ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 42, Number 2, 2012

GLOBALLY IMPULSIVE ASYMPTOTICAL
SYNCHRONIZATION OF DELAYED CHAOTIC SYSTEMS
WITH STOCHASTIC PERTURBATION

DANHUA HE AND LIGUANG XU

ABSTRACT. In this paper, by applying the impulsive
control approach, the globally asymptotical synchronization
problem of delayed chaotic systems with stochastic pertur-
bation is investigated. By establishing an L-operator dif-
ferential inequality and using the properties of the M-cone,
Hoélder’s inequality and stochastic analysis technique, we ob-
tain some sufficient conditions ensuring the globally asymp-
totical p-stability of the error dynamical system. An example
is also discussed to illustrate the efficiency of the results ob-
tained.

1. Introduction. Since Pecora and Carrol presented the pioneer-
ing work of chaos synchronization in 1990, many researchers have done
extensive work on this subject due to its potential applications in se-
cure communication, chemical reactor, biological systems, information
science, etc. In the meantime, many types of synchronization, such
as anticipated, complete, generalized, phase, lag and exponential, have
been presented in the past few years. A chaos synchronization prob-
lem means making two systems oscillate in a synchronized manner. In
the real world, however, time delays are unavoidably encountered and
their existence may lead to instability and oscillation in a real system.
Therefore, chaos synchronization with time delays has received much
attention [3, 7, 8, 12, 13, 19].

On the other hand, due to a real system is usually affected by external
perturbations which in many cases are of great random uncertainties
such as stochastic forces on the physical systems and noisy measure-
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ments caused by environmental uncertainties, a stochastic chaotic be-
havior should be produced instead of a deterministic one. Therefore,
the stochastic perturbation should be taken into account in research-
ing the synchronization of chaos systems. Recently, some stochastic
synchronization results have been proposed [5, 9, 11, 14, 16].

As is well known, to achieve chaos synchronization a wide variety of
approaches, such as the OGY method, coupling control, adaptive con-
trol method and time-delay feedback approach have been proposed.
However, due to the difficulties in investigating stability of impul-
sive delayed differential equations (IDDE), there are few publications
[19] dealing with the synchronization problem of coupled time-delayed
stochastic chaotic systems via the impulsive control approach.

Motivated by the above discussions, this article is devoted to ad-
dressing the globally asymptotical synchronization problem of delayed
chaotic systems with stochastic perturbation via the impulsive con-
trol approach. By establishing an L-operator differential inequality
and using the properties of M-cone, Holder’s inequality and stochas-
tic analysis technique, some sufficient conditions ensuring the globally
asymptotical p-stability of the error dynamical system are obtained.
Our method is simple and valid for analyzing chaotic systems with
delays and stochastic perturbation, without using the Lyapunov func-
tional and the differentiability of time-varying delays as needed in most
other papers. An example is given to demonstrate the effectiveness of
the theory results.

2. Preliminaries and model. Throughout this paper, unless
otherwise specified, let E' denote the n-dimensional unit matrix, |-| the
Euclidean norm, N = {1,2,...,n}, Ry =[0,00). For A,B € R™*"
or AAB € R",A> B (A< B,A > B,A < B) means that each
pair of corresponding elements of A and B satisfies the inequality “>
(<,>,<).” Especially, A is called a nonnegative matrix if A > 0, and
z is called a positive vector if z > 0.

C[X,Y] denotes the space of continuous mappings from topological
space X to topological space Y. In particular, let C = C[[-r,0], R™].

1(s) is continuous for all but at most
¥ :J = R™ | countable points s € J and at these
points s € J, 1(sT) and ¢(s™) exist, [’
b(s) =1(s™)

PC[J,R"] =
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where J C R is an interval, and ¢(s*) and ¢ (s~ ) denote the right-hand
and left-hand limits of the function 9 (s), respectively. In particular,
let PC' 2 PC[[-,0], R"].

For x € R™, A € R™*", we define

o]t = (21l s |2al)™ £ col {[i1}bn, [ATF = (laij -
For ¢(t) € C[J,R™] or ¢(t) € PC[J, R™], we define
(o)) = col{[¢i(D)]-}n,  [@i(®)]r = sup {@i(t+s)}, €N,

—7<5<0
and DT (t) denotes the upper right derivative of p(t) at time ¢.

For any ¢(t) € C or ¢(t) € PC, we always assume that ¢ is bounded
and introduce the following norm:

lell="sup_le(s).

Let (Q, % {%}t>0, P) be a complete probability space with a filtra-
tion {.% }+>¢ satisfying the usual conditions (i.e., it is right continuous
and % contains all P-null sets). Let PC} [[-7,0], R"] denote the

0
family of all bounded .%-measurable, PC[[—T,0], R"]-valued random
variables ¢, satisfying |l¢||7, = sup_,<4<o Elp(0)[P < oo, where E
denotes the expectation of a stochastic process.

It is assumed that the dynamics of the drive or master chaotic system
is given by

(1) da(t) = h(t)[Aoz(t) + Af (2(t)) + Bg(z(t — 7(¢))) + J] dt,

where z € R™ is the state vector, h(t) is a scalar function, Ay, A,
B € R™ ™ are constant matrices, f, g : R™ — R"™ are continuous,
0 < 7(t) < 7 (7 is a constant) is the time-delay, and J € R™ is a
constant external input vector.

In order to deal with the synchronization problem of system (1) via
impulsive control approach, we now integrate the impulse into it as
follows:

(2)
dx(t) = h(t)[Aox(t) + Af(2(t)) + Bg(z(t — 7(t))) + J]dt t # ty,
t > to,
Az = z(tf) — z(ty) = Hya(ty)
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where ty, k = 1,2,... are constants and satisfy ¢ty < t; < to < ---,
limk%oo tk = O0.

Inspired by [7, 8, 15, 19], we construct the response system as in
the following form:

dy(t) = h(t)[Aoy(t) + Af (y(t)) + Bg(y(t — 7(t)))
+J = W(y(t) —z(t))] dt + a(t,e(t), e(t — 7(t))) dw(t),
t # ty, t > i,
Ay =y(t7) — y(ty) = —Hge(ty,),

(3)

where W € R"*"™ is a controller gain matrix to be designed later, e(t) =
y(t)—x(t) denotes the synchronization error, o : Ry X R" x R — R"*™
is continuous, and w(t) = (wi(t),...,w,(t))T is an m-dimensional
Brownian motion defined on (2, %, {%}:>0, P).

Therefore, the synchronization error between (1) and (3) can be
expressed by the following dynamical system:

de(t) = h(t)[(Ao — W)e(t) + A(f(y(2)) — f(x(t)))
+B(g(y(t — 7(1)) — g(z(t — 7(t))))] dt
+o(t,e(t),e(t — 7(t))) dw(t), t # ty, t > to,

e(t) = (E+ Hg)e(t™), t = t.

(4)

Hence, the problem of synchronization between the drive system (1)
and the response system (3) is shifted into the p-stability of the
synchronization error system (4). In fact, from the analysis above,
we can see that (1) and (3) are globally asymptotically synchronized if
and only if the zero solution of (4) is globally asymptotically p-stable for
any bounded initial condition. So, the globally impulsive asymptotical
synchronization problem can be solved if the controller gain matrix W
and controller impulse matrices Hy, are suitably designed such that the
zero solution of (4) is globally asymptotically p-stable.

Throughout this paper, we assume that, for any initial condition
¢ € PC’"’? [[-7,0], R"], there exists at least one solution of (4), which
0

is denoted by e(t, tg, ¢), or e(t), if no confusion occurs.

Definition 2.1. The zero solution of (4) is said to be globally asymp-
totically p-stable if it is p-stable and, moreover, for any given initial
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condition ¢ € PC’} [[-7,0], R"] such that lim; . El|e(t,t0,®)|” = 0.
0

In particular, it is said to be mean square asymptotically stable when

p=2.

Definition 2.2. The zero solution of (4) is said to be exponentially
p-stable with exponential convergence rate A if there is a pair of positive
constants A and 7 such that for any solution e(, tg, ¢) with the initial
condition ¢ € PC%[[—T, 0], R"],

Ele(t,to, @)[” < Allgloe 7, £ > .

In particular, it is said to be mean square exponentially stable when
p=2.

For an M-matrix D defined by [4], we define

Qu(D)2{z€R"|Dz>0, z > 0}.

Lemma 2.1 [17]. For an M-matriz D, Qp(D) is nonempty, and
for any z1, 2o € Qp(D), we have

k1z1 + kozo € QM(D), for all ky, ke > 0.

So Qur(D) is a cone without conical surface in R”. We call it an“M-
cone.”

Lemma 2.2 ([1] Arithmetic-mean—geometric-mean inequality.) For
z; >0,0; >0and Y  a; =1,

n

(5) Hmf‘l < iaiwi,
i=1

=1

the sign of equality holds if and only if z; = x; for alli,j € N.
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Lemma 2.3 ([2] Holder’s inequality). Ifa; > 0, b; > 0, i € N,
p>0,q>0and (1/p)+ (1/q) = 1, then

(6) Zalb < <Z g’)l/p(gbg)l/q

=1

3. L-operator differential inequality. In this section, we will
first introduce a differential inequality with impulsive initial conditions
and then establish an L-operator differential inequality.

Lemma 3.1 ([6, Lemma 5]). Assume u(t) € C|[ty,0), R™] satisfies
that

- {Dw(t) < p(O){Pult) + QLu(t)];} t > to,

u(to + 0) = ¢(0) € PC 6 € [-T,0],

where P = (pij)nxn and Dij Z 0 fOTi 7& j’ Q = (qij)nxn Z 0; (,D(t)
is a positive integral function and sup,, ftth p(s)ds = K < oo and

lim;_, oo ftto o(s)ds =o0. If D = —(P + Q) is an M-matriz, then
(8) ult) < ze Mot sy

provided that the initial conditions satisfy

(9) u(t) < ze e (e)ds t € [to— 7, tal,

where z = col {z;} € Qu(D) and the positive constant X is determined
by the following inequality

(10) \E 4+ P + Qe ]z <0.

For the well known L-operator given by It6’s formula, we have the
following theorem.

Theorem 3.1. Let P = (pij)nxn and p;; > 0 fori # j, Q(t) =
(25 (t))nxn > 0, h(t) a positive integral function and sup;s, f:ﬂ_ h(s)
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ds = K < oo and limy_, o ftto h(s)ds = oo, and let D = —(P + Q)
be a nonsingular M -matriz. Assume that there exist functions V;(z) €
C?[R"™, Ry] such that, for the operator LV which is associated with

system (4),

(11)

LVi(e) < h(t) Z [piVi(e) + ai;Vi(e(t — 7(1))], t € [th,trs1), i €N,
Then

t
12)  EVi(e®) < ze 0" e, ie N,
provided that the initial conditions satisfy

t
Y fto h(s) ds
?

(13) EV;(e(t)) < ze tety —1,t], 1 EN,

where 2 = (21,22,...,20)7 € Qu(D) and the positive constant \
satisfies the following inequality

(14) \E+ P+ QK2 < 0.

Proof. Similar to the proof of Theorem 3.1 in [18], this theorem can
be proved by using Lemma 3.1. So the details are omitted here. i

4. Globally asymptotical p-stability. In this section, we will
obtain several sufficient conditions ensuring the globally asymptotical
p-stability of the zero solution of (4) by applying Theorem 3.1. We
always suppose the following assumptions.

(A1) For any z;, y; € R, there exist nonnegative constants U;, V;
such that

|f5(z4) = fi(yi)| < Ujlz; — ysl,

15
(13) lgj(z5) — 95 (y;)| < Vilzj —y;l, JEN.

~

(A2) h(t) is a positive integral function, sup;s,, f:ﬂ_ h(s)ds = K <

0o and lim;_, oo ftto h(s)ds = oco.
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(As) There exist nonnegative matrices C' = (¢ij)nxn, D = (dij)nxn
such that, for any z;, 1; € R, i € N,

n

(16) (o)t )T < 3 MO+ 3 dsh(O)lyi

j=1 j=1

(Ag) Let Ag — W = (@ij)nxns A = (aij)nxn- There exists a constant
p > 2 such that D = —(P + Q) is an M-matrix, where
P = (pij)nxn, pij = (@i + aijU;) + (p — V)cij, i # J,
pii = p(@is + ails) + (p — 1)<Z(5ij + ai;U; + bijVj)>
=1

(17)

n

+ %(P ~Dp—2) (e + dij),

i=1

Q = (Tij)nxns Gij = bi; Vi + (p — 1)d;.

(As) Let I, = E+ Hy, and, for any e(t) € R"™, there exist nonnegative
matrices My = (Mg, )nxn such that

(18) Te(e)T < Mile(t))F, k=1,2,....

(Ag) The set Q = ﬂg":IQp(]\//fk) N QM(B) is nonempty, where ]\//Tk =

—

(Mp,; )nxn satisfies

(19) Z} (ZMP/ p— 1)>

p—1

(A7) Let

(20) v = max{1, p(My)}
and there exists a constant n such that
In i
" h(s)ds

te—1

(21) <p<A k=1,2,...,
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where the positive constant \ is determined by the following inequality:

(22) [)\E +P+ C/Q\eAK} z <0, fora given z € Q.

Remark 4.1. Tt is evident that system (4) has a zero solution e(t) = 0
from (4;), (As3) and (4s).

Theorem 4.1. Assume that (A1)—(A7) hold. Then the zero solution
of (4) is globally asymptotically p-stable, implying that the two systems
(1) and (3) are globally asymptotically synchronized.

Proof. Since D = —(P + Q) is a nonsingular M-matrix and the set
Q is nonempty, there must be a vector z € Q C Qp(D) such that

ﬁz>0, or [ﬁ+@]z<0.

By using continuity, we obtain that (22) has at least a positive solution
A

Let Vi(e(t)) = |ei(t)|P, p > 2, i € N, where e(t) = (e1(t), ... ,en(t))T
is the solution of (4). Then

L) — ples=1sen (e:) = pled~e;,
”
(23) 2,

oV (e -

WD) _ plp— 1)ledsgm (er),

K2

where sgn () is the sign function. Thus, by conditions (A4;), (As) and
Lemma 2.2, we have

@) 1% < a0 Y asvi(e) + Y asvitett - o) |

So, from condition (A4), we know that inequality (11) holds.
For the initial condition ¢ € PC{I’Q [[-7,0], R"], we can get
0
(25)
A ¢ h(s)ds

- 9|l
EV(e(t)) < koz ko= — et — ).
(e(t)) < kozie ~ “to 0= mimcion o] € [to — 7, t0]
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From Lemma 2.1 and z = (z1,...,2,)7 € Qu(D), we have kyz €

Qu7(D). Then, all conditions of Theorem 3.1 are satisfied by (24), (25)
and (Ay), so

(26)  EVi(e(t) < hoze "0 e to,11), i€ N

Suppose that, for all m =1,... |k, the inequalities
(27)

EV;(e(t)) <~vo-- -fym,lkoz,-e_kf:o h(s)ds, t € [tm—1,tm), 1 €N,
hold, where p(]\/l\o) = 1. Then from (As), (46), (27) and Lemma 2.3,
we have

EVi(e(tx)) = Elei(tr)[”
= Bitaelt))? < B( XM 7))

<® [(ZM/()> S es(6)P
(29) < im..m(ea;))

Jj=1

d
<0 pothoe Jr SZ

<Y Ye—1koe f0 ’ SP(Mk)Zi
A [%*n
<Y Ye-1Ykkozie o ¢ S iEeN.

This, together with (27) and p(JT/[\k) > 1, leads to

(29)
A7 h(s)ds ]
EVi(e(t)) <o ve-17kozie 't , tE[t—T,tg], i €N.

By Lemma 2.1 again, the vector g - - - yk—17xkoz € Qar(D ) It follows
from (24), (29) and Theorem 3.1 that

2 [ h(s)ds .
EVi(e(t)) <70 Yk—17kkozie ~ to , t € [thytrr1), i €N
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By induction, we conclude that

(30)
EVi(e(t)) < 70 1kozie 10" te i te), k=1,2,....
From (21),
kot h(s)d fe—1 h(s)ds
(31) Ve—1 > <e ftk 2 ) Yo V-1 S en‘/;[) ) )

and (30), we conclude that
(32)

EV;( ())<k0zen‘f h(s)ds —)\f h(s)

t
ds < kOZie—()\—’q) fto h(s) ds,

iEN, tc [tkfl,tk).

That is,
(33)
—(=n) [* h(s)ds
col {Eles(t)P}n < koze O 0 e ) k=12,
Thus, the proof is complete. a

Corollary 4.1. If h(t) = 1, the zero solution of (4) is exponentially
p-stable, implying that the two systems, (1) and (3), are exponentially
synchronized.

_Remark 4.2. In Theorem 4.1, we may properly choose the matrices
M), in the condition (Ag) to guarantee ) # &. In particular, when

M, = &wE (& are nonnegative constants), Q is certainly nonempty
and Q = Qp (D).

Remark 4.3. If H, = 0, (4) becomes the stochastic delay dynamical
system without impulses,

de(t) = h(t)[(Ao — W)e(t) + A(f(y(1)) — f(x(t)))
(34) + B(g(y(t — (1)) — g(a(t — 7(1))))] dt
+o(t,e(t),e(t — 7(t))) dw(t), t>to.

For the system (34), our results are also true. By Theorem 4.1, it is
easy to get the following corollary.



628 DANHUA HE AND LIGUANG XU

Corollary 4.2. Assume that (A1)—(A4) hold, then the zero solution
of (34) is globally asymptotically p-stable, implying that the two systems,
(1) and (3), with Hy, = 0 are globally asymptotically synchronized.

Proof. Since I, = E (k= 1,2,...), My = E in condition (As) and
M, = E in condition (Ag). By Remark 4.2, Q = Q3;(D) # @. Then,
p(]/%k) =1 and y = 1 in condition (A7). So, n = 0 satisfies (21). Thus,
applying Theorem 4.1 to system (34), we can obtain Corollary 4.2. O

Remark 4.4. In [7], Li and Cao discussed the the stability of (34) with
h(t) =1 and f = g by using the LaSalle-type invariance principle for
stochastic differential delay equations. The assumptions that 7(t) < 1
and f are monotone are required in [7]. However, Corollary 4.2 does
not require these assumptions.

Remark 4.5. In [10, 14, 15], the authors give some stochastic syn-
chronization results. The methods in their papers are all based on
Lyapunov function. However, the construction of Lyapunov function is
skillful and complicated. Therefore, the effectiveness of the conditions
provided is difficult to check in practice. Our method in this paper is
different from the methods mentioned in the above papers. Without re-
ferring to any Lyapunov function, we obtain some sufficient conditions
ensuring the globally asymptotical p-stability of the error dynamical
system. And the proposed globally asymptotical p-stability criteria is
easily verified in practice.

5. Example. The following illustrative example will demonstrate
the effectiveness of our results.

Example 5.1. Consider the following time-delayed chaotic system:
i z fl(fﬂl(t)))

35 . = h(t)q A A

@) (5)=n ){ o(52) + 4 (A
g1(z1(t — T(t)))>
B .
i <gz(x2(t (1))

If taking h(t) = 6+sint, f;(z;) = tanh(x;), gi(z;) = 1/2(Jz; + 1] — |z —
1)),i=1,2, 7(t) =sint <12 7,
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-1 0 1 -0l ~05 —0.8
AO_(O 1>’ A‘<0.4 1.5)’ B_<0.5 2)'

We obtain that system (35) satisfies condition (A;) with

G v

And (A,) is satisfied with K = supt>t0ft Lh(s)ds < 7T < oo,
lims_s oo fto s)ds =

For drive system (35) , construct a corresponding response system as

follows:
U1\ _ Y1 fi(y1(2))
<?)2> N h(t){A (Z/ > +A< 2(3/2(t))>
(36) w5 (0l
o1(t,e(t), e(t —(t)))
+(alneleiZTon) e
Ay(t) = —er( ), t= tk,
where to =0 and ¢t =ty + 02k for k=1,2,....

The controller gain matrix W, stochastic perturbation o (¢, e(t), e(t —
7(t))), and the controller impulse matrix H}, are chosen as follows:

0.5 0.1
W‘<0.1 0.3)’

e () ealt—r(t)
=V6+ t<62(t) el(t—r(t))>’

—oar Pk
H, = ,
F < —Bor  —auk )

where a;; and [3;; are nonnegative constants, yielding

(%) o= (13,
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Letting p = 3, we have

5 (-35 —0.2 A~ (—05 1.2
P‘<0.5 3)’ Q_(1.5 2)'

One can easily verify that D= —(ﬁ + Q) is a nonsingular M-matrix.
By simple calculation, we have

~

1
(37) Qi (D) = {(zl,z2)T >0] a1 <z < 421}.

Now, we discuss the asymptotic behavior for the synchronization error
of two coupled chaotic systems as follows:

Case 5.1. Let ajp = 0.5e%0% ay, = 0.7¢%01% 5, = 0.2¢001F,
Baor = 0.6e%°% Then we get

- 0.01k - 0.01k
Ik:E+Hk:<1 0.5e 0.2¢ )

—0.6e00k 1 —0.7e00tk

_ oot [ 1 04
My, = 0.5¢ (1.2 0.6 )"

and

5 003k (2 1
My, = 0.25¢ <4 5 )

—

p(ily) = P,
Q,(My) = {(21,22)7 | 22 = 221} -
Thus J/W\kij satisfies (19) and Q = {(z1,22)T > 0 | 22 = 2z} is

nonempty. Letting z = (1,2)T € Q and v, = €%%*, we can obtain
that for K =1,2...,

In Vi _ In 60.03k In 60.03k
T =1 . >3
(38) t:—l h(s)ds t:—l (6 + sin s) ds t:_1 5ds

.03k
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So, by Theorem 4.1, the synchronization error of two coupled chaotic
systems is globally asymptotically 3-stable and the convergence rate is
equal to 0.07.

Case 5.2. Let d1p = Qg = ﬂlk = ,ng = 0. Then Ik =
E. In addition, the error dynamical system between (35) and (36)
becomes the delayed stochastic chaotic system without impulse. So, by
Corollary 4.2, the synchronization error of two coupled chaotic systems
is globally asymptotically 3-stable for sufficiently small £ > 0.

Remark 5.1. Since 7(t) = sin®(t) doesn’t always satisfy the condition
that 7(¢) < 1, the methods in [7] are ineffective for studying the
synchronization of the two coupled chaotic systems (35) and (36).
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useful suggestions.

REFERENCES

1. E. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, New York, 1961.

2. S.K. Berberian, Fundamentals of real analysis, Springer-Verlag, New York,
1999.

3. G. Chen, J. Zhou and Z. Liu, Global synchronization of coupled delayed neural
networks with application to chaotic CNN models, Int. J. Bifurcation Chaos 14
(2004), 2229-2240.

4. R.A. Horn and C.R. Johnson, Topics in matriz analysis, Vol. 2, Cambridge
University Press, Cambridge, 1991.

5. A. Hu and Z. Xu, Stochastic linear generalized synchronization of chaotic
systems via robust control, Phys. Lett. 372 (2008), 3814-3818.

6. Y. Huang, D. Xu and Z. Yang, Dissipativity and periodic attractor for non-
autonomous neural networks with time-varying delays, Neurocomputing 70 (2007),
2953-2958.

7. X. Li and J. Cao, Adaptive synchronization for delayed neural networks with
stochastic perturbation, J. Franklin Inst. 345 (2008), 779-791.

8. C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled time-
delayed systems and its applications in secure communication, Physica 194 (2004),
187-202.

9. Y. Liu, Z. Wang and X. Liu, Ezponential synchronization of complex networks
with Markovian jump and mized delays, Phys. Lett. 372 (2008), 3986-3998.

10. H. Salarieh and A. Alasty, Adaptive synchronization of two chaotic systems
with stochastic unknown parameters, Comm. Nonlinear Sci. Numer. Simul. 14

(2009), 508-519.



632 DANHUA HE AND LIGUANG XU

11. H. Salarieh and A. Alasty, Chaos synchronization of nonlinear gyros in
presence of stochastic excitation via sliding mode control, J. Sound Vibr. 313
(2008), 760-771.

12. E.M. Shahverdiev, S. Sivaprakasam and K.A. Shore, Lag synchronization in
time-delayed systems, Phys. Lett. 292 (2002), 320-324.

13. J. Sun, Global synchronization criteria with channel time-delay for chaotic
time-delay system, Chaos, Solitons & Fractals 21 (2004), 967-975.

14. Y. Sun, J. Cao and Z. Wang, Ezponential synchronization of stochastic
perturbed chaotic delayed neural networks, Neurocomputing 70 (2007), 2477-2485.

15. W. Yu and J. Cao, Synchronization control of stochastic delayed meural
networks, Physica 373 (2007), 252-260.

16. C. Wu, T. Fang and H. Rong, Chaos synchronization of two stochastic Duffing
oscillators by feedback control, Chaos, Solitons & Fractals 32 (2007), 1201-1207.

17. D. Xu, W. Zhu and S. Long, Global ezponential stability of impulsive integro-
differential equation, Nonlinear Anal. 64 (2006), 2805—2816.

18. Z. Yang, D. Xu and L. Xiang, Ezxponential p-stability of impulsive stochastic
differential equations with delays, Phys. Lett. 359 (2006), 129-137.

19. W. Zhu, D. Xu and Y. Huang, Global impulsive ezponential synchronization
of time-delayed coupled chaotic systems, Chaos, Solitons & Fractals 35 (2008),
904-912.

DEPARTMENT OF MATHEMATICS, ZHEJIANG INTERNATIONAL STUDIES UNIVERSITY,
HangzHOU, 310012, P.R. CHINA
Email address: danhuahe@126.com

DEPARTMENT OF APPLIED MATHEMATICS, ZHEJIANG UNIVERSITY OF TECHNOL-
oGy, HANGzHOU, 310023, P.R. CHINA
Email address: x1g132@126.com




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [432.000 648.000]
>> setpagedevice


