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REMARKS ON
GENERALIZED TRIGONOMETRIC FUNCTIONS

P.J. BUSHELL AND D.E. EDMUNDS

ABSTRACT. A natural generalization of the sine function
occurs as an eigenfunction of the Dirichlet problem for the
one-dimensional p-Laplacian. Our study of the properties of
p-trigonometric functions and their connection with classical
analysis leads to a variety of new identities and inequalities
and to the basis properties of the p-eigenfunctions.

1. Introduction. The spectral properties of the Dirichlet Laplacian
on the unit interval of the real line are familiar and simple: the problem

(1.1) —u” =Xuon (0,1), u(0)=u(l)=0

has eigenvalues (n7)? and corresponding eigenvectors u,, u,(t) =
sin(nmt) (n € N). It is a remarkable fact (see, for example, [6])
that the corresponding problem for the one-dimensional p-Laplacian
A, (1 < p < 00), namely,

14
—Apu = — (|u'|p_2 u') =Alu/f ?u on (0,1),
u(0) = u(1) =0,

(1.2)

has eigenfunctions expressible in terms of functions similar to the sine
function. In fact, (1.2) has eigenvalues

2
A= (p—1)(nm,)P, where m, = ———,
(0~ 1)(ny) = oo

and associated eigenfunctions sin,(nm,t) (n € N). Here sin, is the
function defined on [0,7,/2] to be the inverse of the function F), :
[0,1] — R given by

Fy(z) = /Ozﬂ — )~ '/7dt,
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and extended to the whole of the real line in a natural way so as to
be 2m,-periodic. This is clearly similar to the ordinary sine function,
which corresponds to p = 2. It is easy to make p-analogues of the
other trigonometric functions. For example, cos, is defined to be the
derivative of sin,, from which it follows readily that

|sin, z|” + |cos, z|P =1 for all z € R.

However, the special nature which the case p = 2 has here, as in many
other parts of analysis, is underlined by the fact that if p # 2, the
derivative of cos, is not — sin,,.

The literature on these p-trigonometric functions is now quite exten-
sive: we refer in particular to Lindqvist ([11, 12]) and Lindqvist and
Peetre ([13, 14]); [14] contains a fascinating account of the history of
such work. Despite this, however, it seems to us that the rich vein of
striking formulae and identities stemming from these functions is far
from being exhausted. Moreover, while there are genuine difficulties in
working with these p-functions, notably the lack of reasonable kinds of
addition formulae, nevertheless there are enough identities and inequal-
ities available for them to form a significant addition to the analyst’s
toolkit. In this paper we seek to justify this point of view, making full
use of connections with functions from classical analysis: for example,

Fy(z) = zF(1/p,1/p;1+1/p;2?) (0 <z <1),

where on the right-hand side F' denotes the usual hypergeometric
function. We begin with what might be called the p-calculus and
give a variety of results involving derivatives and integrals of the
p—trigonometric functions, followed by identities that seem to us to
be of interest. For example, it turns out that

i P(k+2/p) _ al*(1/p)
= (kp+1)°T(k+1)  2p? sin(n/p)’
When p = 2 this reduces to the familiar identity

oo

20 1
T /S—QW.



GENERALIZED TRIGONOMETRIC FUNCTIONS 27

We also obtain a new representation of Catalan’s constant G: recall
that this is defined by

N (=DF
(1.3) G = ;W

and that it appears in estimates of certain combinatorial functions and
in various definite integrals (see [8, 15]). First we establish the identity

/"P/z x _sz L'(k+1/p) 1
0 sin, EIT(1/p) (kp+1)°

When p = 2 the value of the integral on the left-hand side is known to
be 2G, and so we have the representation

e 2R\ 1
G_Zz(z2k(k!)2> (2k + 1)’

k=0

which we have been unable to find in the extensive literature on this

topic.
1
0
I, := p/ log sin,, <WL> dé
0 2

also claims our interest because of the different forms it can take. We
show, for example, that
(1 2 lginTlg oo
- A/p) , 2 p L _ P (cot ' ) dy,
L'(1/p) Tp Jo T Tp Jo

The integral

where 7 is Euler’s constant and cot, = cos, / sin, . The value of I,
for rational p is given in [2].

We conclude by discussing the Fourier sine coefficients of the functions
sin, (nmpt) on (0,1). With the kth such coefficient of sin, (m,t) denoted
by 7(p), we show that for all p € (1,00), |7(p)| = 0(k=2) as k — oo,
while |75 (p)| = 0(k=3) if 1 < p < 2. We obtain a variety of identities of
Parseval type involving these coefficients, valid for all p € (1, 00), such

as a formula for
oo

Z T2k+1(P)
o 0 2k+l
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which, when p — 1, gives

o0 (_1)k _ 71.3
z;o (2k +1)3 32

Information about 7(p) is useful in dealing with the basis problem for
sin, functions. To explain this, we recall that it is a standard fact that
the functions sin(nmt) form a basis in L,(0, 1) for every g € (1,00). The
main object of a recent paper by Binding et al. [4] is to show that there
is a number py € (1,2) such that, for each p € (pg, ), the functions
sin, (nmpt) also form a basis in every such L4(0,1). The idea of their
ingenious proof is to show that if p is not too close to 1, then there is a
homeomorphism of L,(0, 1) onto itself that maps sin(nt) to sin, (nmyt)
for every n € N; to establish this they rely in part on the claim that,
for each t € (0,1), sin,(m,t) decreases as p increases. We give a proof
of this last assertion in Corollary 4.4 below since the argument given in
[4] is incomplete. We also discuss how the result may be sharpened a
little and derive a lower bound p; (> 1) for the value of py obtainable
by this method. Our original motivation for the study of the p-calculus
was to obtain improved estimates for the Fourier coefficients of sin, and
thereby show that the basis property for these functions holds for all
p € (1,00). We were somewhat surprised to find, as shown in Section 4,
that the method of proof must fail for p € (1,p1). It is tempting to
conjecture that the basis property does hold even when p € (1,p;), but
to establish this another approach to the problem is needed.

2. Definitions and basic properties. Throughout we shall
assume that 1 < p < oo and write p’ = p/(p—1). Define F}, : [0,1] = R
by

(2.1) Fy(z) = /Ow(ltp)l/pdt, z €[0,1].

Plainly Fy =sin"*. As F}, is strictly increasing it has an inverse, which
we denote by sin, to emphasize the connection with the usual sine
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function. This is defined on the interval [0, 7, /2], where
1
Tp/2 = sin, *(1) = / (1—tP)~YPdt
0

1
_ pfl/ (1= 5)-/rs—1/7 g
0

=p 'B(1/p',1/p),
where B is the beta function. Hence
2
2.2 Ty = ————.
(22) P = pein(n/p)
Note that 7o = 7 and

(2.3) prp = 2T(1/p")L(1/p) = p'mpr.
Moreover, 7, decreases as p increases, and

(2.4) Il)ﬂ Tp = oo,pl'g{.lo Tp = 2,;m(p -, = Il)ﬂ Tpr = 2.
We see that sin, is strictly increasing on [0,7,/2], sin,(0) = 0 and
sin,(7,/2) = 1. It may be extended to [0,7,] by defining sin,z =
sin, (m, — ) for « € [mp/2, mp]; further extension to [—mp, mp] is made
by oddness, and finally sin, is extended to the whole of R by 2m,-
periodicity. Note that in some other works (see [12], for example) sin,
is defined slightly differently, and that care should therefore be used
when comparing the results given here with those provided elsewhere.

Define cos, : R —+ R by

(2.5) cosp T = sinyz, z€R.

Clearly cos,, is even, 2m,-periodic and odd about m,/2. If z € [0, 7, /2]
and we put y = sin, x, then

(2.6) cos,z = (1 —y?)MP = (1 — (sin, z)P)/P.

Hence cos,, is strictly decreasing on [0, 7, /2], cos,(0) = 1 and cos,(7m,/2)
= 0; moreover,

(2.7) |sin, z|” + |cos, z[P =1 (z € R).
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This is clear from (2.6) if z € [0,7,/2] and follows for all z € R
by symmetry and periodicity. Analogues of the other trigonometric
functions may now be given in the obvious way: thus tan, is defined
by

sin, T

2.8 t =
(28) e T COSp T

at those points z for which cos, z # 0, that is, for all z € R except for
the points (k + 1/2)m, (k € Z). Plainly tan, is odd and 7, —periodic;
tan,(0) = 0. The analogy with the classical trigonometric functions
is less than complete, however. For example, while the extended sin,
function does belong to C1(R), it is far from being real analytic on R if
p # 2. To see this, note that with the aid of (2.7) its second derivative
at x can be seen to be —h(sin, ), where

h(y) = (1 — yp)(2/p)—1yp—1’
and so is not continuous at m,/2 if 2 < p < co. Nevertheless, sin, is
real analytic on [0, m,/2).
While we have restricted p to the open interval (1, 00), the limit values

1 and co may be allowed in a natural way. Thus we may define

sinj 'z = —log(1 — x), sinJz=z (0<z<1)

so that

sinjz=1-—¢77%, SiNge T = T

on appropriate intervals. We shall not pursue this further here.

In the next proposition we record some basic facts concerning the
derivatives of p-trigonometric functions. These follow immediately from
the definitions and (2.7).

Proposition 2.1. For all z € [0,7,/2),

— — _ginP ! 2-p
(2.9) cosp ¥ = —sinb " wcos, Pz,

dzr

@tanpw =1+ tan} z,

d
(2.10) . cosb™to = —(p—1)sind ',

a1 o _ s p—2
sinb™ "z = (p— 1) sinb "z cos, z.

dzr
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The Appendix contains further examples of this sort.

Now we provide some elementary, but useful, identities.
Proposition 2.2. For all y € [0, 1],
(2.11) cos;1 y= singl(l — PP, sin;1 y= cos;l(l —yP)L/P

and

2 2 /
Zsintyl/P 4+ sin )t (1 —y)/?P =1,
(2.12) ™ TP
cost, (myy/2) = sint, (e (1= 9)/2).

Proof. The first two claims follow directly from (2.7). For the third,
note that

. ) (1—y?)/? )
. 1/p N 1/p'
sin, (1—yP)'/P = /0 (1 —¢tP) /P dt,

and that the change of variable s = (1 —?")'/P transforms this integral
into .

p -1 b [Ty .1

17/3; (1—sP)~VPds = H(; — sin,, y>

Tyt . .
=2 —p—smply ,
mp \ 2

the final step following from (2.3). Lastly, to obtain the fourth identity,
write
cosh (mpy/2) = 1 —sinp (mpy/2) =1~z

and observe that, in view of the third identity,

2 11 2 o Ve
y:ﬂ_—psmp z :l—ﬂ_p, sin, " (1 —z)"/7,

which gives

1-z=sin), (my(1-y)/2). o
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Further identities of this sort are given in the Appendix.

We also have a p-analogue of the classical Jordan inequality.

Proposition 2.3. For all 6 € (0,7,/2],

(2.13) 2 _sinf

<1
Tp 0

Proof. A natural change of variable shows that
1
sin;1 x = :L'/ (1 — aPsP)~Y/Pds,
0

and so )
6 = (sin, 0)/ (1 — (sin, 8)? s7)~1/7ds.
0

1
1< / (1 — (siny, B)” sP)"V/Pds < %
0

for all 6 € (0, m,/2], the result follows. o

There are connections between the generalized trigonometric func-
tions and those of classical analysis. Since

1
sin, 'z = E/ P (1 — zPt) VP4,
P Jo
we have the representations
(2.14)
11 1 / 1
sin;1 x= wF(—, =14 —;:L'p> = (1 —2P)Y/P F<1, ;14 —;a:p>
pp p p
0<z <),

where F is the hypergeometric function (see [2, Theorems 2.2.1 and
2.2.5]). This leads naturally to an expression in terms of the incomplete
beta function I(a,b;-) defined, for any positive a and b, by

I(a,b;z) = / 2 1 — )b tdt, x € 0,1].
0

B(a,b)
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In fact, we have

0 11
2.15 in te=-2I|-,—;2P), zc[0,1],
(2.15) sin, " x 2<pp’m> z €[0,1]
which may be rewritten as

11 2

2.16 sin xp—11<—,—;—w>, z € [0,7m,/2].
(2.16) (sin, ) il [0,7p/2]
Since

. =T(a+n)(b+n)(c)z"
Flobiess) = ) St rcrm

we have from (2.14) the power series expansion of sin, Lz as

z"P

(2.17) sing ' x = mirr(";l/p)

W)+ 1) ot 05T

n=0

From this an expansion of sin, x may be obtained, the first three terms
being given below:

Pl (»* —2p 1) p2Ptl 4L
p(p+1) 2p*(p+1)(2p+1)
(0 <z <mp/2).

SIHPIZI*

(2.18)

Subsequent terms have very complicated coefficients, no regular pattern
being discernible for general p.

Further inequalities, complementing Proposition 2.3, can be obtained
by exploiting the hypergeometric connection, as we next show.

Theorem 2.4. (i) The function z — x~ ' sin; ' z is strictly increasing
on (0,1) and maps this interval onto (1,7,/2).

(ii) The function

o (1 — o) VP sin;1 z—1

T — (=) v —1
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is strictly increasing on (0,1) and maps this interval onto (p?/(p? — 1),
mp/2).

Proof. (i) This is immediate from (2.17).
(ii) From (2.17) we have

(2.19) siny'z—=z(1- z?) /P
2F(1/p,1/pi1+1/p;a?) — o(1 — a?) /7
©  kptl { (k+l/p)+(pl)F(kl+l/p)}

M

— k0 (1/p) | (kp+1) p
i": kp*T (k + 1/p) kpt1
x .
= kI (1/p) (kp+ 1)((k = )p+1)
Moreover,
I =T (k—1+1/p)
2.2 — (1 —zP)P =2 hp+1
(2.20) z—z(l—z ’ ; KT (1p) x
Hence

(2.21) {sin;1 r—x(l— mP)l/P'} _ p2p2 : {a: — (1 - :L.p)l/P'}

_ k—1+1/p)p(k—1) 4pi1
Zk'l“ (1/p) ( p+1)(kp+1)wk+’

from which the result follows. O

In fact, (ii) can be deduced from the results of [16], but we gave a
direct proof for the reader’s convenience.

Corollary 2.5. For all z € (0,1),
(i) z < sin;1 z < mpx/2,
i) 2 tsint 2 < (m,/2) — ((7,/2) — 1)(1 — 2P)Y/?" and
P P P
(iii) 2 tsiny ' @ > {p? — (1 — 2?)/P'}/(p? — 1).
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Proof. Parts (i) and (ii) are immediate from (i) and (ii) respectively
of Theorem 2.4. As for (iii), from (2.21) we see that

1 p’z z

sin, "z = ——— — — (1 —aP)'/¥
2.22) pobored
> I (1) N | RS

KT (1/p) (p+)kp+1)

and (iii) follows. O

Note that (i) is simply the p-Jordan inequality, Proposition 2.3.
Moreover, (ii) and (iii) can be rewritten to give

1 0 T ™
14+ —— (1—cost10) < <2 _ (I _q)cosz o,
e G ) sing 0 2\ 2 “Sp
e
0<f< -2
=72

which is an improvement of that inequality; when p = 2 it becomes

2 . ,0 [ T T
— — — — | = = <
l+3sm2<sin9<2 <2 1>cos€, 0<0<

e

We conclude this section by giving some integrals involving the p-
trigonometric functions.

Proposition 2.6. For all z € (0,7,/2),

— g P — (p — ; p—1
/cospmdm = sin, z, p/cospacda:— (p — 1)z +sin, zcosp ™ z,

(p—1) /sin§71 zdr = —cosb™ !z, /tanﬁxdw =tan,r —x

and

1 1 2 2
(2.23) /sinp xdr = —sinﬁm F<—, —; 1+ —;sind :v>
2 pp p
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Apart from (2.23), these follow directly from the definitions. To
obtain (2.23), make the substitution v = sin, x, note that

1 pn
/Sinpxdx:/ (1 —uP) l/pdu—/ Z n‘li‘//p u' du,
p n:

integrate, and then write the resulting series in terms of the hypergeo-
metric function.
Further examples are listed in the Appendix.

3. Definite integrals and infinite sums.

3.1. Diverse integrals. We begin with some elementary observa-
tions.

Proposition 3.1. Let k,1 > 0. Then

/2 1 _(k+1 1
/ sinﬁ:zcdaz:z—B(L,—,)7
0 p p P

3.1
(3.1 /2 1 /1 k—1
cospzdr = -B| -, 1+ ——
0 p p p
and
/2 1 [(k+1 1-1
(3.2) / sin’; :ccos]lo:pda: = —B(;, 1+ —>
0 p p p

These follow directly by making natural substitutions: for example,
in the first integral we put y = sin, z and then ¢t = y”. Note that the
conditions on k and [ can be weakened: in the first and third equality
it is enough to require that £ > —1, while in the remaining cases the
conditions k,l > 1 — p will do.

Proposition 3.2. Let a,b > 0. Then

/°° oS, ax — oSy bx i 1 b
z = log —.
0 xr g(l
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Proof. Given any K > 0, change of variables shows that

/K/acospa:p—ldm/K/bcospbm—ldw
0 0

T T
Hence,
/K/a COSp, aT — COSp, b do — /K/b cosp br — 1 iz
0 T K/a T
. K/b K/b
siny, bz 1 siny, bx
= [ - —log:c] +—/ > dx
K/a K/a
. b sinp K asin,(bK/a)
=log YT T T kb
b .
n i 1/ sin, Kbz d
bK l/a 1/'2
Now let K — oo. |

The p-analogue of the unit circle in the plane is the curve |z|P +|y|P =
1, which can be parameterized by writing x = cos, 0, y = sin,
(0 < 0 < 2mp,). This can be used in connection with integrals of the
form

Tp/2
(3.3) I:/ f(cosp 6,sin, ) db.
0

Given 6§ € [0,7,/2], there is a unique ¢ € [0,7/2] such that
cos, 0 = cos?/? ¢ and sin, 0 = sin??¢. Then tan®¢ = tanb 0,
0 = tan;l(tanqé)z/p and (d/d¢)tan¢ = (d/df)tan, . Thus the in-
tegral I above can be expressed as

w/2
(3.4) 1= %/ F(cos®'? ¢,sin*/P ¢) tan>~P)/P ¢ dgp.
0

The reverse procedure is also possible, of course, so that integrals of
the form

/2
J = / g(cos ¢, sin @) do
0
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can be written as

mp/2
J = 12—7 /0 g(cosg/2 0, sinﬁ/2 0)(tan, 6)P~2/2 4.

As an illustration of this technique, we recall that (see [9, 3.687]) given
any p,v >0, with g+ v < 2,

cos ((v — p/4)m) B(,u y> _ /w/2 sin® 1tz +sin’ o
0

2cos (v +p/H)m) \ 272 costtv—1g

d
2°9 s

from which we obtain, on taking v = p and changing to p-trigonometric
functions,

B(p/2,p/2) 9 /"p/z (sin,, §)(Pr=2)/2 "
cos(pum/2) 0 (cosp §)pr—1

The choice y = 1/p now gives

/2 —1/2 F(1/2p)2
sin / =
/0 (siny 6)™7d0 = 5 F (1 /p) cos (/2p)”

which we could also have obtained from the note following Proposi-
tion 3.1.

To conclude this subsection we remark that there is a p-analogue of
the Riemann-Lebesgue lemma: if f € L;(R) and p € (1, 00), then

lim f(t)e(nt)dt =0,

n—oo R

where c(nt) stands for either sin,(nt) or cos,(nt). To prove this, note
that since the step-functions are dense in L (R) it is enough to suppose
that f is the characteristic function X(, ) of any bounded interval (a, b)
in R. When ¢, (t) = cosp(nt), the argument is immediate:

b 1
/ cosp(nt) dt‘ =

[sinp(nt)]z ‘ <2/n—0 asn— oco.

If ¢, (t) = sinp(nt), first suppose that ¢ > 0 and, given n € N, let M
be the unique non-negative integer such that nc = 2Mm, + §, where
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0 < § < 2mp,. In view of the antisymmetry and periodicity properties

of siny,

2Mm, 2m,
/ sinptdt:M/ sing, t dt = 0.
0 0
Hence,
c 1 ne 1 2Mmp+6
‘/ sin, (nt) dt| = — / sin, tdt| = — / sinptdt‘ < d/n.
0 niJo niJoMn,
Thus,

b [b|
‘/ sing (nt) dt| < ‘/ siny (nt) dt‘
a 0
|

+

sin,(nt) dt‘ —0 asn— oo,
0

and the proof is complete. Encouraging though this result may be,
theorems of Riesz-Fischer or Hausdorff-Young type, involving the ‘p-
Fourier coefficients,” are not to be expected because of the absence of
orthogonality relations.

3.2. The Catalan constant. The result mentioned in the Intro-
duction concerning Catalan’s constant is a consequence of the power
series expansion (2.17) of sin,, ! 2, which leads to the representation

I(n+1/p) (sin,z)™ Tp
(3.5) a:—smp:zcz (/) (p £ 1) o 0<z< 5

Hence, with the use of (3.1), we have

/”"/2 x T L(n+1/p) 1
0 sinpz 2 & n!T'(1/p) np+1°

However, it is known that (see, for example, 8, 1.7.4])

w/2
/ L e =20,
o sinz

where G is the Catalan constant defined by (1.3). We therefore have




40 P.J. BUSHELL AND D.E. EDMUNDS

Proposition 3.3. The Catalan constant is expressible as

T/ (2n) \* 1
(3.6) G=72 ((n!)222n> 2n+1°

n=0

3.3. Various series. Consideration of inverse p-trigonometric
functions can give interesting identities. For example,

tan> ' (1) = /0 (1+sP)"tds = Z 15]_):—)?

n=0

Moreover, if we write tan,'(1) = 6 so that sin,f = cos, 6 and
sin) 6 = 1 — sin 6, then 6 = sin;1 2-1/7 5o that

11 11 1 1 1 1
PP p 2 2p v 2 2 4 2p

where 9 is the digamma function, ¢(z) = I''(z)/I'(x) (see [1, 15.1.28]).
We thus have

- 3o(1d) (2} S5

n=0

Such series are considered in Ramanujan’s notebooks (see [3, pages
184-190]), where the values of the integral representing tan,*(1) can
be found for p = 3,4,5,6,8,10: for example,

™

1
tang '(1) = - log2 +

3 3v3
and 3
_ 1 24++/2 T
tan; (1 1 )
an (1) 2 <2—\/§> 43
Hence,
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and

1 2+/2 T = (-
4\/§1°g(2\/§) NP I rent

n=0

Also, because

we see that

(3.8) nl(1/p) _ i (n+1/p)
psin(r/p) ¢ nl(np+1)
Another series representation stems from the fact that
-1

1, 2_lsinps '
§(Slnp ].) —A mds,

expanding the denominator in the integral and then integrating we
obtain

7I%(1/p) i I'(n+2/p)

(3:9) 2p? sin(m/p) - (np+1)2I'(n+1)°

n=0
When p = 2 this gives the familiar formula

L ppa—

o (2n +1)%’

indeed, this was how Euler originally obtained this result. When p =3
we have

r2(1/3) ~2-5-8:--(3n—1)
9v/3T'(2/3) ! n; n!37(3n + 1)2

3.4. The integral I,,. The integral

1
(3.10) I, = p/ log sin, (7,6/2) d6
0



42 P.J. BUSHELL AND D.E. EDMUNDS

seems to us to warrant study in view of its diverse representations.
First observe that the substitution z = sin,(m,6/2) leads to

I 2p b loga
Py T
2 d
(3.11) = ﬂ_—i | logw% sinljlxdw

1 i1
2p sin, T
= —— P dx.
7rp 0 xXr

With (2.14) this gives

2 1
JA / F(U/p,1/p;1+ 1/pia?) de
Tp Jo

1
2 [ B 1 4 ) d
Tp Jo
2 [t , ,
=—— [ TP -V F(L 114+ 1/pst) dt
Tp Jo

the last equality following from (2.14) again. Expansion of F(1,1;
1+ 1/p;t) produces

o 2 > F(n+1)r(1+1/p) ! n—1/p’ 1/p’
IP‘?T,,RZO T(n+1+1/p) '/Ot a-od
i (n+Dr(1+1/p) T(n+1/p)T(2—1/p)
I'(n+1+1/p) I'(n+2)
2 " e 1
= oo, L0 X e
1 & 1
R ey o)

1 1
_ Z < > r'am .,
n+l n+1/p I'(1/p)
where 7 is Euler s constant; the final equality comes from [2, Theorem
1.2.5]. Summarizing, we have

I'(1/p)

- = E i
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Note that when p = 2 we obtain, with obvious notation,

o) N
1 1 2
I = — B E———— 1‘ —_ =
2 ;(2n+1)(n+1) Nl—r)noon_1<n 2nl>
N 1 2N 1 N 1
= i S D -
= Nlim (2log N — 2log 2N + 2vn — 292N)
—>00

= —2log2,

a familiar result. Observe also that, when m,n are positive integers,
the value of I,,/,, is known (see [2, (1.2.19)]) to be

nmw
ot— —logm

m—1
2 2
cos < 7rkn> log (2 — 2cos <ik>>
m

k=1

Im/n = -

m
2°¢
1
2

+

In view of (3.11) we see that

(3.13) A e T (s )

To provide other forms of I, we start from (3.11) and put = = sin, 6 to
obtain

2 7|'p/2
(3.14) ,=-=2 0 cot, 0 df.

Tp Jo

Integration by parts and then use of the substitution 6 = cot,, Ly gives

/2 cos2 P @ oo
(3.15) I,=L 0?—2—do=—L [ (cot, ! y)2dy.

)
T Jo sin,, 0 Tp Jo

Finally, we note that the representation (3.5) of z as a series of powers
of sin, x leads to

me/? _ T'(k+1/p)
/0 zcoty rdr = Zk'f‘ A/p)op £ 12
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Together with (3.14) and the fact that I = —2log 2 gives

w32 (k+1/2)
(3.16) —10 2= Zk, TEEIE

3.5. The addition formula question. In the Introduction we re-
marked on the lack of usable addition formulae for the p—trigonometric
functions. Here we illustrate the problem by consideration of the func-
tion tan,. Suppose that

&(u,v) = tan, (tan;

/¢ ds _/“ ds +/v ds
0 ]_+Sp_ 0 1+Sp 0 1+Sp‘

These integrals can be evaluated for particular integer values of p:
for example, [3, pages 189-190] gives expressions for them when
p = 3,4,5,6,8,10. However, these rapidly become complicated. For
example, corresponding to p = 3 we have

“d 1 1 3 1 3
/ L S (ﬂ)
o 1+s 6 1+u V3 2—u

1 -1
u + tanp v) .

Then

from which it seems impossible to derive an explicit formula for ¢. The
existence of reasonable addition formulae for any of the p-functions
seems to be very unlikely.

4. Fourier coefficients and the basis problem. We begin by
considering the Fourier sine coefficients of the functions sin,(nmyt).
Given p € (1,00) and n € N, for simplicity we write f,,(t) =
sin,(nmpt) (t € R) and set e, = fy 2, so that e,(t) = sin(nwt). Since
each f, , is continuous on [0, 1] it has a Fourier sine expansion:

frp(t) anp )sin(kwt), fop(k —2/ fup(t) sin(kt) dt.
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The symmetry of f , about ¢t = 1/2 means that Jfl\p(k) = 0 when k is
even and that

. 1
fn,p(k) = 2/(; f17p(nt) sin(kmt) dt

1
0

=2 Z fL\p(m) / sin(kmt) sin(mnnt) dt
m=1

_ { ﬁ;(m) if mn = k for some odd m,

0 otherwise.

For brevity we shall put 7,,(p) = Jfl;(m). As all the Fourier coefficients
of the f,, may be expressed in terms of the 7,,(p), we focus our
attention on the behavior of these terms, beginning with their decay
properties as m — co.

For even m, 7,,,(p) = 0. For odd m, say m = 2k + 1,

1/2
HMJ@y:g/ sing (myt) sin ((2k + 1)mt) dt
0

4 1/2
~ ety L ot cos (2 1))
0

4, 1z d
= “@E e ), sin ((2k + l)ﬂ't)% cosp, (mpt) dt

_ Am, Voor@k+ )
= (2k+1)27r2/0 sm< . cos, " T dzx.

In a similar way we have

4 ! 2k + 1)
(42) T2k+1(p) = mA COs (% smp L $) dr.

From (4.1) we immediately have the estimate

(4.3) e (p)] < ¢ M (e

2% + 1)272

This is obtained in [4] by a slightly less direct procedure.
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In fact, when 1 < p < 2 (which as we shall see is the case of most
interest) the decay of the Tor41(p) is faster than indicated above. To
establish this we start from the representation (4.1). Put t = cos;1 T =
#(z) so that = cos, t. Then

Z—f = _x27p(1 _ .,L.p)lfl/p’
¢I(gj) = ;l—t = _m—(2—p)(1 _ mp)—(l—l/p)
X

and so |¢'(z)| > 1in (0,1). Moreover,

¢"(z) = —(p— 2)a? > (1 —aP) /P
+ (]_ _ 1/p).’1,‘p72(]_ _ ‘,Ep)72+1/p) . —p.’Ep71
= 2P 3(1 = a?) P {2 p)(1 - 2?) - (p - a7}
— xp73(1 _ xp)f(%l/p) (2—p—zP).

Hence ¢'(x) is increasing in (0, (2 — p)/P) and decreasing in ((2 —
p)/P 1). The minimum of |¢'(x)| on (0,1) is

{e-perp-n o} o,

attained at (2 — p)'/P. We now use an estimate of van der Corput type
to deal with the oscillatory integral in (4.1). Put b = (2 — p)'/? and
temporarily set a = (2k + 1)m/m,. Integration by parts gives

1
ag/ (x)

- [ cos (ad(x)) - a(b}(aﬁ)]z

+1 [ eon(aple)) - 11/} da

a

dr

/Ob sin (a cos;1 a:) dr = /Ob sin (ap(z)) aqﬁ'(;c)

Together, with the monotonicity of ¢'(z), this gives

b b

1 1 d
‘/ sin(acosgla:) dx §—+—/
0 amp a 0

- {1/¢/(@)} | do
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11| [td

- 2 S/ d
o e | g @y
2

~am,’

In the same way we see that

1
/ sin (a cos;1 m) dzr
b

2

amp

<

It follows that

1
2k + 1 4
‘/ sin (u 005;1 s> ds| < p
0 Tp

= (2k +1)mm,
Combined with (4.1) this shows that, if 1 < p < 2,

1671'12)

. < ———F ——
(4 4) ‘72k+1(p)| = mp(2k: n 1)37r3

(ke N).

Interesting formulae may be obtained by use of the Euler polynomials
E,,, which have the generating function

(4.5) 2 S mwb (< m
) et—l—l_n:O "xn! T

(see [1, Chapter 23] or [5]). Recursive computation of E, is possible
by means of the formulae

E,(z)+ ) "CpEy(z) = 22" (n€N).
k=0
The first three Euler polynomials are
Ey(z) =1, Ei(z) =2z —1/2, Ey(z) = 2 — =

The Fourier expansions of the F,, are

o0

sm 2k: + 1 7r:L'
Eon(z) = 71.2n+1 Z (2k + 1)2n+L
k=0
4(-1)"(2n - 1)! cos(2k + )z
E2n71( ): 7T2n Z (2k+ 1)2n )

k=0
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for n € N and 0 < 2 < 1. Hence

v “D"20)! N Tokta
/0 Sinp(”pw)En(m)dx:( 1)"(2n)! Z( w1 (p)

7-‘-2n+1 = 2k + 1)2n+1 ’
that is,
2 Toppa(p (—1)m2ntt /1/2 .
= sing, (m,z)E, () dx
(4.6) kZ:O 2k +1) 2n+1 (2n)! o p(Tp2)En(2)
(n e NU{0}).

To supplement this, we have from Parseval’s formula,

(oo}

/2
4.7 T P :/ x sin, (m,x/7) dz
1) S )= [ wsiny (/)

k=0

and

2 /2 T
= —;/0 sin, (%w) </0 log tan(u/2) du> dx.

After appropriate changes of variable, the cases n = 0,1 of (4.6) and
(4.7) give

(4.9)
> Tp/2
Z 7'2k+1 p) = (W/Wp)/ sin, = dx,
0
(4.10)
> 1 3 Tp/2 .
kZ:O % e 3ok (p) = 5 (/) /0 x(m, — z)sin, z dx
and
(4.11

)
[e%) - 2 7|—p/2 .



GENERALIZED TRIGONOMETRIC FUNCTIONS 49

We remark that (4.8) and (4.11), in which the summations involve
an even power of 2k + 1, may be thought of as interpolating between
the results containing odd powers of 2k + 1. Note that, in view of
Proposition 3.1, (4.9) may be written as

(4.12) kZ:O 2% + ok (p) = 2r(1/p)T(1+1/p)

Moreover, Proposition 3.1 together with (3.5), which represents z as a
sum of multiples of powers of sin, z, enables us to evaluate the integral
in (4.11). Observe also that the formulae above give familiar results
when p — 1. Thus, (4.9), (4.10) and (4.11) give

— =, = —
= (2k+1) 8 P (2k+1) 96
and
SUCIE
=
part (2k+1) 32
respectively.

It is possible, and even desirable as we shall see later, to obtain an
integral representation of Y72 o Tak+1(p). To achieve this we define

(4.13) o(r,p) = ir2k+l7'2k+1(p)

k=0

for every r € [0,1], Then, if 0 <r < 1,

1/2 0
o(r,p) = 4/ sing, (mpx) Z r2* L sin(2k + 1)mx do
0 k=0

1/2 Asin
=9 i ————dr,
/0 siny (mp2) 1 Ncostmz

where A = 2r/(1 + r?). In view of the decay property (4.3) of
Tok+1(p) it is clear that ¢(1,p) < co. Hence, by Abel’s limit theorem,
#(1,p) = lim,_,; ¢(r,p); and, since

Asin e sin, (7mpx)

<

sin, (m,x)

1—)X2cos?x Asinma
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we see from (2.13) and the dominated convergence theorem that

sin, (7mpx) i

sinmx

/2 :
= 3‘/ ! e — Slnp x dr.
7 Jo sin(ma/m,)

The substitution u = sin,  and integration by parts lead to

G 2 [ 1
(4.15) ];)T%H(p) = /0 log { cot 2 (ﬂ_l sin,, * u> } du.

o0 1/2
> raea(p) = lim(r.p) =2
(4.14) k=0

p

In terms of the incomplete beta function (see (2.15)) this becomes

oo 2 1 T 1 1
_ 2 L
(4.16) kZ:OTQkJ,-l(p) ”/0 log{cot <4I<p7p,;u >>}du

We now turn to a basis question. It is well known that (exp(inmz))nen
is a basis in L,(—1, 1) for every ¢ € (1, 00); see, for example, [7, 12.10.1].
Given any element of L,(0,1), its odd extension to L,(—1,1) has a
unique representation in terms of the functions sin(n7z), which means
that (sin(nmz)) is a basis of Lg(0,1). The object of a striking recent
paper [4] was to show that the functions sin,(nmpz) have a similar
property, provided that p is not too close to 1, p > pg, say, where
po € (1,2). Here we analyze this paper and clarify the limitations of
the method of proof that were pointed out in it.

Given any function f on [0, 1], extend it to a function f~ on [0, c0)
by setting f(t) = —f(2k —t) for t € [k,k + 1], k € N; define
M,, : Ly(0,1) — Ly(0,1) by M,,qg(t) = g(mt) (m € N, 1 < ¢ < o)
and note that M,,e, = emn: recall that e,(t) = sin(nnt). In [4] it
is shown that M, is a linear isometry and that the map T defined
by Tg(t) = Y 0°_ Tm(p)Mmg(t) is a bounded linear map of L,(0,1)
to itself with the property that, for all n € N, Te, = f,,, where
fnp(t) = sin,(nnt). If it can be shown that T is a homeomorphism,
then it will follows from standard considerations (see, for example, [10,

page 75]) that the f, , inherit from the e, the property of forming a
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basis in L4(0,1) for every ¢ € (1,00). It follows from [4] that T is a
homeomorphism if

(4.17) Z |T2k+1(p)| < T2 (D)l

and it is in trying to satisfy this inequality that the restriction on p
appears. Because of (4.3) we have

= 47, (72
P

(4.19) > ) < 72 (1)

and it remains to estimate |7;(p)| from below. In [4] this is done
by claiming that, for each t € (0,1), f1,,(t) = sin,(mpt) is strictly
decreasing in p, and this claim in turn rests on the assertion that as p
increases, both 7, ' and (1 — tP)~1/P are strictly increasing. However,
while it is true that 7, ! is strictly increasing, a routine differentiation
shows that in fact (l—tp)’l/ P is strictly decreasing as p increases, and so
this assertion is false. Nevertheless, as we show below in Corollary 4.4,
the claim is true. First, however, we show that a lower bound for |1 (p)]
may be obtained by using the following elementary consequence of the
p-Jordan inequality.

Lemma 4.1. For all p € (1,00) and all t € (0,1/2),
sing, (mpt) > 2t.

Proof. By Proposition 2.3, sin, 6§ > 20/, if 0 < 6§ < 7,/2. Now put
0 = mpt. O

Proposition 4.2. For all p € (1,00), 71(p) > 8/m2.

Proof. Simply observe that, by the last lemma,

1/2 1/2
T1(p) =4 i f1,p(t) sin(mt) dt > 4/0 2t sin(nt) dt = 8/7>. O
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Together with (4.18) and the fact that m, decreases as p increases,
this shows that the functions sin,(nmpz) form a basis in Lg(0,1) for
every ¢ € (1,00) if 2 < p < 0.

Now we deal with the dependence of sin,(m,t) on p.

Proposition 4.3. Suppose that 1 < p < q¢ < oo. Then the function
f defined by

.1

fz) = sin, " z
sin;1 x
is strictly decreasing on (0,1).
Proof. Let
(1 xq)l/q

Then, for all z € (0,1),

oy —xtTt Pt (2P - af)g()
g(x)—g(m){l_ﬂ 1—qp _m(l—xq)(l—mp)>0'
Now let
G(z) =sin, 'z — g(z)sin, " z;
then
G'(z) = —(sin, ' z)g'(z) <0 in (0,1).
It follows that G(z) < 0 in (0, 1), and hence that
G(z) )
"(z) = <0 0,1). o
f@) (sin;1 z)2(1 — x9)1/q in (0,1)

As an immediate consequence we have

Corollary 4.4. (i) If 1 <p < ¢ < oo, then

-1
sing "z _ w, .

1>——>-" in(0,1].
sin,~x ~ 7p
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(ii) If 1 <p < g < oo, then

. . 1, 1, _ .
smPI:UZsmqlx and —smqlxz—smplx in [0,1].
™ ™
q P

(iii) If 1 <p < g < o0, then

sin, (mpx) > sing(mgz) in [0,1/2].

The delicacy of the inequalities involved here is underlined by the
opposing nature of the two parts of (ii).

Corollary 4.4 (iii) seals the gap in the proof of [4], and from this point
onwards the argument for the basis property is much as given in that
paper: first, observe that if 1 < p < 2,

1/2 1/2
n(p) = 4/ sin, (7pt) sin(t) dt > 4/ sin®(nt) dt = 1,
0 0

which, for this range of values of p, improves the estimate given in
Proposition 4.2; second, use this estimate together with (4.17) and
(4.18) to obtain their result:

Theorem 4.5. The functions sin,(nm,x) form a basis in Ly(0,1) for
every q € (1,00) if pg < p < 0o, where py is defined by the equation

272

(4.19) Tpy = Rl

Proof. In view of (4.17), this follows immediately from (4.18) and
Proposition 4.2, together with the fact that m, decreases as p in-
creases. O

Numerical solution of (4.19) shows that py is approximately equal to
1.05.
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Some improvement of this result can be obtained by using the esti-
mate )
167,
my(2k 4 1)373

given in (4.4) and valid for 1 < p < 2. While for fixed p this gives
a faster rate of decay, as k increases, than the inequality |Tar11(p)| <
4, /((2k+1)7)? that we have been using (given in (4.3)), unfortunately
it does not immediately produce a better result than that already
derived because of the 71'5 factor. To obtain any sharpening it is
necessary to use (4.4) for large values of k and (4.3) for smaller values.
However, Theorem 4.5 is already close to the limit of what can be
established by the technique represented by satisfaction of (4.17), as
we now show.

From

4 [t 4 rt 11
Tl(p) = — COS 1 sinflm dr = — COs EI ) _;mp dzx

™ P 2 !

0 Tp ™ Jo b p

(see (4.2)) and (4.16) we see that the equation

|Tok11(P)| <

Z Tor+1(p) = 271(p)
k=0

is equivalent to

1
T (1 1
4.20 /log{cot <—I<—,—;u”>>}du
(4.20) 0 4 \pp'
! 11
:4/ COS<EI<—,—,;:UP>>dZL'.
0 2 \pvp

In this form the equation is suitable for numerical calculation, and we
are indebted to Simon Eveson for showing numerically that (4.20) has
a solution, p; say, approximately equal to 1.0439898. Since

oo oo
> )] £ 3 o)
k=0 k=0

for all p € (1, 00), it follows that (4.17) cannot hold if p = p;, and so a
lower bound for the validity of the technique of proof used to establish
the basis property is given by p = p;.
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APPENDIX

5.1. Derivatives. The following table gives further examples of
the derivatives of p-trigonometric functions, all of which can be verified
directly. In each case the variable z is supposed to belong to [0, m,/2).

f(=z) f'(x)

(siny, z cos, )P " | (p — 1)(cost & — sinf z) sin?* x
cosp T — sinf = —2p sing_1 x CoSp T

cotp —(cos2 P x)/ sinz x

sec, T tang_1 T Sec, T

COSEC,T —C0sec,T coty, T

Note also that
—Ap(sin, ) = (p — 1) Jsin, z|” %sin,z  (z € R),

where A, is the one-dimensional p-Laplacian (see (1.2)).

5.2. Trigonometric identities. Here we list further identities
of the same type as those given in Proposition 2.2, and valid for all
z € 10,1].

(i) (2/mp) cosy (1 — a?)M/P + (2/mpy) cos)t @ = 1.

(ii) (2/m )smp x+ (2/7rp/)cos;,1 Pl =1,

(iii) sinp(mpz/2) = cos) (Wp:(l —1z)/2).

(iv) cost™2(mpe/2) = sin’; ¥ (my (1 — 2)/2).

(v) sinf~*(mpw/2) = cosi,_ (mp (1 —2)/2).
5.3. Integrals. The following table gives examples of indefinite

integrals additional to those provided in Proposition 2.6. These can be
verified by differentiation, for example.
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i@ [ @) ds

psinh z & — sin, z cosh ™!

tanﬁfl T — log cosy,

coshtl sin, x — ﬁ sinbtt z

singf1 z cosh x —p+,1€71 cosbTh=1 g

1/(sinp x cosb ™' z) | log tan,, x

sing_1 x log cosp, ﬁ cost ' a{l — (p — 1) logcos, =}

5.4. The p-calculus. Some care is needed when working with
p—functions outside the interval [0,7,/2]. For example, the extension
of sin,, to [—m,/2,0] that would be obtained by use of the power series
for the inverse of F}, is not the periodic extension of sin,: indeed, this
extension would be an odd function only if p is an even integer.

We have not been able to find a p-analogue of the exponential function
or the gamma function, and the existence of addition formulae or a p-
version of the Euler reflection formula seems unlikely.

An integral involving only p-functions, with the same p occurring in
all functions, can be transformed into an integral of standard functions
in the way described in Section 3. The evaluation in finite form of other
types of integrals presents some difficulties. In connection with the
basis problem, it would be extremely useful to find simple expressions
for integrals such as

/sinp azsing frdr  (p # q).
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