular,
contractions allow recovery of some classical formulas of the theory of
special functions [15, 26]. Contractions also permit transference of re-
sults on Lp-multipliers from unitary groups to Heisenberg groups [14,
27].

In [13], Dooley suggested interpreting contractions of representations
in the context of the Kirillov-Kostant method of orbits [20] and,
in [12], Cotton and Dooley showed how to describe contractions of
representations by means of adaptedWeyl correspondences. The notion
of adapted Weyl correspondence was introduced in [2, 3]. Given a
Lie group G and a unitary irreducible representation π of G on a
Hilbert space H, an adapted Weyl correspondence on a coadjoint orbit
O associated with π by the Kirillov-Kostant method of orbits is a linear
isomorphism W from a class of functions on O (called symbols) onto a
class of operators on H, which is adapted to π in the following sense:
for each element X of the Lie algebra of G, the function X̃ defined
on O by X̃(ξ) = 〈ξ,X〉 is a symbol and the equality W (iX̃) = dπ(X)
holds on a dense subspace of H. A precise definition of the notion
of adapted Weyl correspondence can be found in [6]. Adapted Weyl
correspondences have been constructed in various situations, see the
introduction of [6].

The approach of [12] is particularly efficient in the case when the
coadjoint orbits associated with the representations have Kählerian
structures. In that case, the representation spaces are reproducing
kernel Hilbert spaces, and the Berezin calculus generally provides an
adapted Weyl correspondence on the corresponding coadjoint orbits
[11]. For example, in [5, 8, 9], we used Berezin quantization in order
to establish contractions of the unitary irreducible representations of a
compact semisimple Lie group and of the discrete series of a noncom-
pact semisimple Lie group to the unitary irreducible representations of
a Heisenberg group.

In [12], the case of the contraction of the principal series of SL(2,R)
to the unitary representations of R2 � SO(2) was treated by using
Weyl calculus. In [4], the more complicated example of the contraction
of the principal series of SO0(n + 1, 1) to some unitary irreducible
representations of Rn+1 � SO0(n, 1) was studied similarly.
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More generally, in the present paper, we apply the ideas of [12] to
the study of the contraction of the principal series representations of
a noncompact semisimple Lie group G to the unitary irreducible rep-
resentations of its Cartan motion group V �K. We obtain very sim-
ple parametrizations of the corresponding coadjoint orbits of G and of
V �K by using the method of [6] which is based upon the dequantiza-
tion of the representations by means of the Berezin-Weyl calculus intro-
duced in [2]. This allows us to construct adapted Weyl correspondences
on these coadjoint orbits. Then we show how the parametrizations of
the orbits as well as the adapted Weyl correspondences are related by
the contraction process. In particular, we get an infinitesimal version
of the results of [16] on the contraction of the principal series.

This paper is organized as follows. In Sections 2 and 3, we realize
the representations of the principal series of G and the unitary irre-
ducible representations of V �K in compatible ways, and we compute
the corresponding derived representations. In Section 4, we introduce
the Berezin-Weyl calculus. In Sections 5 and 6, we dequantize the rep-
resentations and then we obtain the parametrizations of the associated
orbits and the adapted Weyl correspondences. In Section 7, we recover
a contraction result of [16] in the ‘noncompact picture’ (in the terminol-
ogy of [21, Chapter 7]). Finally, in Section 8, we show that the adapted
Weyl correspondences on the coadjoint orbits of G and of V �K asso-
ciated with the representations are related by the contraction process,
and we give a contraction result for the derived representations.

2. Principal series representations. In this section, we first
introduce some notation. Our main references are [21, Chapter 7]
and [31, Chapter 8]. We obtain a realization of the principal series
representations which is convenient for the study of contractions by
slightly modifying the standard ‘noncompact’ realization [21, page
169], [31, subsection 8.4.8] and we compute the corresponding derived
representations.

Let G be a connected noncompact semisimple real Lie group with
finite center. Let g be the Lie algebra of G. We identify G-equivariantly
g to its dual space g∗ by using the Killing form β of g defined by
β(X,Y ) = Tr (adXadY ) for X and Y in g. Let θ be a Cartan
involution of g, and let g = k ⊕ V be the corresponding Cartan
decomposition of g. Let K be the connected compact (maximal)
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subgroup of G with Lie algebra k. Let a be a maximal abelian
subalgebra of V , and let M be the centralizer of a in K. Let m denote
the Lie algebra of M . We can decompose g under the adjoint action of
a:

g = a⊕m⊕
∑
λ∈Δ

gλ

where Δ is the set of restricted roots. We fix a Weyl chamber in a
and we denote by Δ+ the corresponding set of positive roots. We set
n =

∑
λ∈Δ+ gλ and n =

∑
λ∈Δ+ g−λ. Then n = θ(n). Let A, N

and N̄ denote the analytic subgroups of G with algebras a, n and n,
respectively. We fix a regular element ξ1 in a, that is, λ(ξ1) �= 0 for
each λ ∈ Δ and an element ξ2 in m. Let ξ0 = ξ1 + ξ2. Denote by O(ξ0)
the orbit of ξ0 in g∗ � g under the (co)adjoint action of G and by o(ξ2)
the orbit of ξ2 in m under the adjoint action of M .

Let σ be a unitary irreducible representation of M on a complex
(finite-dimensional) vector space E. Henceforth, we assume that σ is
associated with the orbit o(ξ2) in the following sense, see [32, Section
4]. For a maximal torus T of M with Lie algebra t, iβ(ξ2, ·) ∈ it∗ is a
highest weight for σ.

Now we consider the unitarily induced representation

π̂ = IndGMAN(σ ⊗ exp(iν)⊗ 1N )

where ν = β(ξ1, ·) ∈ a∗. The representation π̂ lies in the unitary
principal series of G and is usually realized on the space L2(N,E) which
is the Hilbert space completion of the space C0(N,E) of compactly
supported smooth functions φ : N → E with respect to the norm
defined by

‖φ‖2 =

∫
N

〈φ(y), φ(y)〉E dy

where dy is the Haar measure on N normalized as follows. Let
(Ei)1≤i≤n be an orthonormal basis for n with respect to the scalar
product defined by (Y, Z) := −β(Y, θ(Z)). Denote by (Y1, Y2, . . . , Yn)
the coordinates of Y ∈ n in this basis, and let dY = dY1dY2 . . . dYn be
the Euclidean measure on n. The exponential map exp is a diffeomor-
phism from n onto N and we set dy = log∗(dY ) where log = exp−1.

Recall that NMAN is an open dense subset of G. We denote by
g = n(g)m(g)a(g)n(g) the decomposition of g ∈ NMAN . For g ∈ G
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the action of the operator π̃(g) is given by

(2.1) (π̃(g)φ)(y) = e−(ρ+iν) log a(g−1y)σ(m(g−1y))−1 φ(n(g−1y))

where ρ(H) := 1/2Trn(adH) = 1/2
∑

λ∈Δ+ λ.

Recall that we have the Iwasawa decomposition G = KAN . We
denote by g = k̃(g)ã(g)ñ(g) the decomposition of g ∈ G.

In order to simplify the study of the contraction, we slightly modify
the preceding realization of π̂ as follows. Let I be the unitary isomor-
phism of L2(N,E) defined by

(Iφ)(y) = e−iν(log ã(y))φ(y).

Then we introduce the realization π of π̂ defined by π(g) := I−1π̃(g)I
for each g ∈ G. We immediately obtain

(2.2)

(π(g)φ)(y) = eiν(log ã(y)−log ã(n(g−1y)))e−(ρ+iν) log a(g−1y)σ(m(g−1y))−1

φ(n(g−1y)).

Formula (2.2) can be simplified as follows. For g ∈ G and y ∈ n, we
can write

g−1y = n(g−1y)m(g−1y)a(g−1y)n(g−1y)

= k̃(n(g−1y))ã(n(g−1y))ñ(n(g−1y))m(g−1y)a(g−1y)n(g−1y).

Then we have
ã(g−1y) = ã(n(g−1y))a(g−1y).

Hence, we obtain

(2.3) (π(g)φ)(y) = eiν(log ã(y)−log ã(g−1y))e−ρ(log a(g−1y))σ(m(g−1y))−1

φ(n(g−1y)).

Now we give an explicit formula for the differential dπ of π. Let us
introduce some additional notation. If H is a Lie group and X is an ele-
ment of the Lie algebra of H , then we denote by X+ the right-invariant
vector field generated by X , that is, X+(h) = d/dt(exp(tX))h|t=0 for
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h ∈ H . We denote by pa, pm and pn the projection operators of g on a,
m and n associated with the decomposition g = n⊕m⊕a⊕n. Moreover,
we also denote by p̃a the projection operator of g on a associated with
the decomposition g = k⊕ a⊕ n. We need the following lemma.

Lemma 2.1. 1) For each X ∈ g and each y ∈ N , we have

d

dt
a(exp(tX)y)

∣∣∣
t=0

= pa(Ad (y
−1)X)

d

dt
m(exp(tX)y)

∣∣∣
t=0

= pm(Ad (y
−1)X)

d

dt
n(exp(tX)y)

∣∣∣
t=0

= (Ad (y) pn(Ad (y
−1)X))+(y).

2) For each X ∈ g and each g ∈ G, we have

d

dt
ã(exp(tX)g)

∣∣∣
t=0

= (p̃a(Ad (k̃(g)
−1)X))+(ã(g)).

Proof. To prove 1), we consider the diffeomorphism μ : N ×M ×A×
N → NMAN defined by μ(y,m, a, n) = yman. For y ∈ N , Y ∈ n,
U ∈ m, H ∈ a and Z ∈ n, we have

(2.4) dμ(y, e, e, e)(Y +(y), U,H, Z)

=
d

dt
exp(tY )y exp(tU) exp(tH) exp(tZ)

∣∣∣
t=0

= (Y +Ad (y)(U +H + Z))+(y).

Now, let X ∈ g. We can write Ad (y−1)X = Y0 + U + H + Z where
Y0 ∈ n, U ∈ m, H ∈ a and Z ∈ n. Then equality (2.4) implies
that dn(y)(X+(y)) = (Ad (y)Y0)

+(y). This proves the last equality
of 1). The other equalities are proved similarly. Finally, we prove 2)
analogously.

From this lemma, we immediately deduce the following proposition.
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Proposition 2.2. For X ∈ g, φ ∈ C0(N,E) and y ∈ N , we have

(dπ(X)φ)(y) = iν(p̃a(Ad (k̃(y)
−1)X))φ(y)

+ ρ(pa(Ad (y
−1)X))φ(y)

+ dσ(pm(Ad (y
−1)X))φ(y)

− dφ(y)(Ad (y) pn(Ad (y
−1)X))+(y).

3. Representations of the Cartan motion group. We retain
the notation from Section 2. In particular, we have the Cartan
decomposition g = k ⊕ V where V is the orthogonal complement of
k in g with respect to the Killing form β. We denote by pck and pcV the
projections of g on k and V associated with the Cartan decomposition.

We form the semidirect product G0 := V �K. The group law of G0

is given by
(v, k).(v′, k′) = (v +Ad (k)v′, kk′)

for v, v′ in V and k, k′ ∈ K. The Lie algebra g0 of G0 is the space
V × k endowed with the Lie bracket

[(w,U), (w′, U ′)]0 = ([U,w′]− [U ′, w], [U,U ′])

for w, w′ in V and U, U ′ in k.

Recall that β is positive definite on V and negative definite on k [17,
page 184]. Then, by using β, we can identify V ∗ to V and k∗ to k;
hence, g∗0 � V ∗ × k∗ to V × k. Under this identification, the coadjoint
action of G0 on g∗0 � V × k is then given by

(v, k) · (w,U) = (Ad (k)w,Ad (k)U + [v,Ad (k)w])

for v, w in V , k in K and U in k. This is a particular case of the
general formula for the coadjoint action of a semidirect product, see for
instance [25].

We need the following lemma.

Lemma 3.1. For each regular element ξ1 of a, the space ad ξ1 (V )
is the orthogonal complement of m in k.
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Proof. For each λ ∈ Δ+, let Eλ �= 0 be in gλ. Note that the
space pck(n) = pck(n) is generated by the elements Eλ + θ(Eλ) and
hence orthogonal to m. Now, by applying pck to the decomposition
g = m + a + n+ n, we get k = m + pck(n). This shows that pck(n) is the
orthogonal complement of m in k. On the other hand, by applying pcV
to the preceding decomposition of g, we obtain V = a + pcV (n). Since
pcV (n) is generated by the elements Eλ − θ(Eλ), the space ad ξ1 (V ) is
then generated by the elements

ad ξ1 (Eλ − θ(Eλ)) = λ(ξ1)(Eλ + θ(Eλ))

where λ(ξ1) �= 0 for λ ∈ Δ. Hence ad ξ1 (V ) = pck(n) is the orthogonal
complement of m in k.

The coadjoint orbits of the semidirect product of a Lie group by a
vector space were described by Rawnsley in [25]. For each (w,U) ∈
g∗0 � g0, we denote by O(w,U) the orbit of (w,U) under the coadjoint
action of G0. The following lemma shows that, for almost all (w,U),
the orbit O(w,U) is of the form O(ξ1, ξ2) with ξ1 ∈ a and ξ2 ∈ m.

Lemma 3.2. 1) Let O be a coadjoint orbit for the coadjoint action of
G0 on g∗0 � g0. Then there exists an element of O of the form (ξ1, U)
with ξ1 ∈ a. Moreover, if ξ1 is regular, then there exists a ξ2 ∈ m such
that (ξ1, ξ2) ∈ O.

2) Let ξ1 be a regular element of a. Then M is the stabilizer of ξ1 in
K.

Proof. 1) Let (w,U) ∈ O. For each k ∈ K, we have (0, k) · (w,U) =
(Ad (k)w,Ad (k)U). By [21, p. 120], we can choose k ∈ K so that
Ad (k)w ∈ a. We set ξ1 := Ad (k)w. If we assume that ξ1 is regular,
then by Lemma 3.1 we can write U = ξ2 + [ξ1, v] where ξ2 ∈ m and
v ∈ V . Then (ξ1, U) = (v, e) · (ξ1, ξ2). Hence, O = O(ξ1, ξ2).

2) Denote by K(ξ1) the stabilizer of ξ1 in K and by g(ξ1) the
centralizer of ξ1 in g. Since ξ1 regular, we have g(ξ1) = a ⊕ m [17,
page 263].

Let k ∈ K(ξ1). Then Ad (k) leaves g(ξ1) invariant. Thus, g(ξ1)∩V =
a is also invariant under Ad (k). Hence, k ∈ M . This shows that
K(ξ1) ⊂ M . Finally, K(ξ1) = M .
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In the rest of the section, we consider the orbit O(ξ1, ξ2) of (ξ1, ξ2) ∈
a×m ⊂ g∗0 � g0 under the coadjoint action of G0. As in Section 2, we
assume that ξ1 is a regular element of a and that the adjoint orbit o(ξ2)
of ξ2 in m is associated with a unitary irreducible representation σ of
M which is realized on a (finite-dimensional) Hilbert space E. Then
O(ξ1, ξ2) is associated with the unitarily induced representation

π̂0 = IndG0

V ×M (eiν ⊗ σ)

where ν = β(ξ1, ·) ∈ a∗ (see [22, 25]). By a result of Mackey, π̂0 is
irreducible since σ is irreducible [29].

Let OV (ξ1) be the orbit of ξ1 in V under the action of K. We denote
by μ the K-invariant measure on OV (ξ1) � K/M . We denote by π̃0

the usual realization of π̂0 on the space of square-integrable sections
of a Hermitian vector bundle over OV (ξ1) [22, 25, 28]. Let us briefly
describe the construction of π̃0. We introduce the Hilbert G0-bundle
L := G0 ×eiν⊗σ E over OV (ξ1) � K/M . Recall that an element of L is
an equivalence class

[g, u] = {(g.(v,m), e−iν(v)σ(m)−1u) : v ∈ V, m ∈ M}

where g ∈ G0, u ∈ E and that G0 acts on L by left translations:
g [g′, u] := [gg′, u]. The action of G0 on OV (ξ1) � K/M being given
by (v, k) · ξ = Ad (k)ξ, the projection map [(v, k), u] → Ad (k)ξ1 is
G0-equivariant. The G0-invariant Hermitian structure on L is given by

〈[g, u], [g, u′]〉 = 〈u, u′〉E
where g ∈ G0 and u, u′ ∈ E. Let H0 be the space of sections s of L
which are square-integrable with respect to the measure μ, that is,

‖s‖2H0
=

∫
OV (ξ1)

〈s(ξ), s(ξ)〉 dμ(ξ) < +∞.

Then π̃0 is the action of G0 on H0 defined by

(π̃0(g) s)(ξ) = g s(g−1 · ξ).

For the study of contractions, it is more convenient to realize π̂0 in
the Hilbert space L2(N,E) introduced in Section 2. To this aim, we
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consider the map τ : y → Ad (k̃(y))ξ1 which is a diffeomorphism from
n onto a dense open subset of OV (ξ1) [31, Lemma 7.6.8]. We denote by
k · y the action of k ∈ K on y ∈ N defined by τ(k · y) = Ad (k)τ(y) or,
equivalently, by k · y = n(ky). Then the K-invariant measure on N is

given by (τ−1)∗(μ) = e−2ρ(log ã(y))dy [31, Lemma 7.6.8]. We associate
with each s ∈ H0 the function φs : N → E defined by

s(τ(y)) = [(0, k̃(y)), eρ(log ã(y))φs(y)].

For s and s′ in H0, we have

〈s(τ(y)), s′(τ(y))〉 = e2ρ(log ã(y)) 〈φs(y), φs′ (y)〉E .
This implies that

〈s, s′〉H0 =

∫
N

〈φs(y), φs′(y)〉E dy.

Moreover, for s ∈ H0, g = (v, k) ∈ G0 and y ∈ N , we have

(π̃0(g)s)(τ(y)) = g s(g−1 · y) = g s(τ(k−1 · y))
= (v, k) [(0, k̃(k−1 · y)), eρ(log ã(k−1·y))φs(k

−1 · y)]
= [(v, kk̃(k−1 · y)), eρ(log ã(k−1·y))φs(k

−1 · y)]
= eρ(log ã(k−1·y))[(0, k̃(y))

· (Ad (k̃(y))−1v,m(k, y)), φs(k
−1 · y)]

= eρ(log ã(k−1·y))+iν(Ad (̃k(y))−1v)

× [(0, k̃(y)), σ(m(k, y))φs(k
−1 · y)],

where we have set m(k, y) := k̃(y)−1kk̃(k−1 · y) ∈ M . Hence, we see
that the equality

(3.1) (π0(v, k)φ)(y)

= eiβ(Ad (̃k(y))ξ1,v)+ρ(log ã(k−1·y)−log ã(y))σ(m(k, y))φ(k−1 · y)
defines a unitary representation π0 of G0 on L2(N,E) which is unitarily
equivalent to π̃0, the intertwining operator between π0 and π̃0 being
s → φs.
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We can simplify formula (3.1) as follows. Let k ∈ K and y ∈ N .

Write k−1y = n(k−1y)m(k−1y)a(k−1y)n(k−1y). Then k−1k̃(y) =

k̃(n(k−1y))m(k−1y). Thus, m(k, y) = k̃(y)−1kk̃(k−1 · y) = m(k−1y)−1.
We also see that

ã(y) = ã(k−1y) = ã(n(k−1y))a(k−1y) = ã(k−1 · y)a(k−1y).

Hence, we obtain

(3.2) (π0(v, k)φ)(y)

= e−ρ(log a(k−1y)+iβ(Ad (̃k(y))ξ1,v))σ(m(k−1y))−1φ(n(k−1y)).

The computation of dπ0 is quite similar to that of dπ (see Section 2).
By using Lemma 2.1, we easily obtain the following result.

Proposition 3.3. For (v, U) ∈ g0, φ ∈ C0(N,E) and y ∈ N , we
have

(dπ0(v, U)φ)(y) = iβ(Ad (k̃(y))ξ1, v)φ(y)

+ ρ(pa(Ad (y
−1)U))φ(y)

+ dσ(pm(Ad (y
−1)U))φ(y)

− dφ(y)(Ad (y) pn(Ad (y
−1)U))+(y).

4. Berezin-Weyl calculus. In this section, we keep the notation of
the previous sections. We recall some properties of the Berezin calculus
on o(ξ2) and of the Berezin-Weyl calculus on N × n× o(ξ2) which was
introduced in [2] as a generalization of the usual Weyl calculus.

The Berezin calculus on o(ξ2) associates with each operator B on the
finite-dimensional complex vector space E a complex-valued function
s(B) on the orbit o(ξ2), which is called the symbol of B (see [1]). The
following properties of the Berezin calculus can be found in [2, 10, 11].

Proposition 4.1. (1) The map B → s(B) is injective.

(2) For each operator B on E, we have s(B∗) = s(B).

(3) For each operator B on E, each m ∈ M and each ϕ ∈ o(ξ2), we
have

s(B)(Ad (m)ϕ) = s(σ(m)−1Bσ(m))(ϕ).
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(4) For X ∈ m and ϕ ∈ o(ξ2), we have s(dσ(X))(ϕ) = iβ(ϕ,X).

In particular, note that the map s−1 is an adapted Weyl transform
on o(ξ2) in the sense of [6] (see also Section 5).

Now we introduce the Berezin-Weyl calculus on N × n × o(ξ2) as
a slight modification of the usual Weyl calculus for End (E)-valued
functions [18]. We say that a smooth function f : (y, Z, ϕ) → f(y, Z, ϕ)
is a symbol on N × n× o(ξ2) if, for each (y, Z) ∈ N × n, the function
ϕ → f(y, Z, ϕ) is the symbol, in the Berezin calculus on o(ξ2), of an

operator on E denoted by f̂(y, Z). A symbol f on N × n × o(ξ2) is

called an S-symbol if the function f̂ belongs to the Schwartz space of
rapidly decreasing smooth functions on N × n with values in End (E).
For each S-symbol f on N × n× o(ξ2), we define an operator W (f) on
L2(N,E) by
(4.1)

(W (f)φ)(y) = (2π)−n
∫
n×n

ei〈T,Z〉f̂(y exp(T/2), Z)φ(y expT ) dT dZ

for φ ∈ C0(N,E).

As the usual Weyl calculus, the Weyl-Berezin calculus can be ex-
tended to much larger classes of symbols. Here we only consider a
class of polynomial symbols. For Z ∈ n, we denote by (z1, z2, . . . , zn)
the coordinates of Z in the basis (Ei)1≤i≤n of n. We say that a

symbol f on N × n × o(ξ2) is a P-symbol if the function f̂(y, Z)
is polynomial in z1, z2, . . . , zn. Let f be the P-symbol defined by
f(y, Z, ϕ) = u(y)zα1

1 zα2
2 · · · zαn

n where u ∈ C∞(N). By imitating [30,
page 105], we get
(4.2)
(W (f)φ)(y)=(i∂z1 )

α1(i∂z2)
α2 · · · (i∂zn)αn(u(y expZ/2)φ(y expZ))

∣∣
Z=0

.

In particular, if f(y, Z, ϕ) = u(y) where u ∈ C∞(N), then

(4.3) (W (f)φ)(y) = u(y)φ(y)
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and, if f(y, Z, ϕ) = (v(y), Z) where v ∈ C∞(N, n), then

(4.4) (W (f)φ)(y) = i

( n∑
k=1

d

dt
(Ek, v(y exp(tEk/2)))

∣∣∣
t=0

φ(T )

+
d

dt
φ(y exp(tv(y)))

∣∣∣
t=0

)
.

The following lemmas will be needed in Sections 5 and 6.

Lemma 4.2. Let X ∈ g, and let f be the P-symbol on N × n× o(ξ2)
defined by f(y, Z, ϕ) = (pn(Ad (y

−1)X), Z). Then we have

W (f)φ(y) = −iρ(pa(Ad (y
−1)X))φ(y)

+ i(dφ)(y)(Ad (y)pn(Ad (y
−1)X))+(y)

for each φ ∈ C0(N,E).

Proof. We apply formula (4.4) to f(y, Z, ϕ) = (pn(Ad (y
−1)X), Z).

On the one hand, we have

n∑
k=1

d

dt
(Ek, v(y exp(tEk/2)))

∣∣∣
t=0

=−1

2

n∑
k=1

(Ek, pn(adEk(Ad (y
−1)X)))

=
1

2
Trn(pn ◦ ad (Ad (y−1)X)).

But, for each Y ∈ g, we have Trn(pn ◦ ad (Y )) = −2ρ(pa(Y )). This
equality can be proved as follows. If Y ∈ n, then pn ◦ adY = adY
is a nilpotent endomorphism of n. Thus, Trn(pn ◦ adY ) = 0. If
Y ∈ n, then, since [n, gλ] ⊂ a +

∑
μ>λ gμ for each λ < 0, we also

have that Trn(pn ◦ adY ) = 0. If X ∈ m, then pn ◦ adY = adY is
an endomorphism of n which is skew-symmetric with respect to (·, ·).
Thus, Trn(pn ◦ adY ) = 0. Finally, if Y ∈ a, then Trn(pn ◦ adY ) =
Trn(adY ) = −2ρ(Y ).

Then we get

(4.5)
n∑

k=1

d

dt
(Ek, v(y exp(tEk/2)))

∣∣∣
t=0

= −ρ(pa(Ad (y
−1)X)).
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On the other hand, we have

(4.6)
d

dt
φ(y exp(tv(y)))

∣∣∣
t=0

= (dφ)(y)(Ad (y)v(y))+(y).

Putting (4.5) and (4.6) together, we get the desired result.

We can identify the cotangent bundle T ∗N with N × n by using the
map j : N × n → T ∗N defined by

〈j(y, Z), Y +(y)〉 = −β(θ(Z),Ad (y−1)Y )

for y ∈ N and Y, Z ∈ n. Under this identification, the Liouville 1-form
on T ∗N corresponds to the 1-form α on N × n given by

α(y,Z)(Y
+(y), T ) = −β(θ(Z),Ad (y−1)Y )

for y ∈ N and Z, Y, T ∈ n. We denote by {·, ·}1 the Poisson bracket
associated with the symplectic 2-form dα on N × n. We also denote
by ω2 the Kirillov 2-form on o(ξ2) and by {·, ·}2 the corresponding
Poisson bracket. We form the symplectic product N × n × o(ξ2) and
denote by {·, ·}p the Poisson bracket associated with the symplectic
form ωp := dα ⊗ ω2. Let u, v ∈ C∞(N × n) and a, b ∈ C∞(o(ξ2)).
Then, for f(y, Z, ϕ) = u(y, Z)a(ϕ) and g(y, Z, ϕ) = v(y, Z)b(ϕ), we
have

{f, g}p = u(y, Z)v(y, Z){a, b}2 + a(ϕ)b(ϕ){u, v}1.

Lemma 4.3. Let f and g be two P-symbols on N × n× o(ξ2) of the
form

u(y) + β(v(y), ϕ) +

n∑
k=1

wk(y)zk

where u ∈ C∞(N), v ∈ C∞(N, n) and wk ∈ C∞(N) for k = 1, 2, . . . , n.
Then we have

[W (f), W (g)] = −iW ({f, g}p).

Proof. We can prove this lemma by a case-by-case verification. The
computations are easy but tedious. For instance, take f(y, Z, ϕ) =
w(y)zk and g(y, Z, ϕ) = w′(y)zl. For Y ∈ n and u ∈ C∞(N), we set
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Y (u)(y) := (d/dt)u(y exp(tY ))|t=0 for each y ∈ N . We can easily verify
that

{f, g}p = −Ek(w
′)(y)w(y)zl + El(w)(y)w

′(y)zk + w(y)w′(y){zk, zl}

where {zk, zl} = β(θ(Z), [Ek, El]). This implies that

W (−i{f, g})φ =
1

2
ElEk(w)w

′φ− 1

2
wEkEl(w

′)φ

− Ek(w
′)wEl(φ) + El(w)w

′Ek(φ)− ww′[Ek, El](φ),

which is precisely [W (f),W (g)]. The calculations in the other cases
are similar.

5. Adapted Weyl correspondence for π. In this section, we
first compute the Berezin-Weyl symbol of the operator −idπ(X) for
X ∈ g. This dequantization process allows us to obtain an explicit
symplectomorphism from N×n×o(ξ2) onto a dense open subset of the
orbit O(ξ0) and then to construct an adapted Weyl correspondence on
O(ξ0).

Proposition 5.1. Let Ψ be the map from N × n× o(ξ2) to g defined
by

Ψ(y, Z, ϕ) = Ad (k̃(y))ξ1 +Ad (y)(ϕ− θ(Z)).

Then, for each X ∈ g, the Berezin-Weyl symbol of the operator
−idπ(X) is the P-symbol fX defined by

fX(y, Z, ϕ) = β(Ψ(y, Z, ϕ), X).

Proof. Let X ∈ g. Recall that an explicit expression for −idπ(X) was
given in Proposition 2.2. Then, by Proposition 4.1 and Lemma 4.2, we
immediately see that the Berezin-Weyl symbol of the operator−idπ(X)
is the function fX defined by

(5.1)

fX(y, Z, ϕ) = (pn(Ad (y
−1)X), Z)

+ β(ϕ, pm(Ad (y
−1)X))

+ ν(p̃a(Ad (k̃(y)
−1)X)).
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Now, let (y, Z, ϕ) ∈ N × n× o(ξ2). Since the map X → fX(y, Z, ϕ) is
linear, there exists an element Ψ(y, Z, ϕ) in g such that fX(y, Z, ϕ) =
β(Ψ(y, Z, ϕ), X) for each X ∈ g. More precisely, by using equality
(5.1) we get

fX(y, Z, ϕ) = −β(Ad (y−1)X, θ(Z)) + β(Ad (y−1)X,ϕ)

+ β(ξ1,Ad (k̃(y)
−1)X)

= β(Ad (k̃(y))ξ1 +Ad (y)(ϕ− θ(Z)), X).

This gives the desired result.

We denote by ω the Kirillov 2-form on O(ξ0) and by {·, ·} the

corresponding Poisson bracket. Let Õ(ξ0) denote the dense open subset
Ad (NMAN)ξ0 of g.

Proposition 5.2. The map Ψ is a symplectomorphism from (N ×
n× o(ξ2), ωp = dα⊗ ω2) onto (Õ(ξ0), ω).

Proof. By [2, Proposition 1] and [7, Proposition 4.3], the map Ψ1

from N × n× o(ξ2) onto Õ(ξ0) defined by

Ψ1(y, Z, ϕ) = Ad (y)(ξ1 + ϕ− θ(Z))

is a diffeomorphism. Note that, if

Z ′ = Z + θ(Ad (ñ(y)−1)ξ1 − ξ1),

then

Ψ(y, Z, ϕ) = Ad (k̃(y))ξ1

+Ad (y)(ϕ− θ(Z ′)−Ad (ñ(y)−1)ξ1 + ξ1)

= Ad (k̃(y))ξ1 −Ad (yñ(y)−1)ξ1

+Ψ1(y, Z, ϕ)

Thus, since yñ(y)−1 = k̃(y)ã(y), we obtain Ψ(y, Z, ϕ) = Ψ1(y, Z
′, ϕ).

Hence, Ψ is a diffeomorphism from N × n× o(ξ2) onto Õ(ξ0).
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Now, we show that Ψ is also a symplectomorphism by following the
method of [6, Theorem 6.3]. Recall that, for X ∈ g, X̃ denotes the

function onO(ξ0) defined by X̃(ξ) = β(ξ,X). Observe that fX◦Ψ = X̃.
LetX and Y in g. On the one hand, by Proposition 5.1 and Lemma 4.3,
we have

[W (fX), W (fY )] = −iW ({fX , fY }p).
On the other hand, we have

[W (fX), W (fY )]=[−idπ(X),−idπ(Y )]=−dπ([X, Y ])=−iW (f[X,Y ]).

Then we get f[X,Y ] = {fX , fY }p. Since [̃X,Y ] = {X̃, Ỹ }, we obtain

{X̃, Ỹ } ◦Ψ = {X̃ ◦Ψ, Ỹ ◦Ψ}p.
Hence, Ψ is a symplectomorphism.

Now, we obtain an adapted Weyl correspondence on O(ξ0) by trans-
ferring to O(ξ0) the Berezin-Weyl calculus onN×n×o(ξ2). We say that
a smooth function f on O(ξ0) is a symbol (respectively, a P-symbol,
an S-symbol) on O(ξ0) if f ◦ Ψ is a symbol (respectively, a P-symbol,
an S-symbol) for the Berezin-Weyl calculus on N × n× o(ξ2).

Proposition 5.3. Let A be the space of all P-symbols on O(ξ0),
and let B be the space of differential operators on C∞(N,E). Then the
map W : A → B defined by the W(f) = W (f ◦Ψ) is an adapted Weyl
correspondence in the sense of [6, subsection 6.1], that is, the map W
satisfies the following properties:

(1) The map W is a linear isomorphism from A onto B;
(2) the elements of B preserve a fixed dense domain D of L2(N,E);

(3) the constant function 1 belongs to A, the identity operator I
belongs to B and W(1) = I;

(4) A ∈ B and B ∈ B implies AB ∈ B;
(5) for each f in A the complex conjugate f of f belongs to A and

the adjoint operator W(f)∗ is an extension of W(f);

(6) the elements of D are C∞-vectors for the representation π, the

functions X̃ (X ∈ g) are in A and W(iX̃)φ = dπ(X)φ for each X ∈ g
and each φ ∈ D.
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Proof. Properties (1) (4) are satisfied with D = C0(N,E). Prop-
erty (5) is a consequence of (2) of Proposition 4.1. Property (6) follows
from Proposition 5.1.

6. Adapted Weyl correspondence for π0. In this section, we
use the same method as in Section 5 to get a symplectomorphism from
N × n× o(ξ2) onto a dense open subset of the orbit O(ξ1, ξ2) ⊂ g0 and
then to construct an adapted Weyl correspondence on O(ξ1, ξ2).

Proposition 6.1. Let Ψ0 be the map from N×n×o(ξ2) to g0 defined
by

Ψ0(y, Z, ϕ) = (Ad (k̃(y))ξ1, p
c
k(Ad (y)(ϕ− θ(Z)))).

Then, for each (v, U) ∈ g0, the Berezin-Weyl symbol of the operator
−idπ(X) is the P-symbol f(v,U) defined by

f(v,U)(y, Z, ϕ) = 〈Ψ0(y, Z, ϕ), (v, U)〉.

Proof. The proof is quite similar to that of Proposition 5.1. Let
(v, U) be an element of g0. By using the explicit expression for
−idπ0(X)(v, U) given in Proposition 3.3 and Lemma 4.2, we obtain

f(v,U)(y, Z, ϕ) = (pn(Ad (y
−1)U), Z) + β(Ad (k̃(y)) ξ1, v)

+ β(ϕ, pm(Ad (y
−1)U))

= β(Ad (y)(ϕ − θ(Z)), U) + β(Ad (k̃(y))ξ1, v).

This gives the result.

We denote by ω0 the Kirillov 2-form on O(ξ1, ξ2) and by {·, ·}0 the

corresponding Poisson bracket. Let Õ(ξ1, ξ2) denote the dense open
subset of O(ξ1, ξ2) defined by

Õ(ξ1, ξ2) = {(v, k) · (ξ1, ξ2) : v ∈ V, k ∈ K ∩NMAN}.

Proposition 6.2. The map Ψ0 is a symplectomorphism from (N ×
n× o(ξ2), ωp = dα⊗ ω2) onto (Õ(ξ1, ξ2), ω0).
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Proof. First we show that, for each ξ ∈ Õ(ξ1, ξ2) there exists a unique

(y, Z, ϕ) ∈ N × n× o(ξ2) such that Ψ0(y, Z, ϕ) = ξ. Let ξ ∈ Õ(ξ1, ξ2).
Then we can write ξ = (v, k) · (ξ1, ξ2) with v ∈ V and k ∈ K∩NMAN .
Clearly, the equation Ψ0(y, Z, ϕ) = ξ is equivalent to{

(a) Ad (k̃(y))ξ1 = Ad k)ξ1

(b) pck(Ad (k
−1y)(ϕ− θ(Z))) = ξ2 + [Ad (k−1)v, ξ1].

Equation (a) determines y uniquely. Moreover, m := k−1k̃(y) is an
element of M . We set n′(y) = mã(y)ñ(y)ã(y)−1m−1. Then n′(y) ∈ N ,
and we have

k−1y = k−1k̃(y)ã(y)ñ(y) = mã(y)ñ(y) = n′(y)mã(y).

Thus, setting Y := Ad (n′(y)m)ϕ−Ad (m)ϕ ∈ n, we can write

pck(Ad (k
−1y)(ϕ− θ(Z)))

= Ad (m)ϕ+ pck(Y −Ad (n′(y)ã(y)m)θ(Z)).

Hence, using Lemma 3.1, we see that equation (b) is equivalent to{
(c) Ad (m)ϕ = ξ2

(d) pck(Y −Ad (n′(y)ã(y)m)θ(Z)) = [Ad (k−1)v, ξ1].

Finally, we get ϕ = Ad (m−1)ξ1 and, by using Lemma 3.1 again, we see
that there exists a unique element Z of n satisfying equation (d). This
proves the existence of a unique element (y, Z, ϕ) satisfying Ψ(y, Z, ϕ) =
ξ.

In the same way, we show that Ψ0 takes values in Õ(ξ1, ξ2), and we

can conclude that Ψ0 is a bijection from N × n× o(ξ2) onto Õ(ξ1, ξ2).

By following the same method as in the proof of Proposition 5.2, we
show that Ψ∗

0(ω0) = ωp. Since the 2-form ωp is non-degenerate, this
also shows that Ψ0 is regular. Finally, Ψ0 is a symplectomorphism.

We can define the notion of symbols (P-symbols, S-symbols) on
O(ξ1, ξ2) as in Section 5. Then we obtain the following proposition
which is analogous to Proposition 5.3.
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Proposition 6.3. Let A0 be the space of all P-symbols on O(ξ1, ξ2),
and let B be the space of differential operators on C∞(N,E). Then
the map W0 : A0 → B defined by the W0(f) = W (f ◦Ψ0) is an adapted
Weyl correspondence in the sense of [6, Section 6.1].

7. The Dooley-Rice contraction revisited. In this section, we
introduce the Dooley-Rice contraction maps from G0 to G, and we
show how to use the results of the previous sections in order to get a
new version of Theorem 1 of [16] for the ‘noncompact’ realizations of
the representations.

We consider the family of maps cr : G0 → G defined by

cr(v, k) = expG(rv)k

for v ∈ V , k ∈ K and indexed by r ∈ ]0, 1]. One can easily show that

lim
r→0

c−1
r (cr(g) cr(g

′)) = g g′

for each g, g′ ∈ G0. Then the family (cr) is a group contraction of G
to G0 in the sense of [24] (see also [5]).

Let (ξ1, ξ2) ∈ g0 as in Section 3. Recall that π0 is a unitary irreducible
representation of G0 associated with (ξ1, ξ2). For each r ∈ ]0, 1],
we set ξr := (1/r)ξ1 + ξ2, and we denote by πr the principal series
representation of G corresponding to ξr . Then we have the following
contraction result which is analogous to [16, Theorem 1].

Proposition 7.1. For each (v, k) ∈ G0, φ ∈ C0(N,E) and y ∈ N ,
we have

lim
r→0

πr(cr(v, k))φ (y) = π0(v, k)φ(y).

Proof. By taking into account the explicit expressions for πr and π0

given in Sections 2 and 3 (formulas (2.3) and (3.2)), we have just to
verify that

lim
r→0

1

r
β(ξ1, log ã(y)− log ã(k−1 exp(−rv)y)) = β(Ad (k̃(y))ξ1, v).
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But, applying Lemma 2.1, we have

d

dt
ã(y)−1ã(k−1 exp(−tv)y)

∣∣∣
t=0

=
d

dt
ã−1(k−1y)ã(exp(−tAd (k−1)v)k−1y)

∣∣∣
t=0

= −p̃a(Ad (k̃(k
−1y)−1)Ad (k−1)v)

= −p̃a(Ad (k̃(y)
−1) v).

Then we obtain

lim
r→0

1

r
β(ξ1, log ã(y)−log ã(k−1 exp(−rv)y)) = β(ξ1, p̃a(Ad (k̃(y)

−1)v))

= β(ξ1, Ad (k̃(y)
−1)v)

= β(Ad (k̃(y))ξ1, v).

The result follows.

8. Contraction of adapted Weyl correspondences. For each
r ∈ ]0, 1], we denote by Ψr the symplectomorphism from N × n ×
o(ξ2) onto Õ(ξr) introduced in Section 5 and by Wr the adapted
Weyl correspondence on O(ξr). In this section, we show how the
symplectomorphisms Ψr contract to the symplectomorphism Ψ0 : N ×
n×o(ξ2) → Õ(ξ1, ξ2) and how the correspondences Wr contract to W0.

For each r ∈ ]0, 1], we denote by Cr the differential of cr. Then the
family (Cr) is a contraction of Lie algebras from g onto g0, that is,

lim
r→0

C−1
r ([Cr(X), Cr(Y )]) = [X, Y ]0

for each X, Y ∈ g0. We also denote by C∗
r : g∗ � g → g∗0 � g0 the dual

map of Cr.

Proposition 8.1. For each (y, Z, ϕ) ∈ N × n× o(ξ2), we have

lim
r→0

C∗
r (Ψr(y, Z, ϕ)) = Ψ0(y, Z, ϕ).
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Proof. Let (v, U) ∈ g0. Since k and V are orthogonal with respect to
β, we have

〈C∗
r (Ψr(y, Z, ϕ)), (v, U)〉

= 〈Ψr(y, Z, ϕ), Cr(v, U)〉
= 〈(1/r)Ad (k̃(y))ξ1 +Ad (y)(ϕ− θ(Z)), rv + U〉
= β(Ad (k̃(y))ξ1, v) + rβ(pcV (Ad (y)(ϕ − θ(Z)), v))

+ β(pck(Ad (y)(ϕ − θ(Z)), U)).

Then

lim
r→0

〈C∗
r (Ψr(y, Z, ϕ)), (v, U)〉

= 〈Ad (k̃(y))ξ1 + pck(Ad (y)(ϕ− θ(Z))), (v, U)〉.

Hence, the result follows.

Now, let f : O(ξ1, ξ2) → C be a P-symbol of degree d, that is,

f̂ ◦Ψ0(y, Z) =
∑
|α|≤d

uα(y)Z
α

where each uα is in C∞(N). Following [12], we say that a family
fr : O(ξr) → C of symbols approximates f if each fr is a P-symbol of
degree less than or equal to d, that is,

f̂r ◦Ψr(y, Z) =
∑
|α|≤d

ur
α(y)Z

α

and if, for each α, ur
α − uα and all its derivatives ∂γ(u

r
α − uα) converge

uniformly on compacts to zero, as r → 0. Here, for each v ∈ C∞(N)
and each γ = (γ1, γ2, . . . , γn), the derivative ∂γv is defined by

∂γv(y) =

(
d

dt1

)γ1
(

d

dt2

)γ2

· · ·
(

d

dtn

)γn

(v(y exp(t1E1) exp(t2E2)

. . . exp(tnEn)))
∣∣∣
t1=t2=...=tn=0

.
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By using the properties of the Berezin-Weyl calculus, we immediately
obtain the following proposition.

Proposition 8.2. Let f be a P-symbol on O(ξ1, ξ2). Let (fr) be
a family of P-symbols which approximates f . Then, for each φ ∈
C0(N,E) and each y ∈ N , we have

lim
r→0

(Wr(fr)φ)(y) = (W0(f)φ)(y).

Then we can deduce a contraction result for the derived representa-
tions from the contraction of the symplectomorphisms Ψr to Ψ0.

Proposition 8.3. 1) Let (v, U)∈g0. Then the family ( ˜Cr(v, U))r∈]0,1]

approximates (̃v, U).

2) For each (v, U) ∈ g0, φ ∈ C0(N,E) and y ∈ N , we have

lim
r→0

(dπr(Cr(v, U))φ)(y) = (dπ0(v, U)φ)(y).

Proof. 1) This follows from Proposition 8.1.

2) Taking Proposition 5.3 and Proposition 6.3 into account, the result
is an immediate consequence of Proposition 8.2.
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