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ARITHMETIC PROGRESSIONS ON
CONGRUENT NUMBER ELLIPTIC CURVES

BLAIR K. SPEARMAN

ABSTRACT. We give an infinite family of congruent num-
ber elliptic curves each possessing a nontrivial rational arith-
metic progression. These elliptic curves yield a new infinite
family of congruent number curves having rank at least three.

1. Introduction. The congruent number elliptic curves are defined
by
E, :y* = z(z? — n?),

where n is a positive integer. If P;, i = 1, 2, 3, are rational points on F,,,
then they form an arithmetic progression if their z—coordinates x; =
z(P;) form an arithmetic progression. Such an arithmetic progression
is called trivial if at least one of the points P; is a torsion point,
that is, P; € {(0,0),(n,0),(—n,0)} for some i = 1,2,3. Otherwise
the arithmetic progression is nontrivial. In [2], Bremner, Silverman
and Tzanakis showed that the curves F, do not possess a nontrivial
arithmetic progression of integral points if the rank of E,, is equal to 1.
They do give one congruent number curve with a nontrivial arithmetic
progression of integral points, namely,

y® = z(x? — 1254%),
with integral points
(—528,26136), (—363, 22869), (—198,17424).
In [1] Bremner noted that rational points in arithmetic progression

tend to be independent in the group of rational points. This suggests
a possible rank of at least 3 for Fi254. In fact the rank of Fjgs4 is
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equal to 3. The purpose of this paper is to give infinitely many curves
FE,, containing a nontrivial arithmetic progression of rational points of
length three. In addition we confirm that these points are independent
in the group of rational points of E,, and show that the rank of E,
is at least three. None of these arithmetic progressions extend to
length four. In Section 2 we give a series of lemmas which will be
used in proving that the rank is at least 3. In Section 3 we prove our
main theorem. Finally we prove that infinitely many of the resulting
congruent numbers n given in Theorem 1, are distinct modulo squares.
We now state our main theorem.

Theorem 1. The curve
(1) w? = 9t* + 4> + 36

has infinitely many points. Let (t,w) with t # 0 be one of them. Set
t = u/v where u and v are integers with ged(u,v) = 1. Define the
positive integer n by

(2) n = 6(3u* — 4u?v? + 120*)(3u? + du?v? 4 120*),
and three points P; = (x;,y;), i = 1,2,3 by

(z1,91) = (—18(u? — 20?)%(3u* — 4u?v? + 120%),
144(—u? + 20?)(3u* — 4u?v® 4 120%)%uw),

(3)
(z2,92) = (—3(3u* — 4u?v? +120%)% 9(3u? — 4u%v? + 120*)2

x (u? + 20%)wv?),
(z3,y3) = (—48u?v* (3u* — 4u?v”® + 120*), T2uv(3u* — 4u?v? + 120%)?
x (u? 4 20%)).

Then the points (x;,y;) on the congruent number elliptic curve y*> =
z(x? — n?) have their x coordinates in arithmetic progression and the
rank of E, is at least 3.
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2. Some lemmas.

Lemma 1. Ifu and v are integers with (u,v) = 1, then none of the
given quantities is equal to a square in Q.

(i) £6(3ut — 4u?v? + 120%)(3u? + 4u?v? 4 120%),
(i) +2(3u? — 4u?v? 4 120*).

Proof. For case (i) with the plus sign, if u is odd then
2 || 6(3u* — 4uv? + 120*)(3u* + 4u?v? + 120%).
If u is even so that v is odd, then
25 || 6(3u* — 4uv? + 120*) (3u* + 4u?v? + 120%).

These calculations show that the given quantity cannot be equal to a
square in Q. The rest of the proof is similar. a

Lemma 2. Ifu and v are nonzero integers with (u,v) = 1 then none
of the given quantities is equal to a square in Q.

(i) £3(3u? + 4u?v? + 120v%),

(i) £(3u* + 4u?v? + 120%),
(iii) +(3u? — 4uv? + 120%) (3u? + 4u?v? + 120v%),
(iv) £3(3u? — 4uv? + 120*).

+
+

Proof. In order for any of these quantities to be equal to a square in
Q we must choose the plus sign since (3u? +4u?v? + 12v%) > 0. In that
case, a pair (u,v) satisfying the conditions in Lemma 2 and yielding a
square, say z2, would in the first two cases, give rise to a rational point
(z,y) = (u?/v?, zu/v3) on one of the following elliptic curves,

y® = 3x(32% + 4z + 12),
y® = z(32® + 4z + 12).

These curves have conductors 576 and 192, respectively. Each has
rank 0 and their only finite rational points are (0,0) and (0,0), (2, £8),
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respectively, none of which is consistent with z = u?/v? and u # 0. In
the third case we would be led in a similar manner to the quartic curve

(4) y? = (322 — 4z 4 12)(32 + 4a + 12),
which is birationally equivalent to
y? = 2® — 1971z — 32130.

This elliptic curve has conductor 24, and rank 0, allowing us to conclude
that the quartic curve in (4) has as its only finite rational points
(0,4+12), neither of which is consistent with x = u?/v? and u # 0.
In the fourth case we are led to the quartic curve

(5) y? = 3(3z* — 42? +12),
which is birationally equivalent to
y? = 2® — 84x + 160.

This elliptic curve has conductor 576, and rank 0, allowing us to
conclude that the quartic curve in (5) has as its only finite rational
points (0, 6), neither of which is consistent with x = u?/v? and u # 0.
This proves the lemma. ]

Lemma 3. For integers u,v such that (u,v) = 1, none of the given
quantities is equal to a square in Q.

(i) £(3u? — 4u?v? + 120%),
(i) £3(3u* — 4u?v? + 120%) (3u + du?v? + 120%).

Proof. Consider the first given quantity where the plus sign would
have to be chosen in order to obtain a square in Q. In this case the given
quantity is congruent to 2u?v? modulo 3. Since 2 is not a quadratic
residue modulo 3, we require 3 | v or 3 | v. Combining these with the
condition ged(u,v) =1 yields

3 (Bu* — 4u?v? + 120%).

so that 3u* — 4u2v? 4 12v* cannot be equal to a square in Q. The proof
of the second part of the statement is similar. ]
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Lemma 4. There exist infinitely many pairs of rational numbers
(t,w) such that
w? = 9t* + 4> + 36.

Proof. The given quartic curve is birationally equivalent to the elliptic
curve
Y? = X3 — 6588X — 39312.

It has rank one, conductor 960 and Mordell-Weil group
E(Q)~Z x Z/2Z x Z)2Z.

Hence the given quartic has infinitely many rational points. ]
3. Proof of theorem.

Proof. Lemma 4 shows that there are infinitely many points (¢,w) on
the curve
w? = 9t* + 4t% + 36,

so we can choose t # 0. Examining the factors on the right hand side
of equation (2), we observe that n is positive. Easy calculations show
that the points (x;,v;), i = 1,2, 3, lie on the curve y? = z(z? — n?) and
that

Ty — 11 = 23 — T2 = 3(u? — 6v%)(3u? — 20%)(3u* — duv? + 120%).

Hence the points (z;,y;) are in arithmetic progression although their
order depends on the relative sizes of v and v. Next we estimate the
rank of y?> = z(z% — n?). Rank estimation uses the following method
which is described in Silverman and Tate [4]. Let I" denote the group
of rational points of an elliptic curve E in the form y? = x(2? +ax +b).
Let Q* be the multiplicative group of non-zero rational numbers and
let Q*? denote the subgroup of squares of elements of Q*. Define the
group homomorphism «a from T to Q*/Q*? as follows:

1 (mod Q*Q) for P = O, the point at infinity,

a(P) = b(modQ*?) for P = (0,0),
T (mod Q*Z) for P = (z,y) with z # 0.
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Simultaneously we study a second curve y? = z(2? — 2az +a® — 4b) and
its group of rational points I'. In an analogous manner, we introduce a
second group homomorphism @ from T to Q*/Q*? defined by

1 (mod Q*?) for P = O, the point at infinity,
a(P)=1< a®>—4b (mod Q*2) for P = (0,0),
z (mod Q*?) for P = (z,y) with z # 0.

The rank r of the given curve E satisfies

It suffices to show that |a(T')| > 32.

From the definition of a we have
a(l) D {1,-1}.
Since a((£n,0)) = £n(mod Q*?), we obtain
al) 28 ={1,-1,n,—n}.

It follows from Lemma 1 (i) that these images are distinct modulo
Q*2. We just list generators of the subgroup of a(I') which we are
constructing. Therefore we have

a(T) 2 (~1,n).

We have three non-torsion points P; = (z;, ;) on y*> = z(z? —n?) given
in (3), whose images under the mapping o we examine next. From (3)

we obtain
a(Py) = —2(3u* — 4u?v? + 120%)(mod Q*?),

so that
a(T) D 81 U {—2(3u* — 4u?v? + 120*)}.

We check that a(P;) is not congruent modulo Q*? to any element of Si.
From Lemma 1 (ii) we see that the quantities +2(3u? — 4u%v? + 12v%)



ARITHMETIC PROGRESSIONS 2039

are not equal to squares in Q. If £«(P;)n were congruent to a square
modulo Q*? we would have after minor simplification that

+3(3u* + 4u?v? + 120*) = 1(mod Q*?)
which contradicts Lemma 2 (i). Therefore
a(T) 2 Sy = (—1,n, —2(3u* — 4u’v” + 120%)) .

Next we turn to a(P;). We must show that a(P) # s(mod Q*Z) for
all s € Sy. If this congruence were to hold for some s € So, then there
would exist integers ¢1, ¢y with ¢1,¢9 € {0,1} such that

a(Py) = £n° (-2 (3u* — 4u’v® + 12114))c2 (mod Q*?),
or
—3=+n (—2(3u’ — 4v® + 121}4))62 (mod Q*?).

Comparing powers of 2 on both sides of this congruence we deduce
from (2) and consideration of the power of 2 in 3u* +4u?v? +12v* that
c1 = co. For the congruence to hold we clearly cannot have ¢; = c; =0
so that ¢; = ¢ = 1. Therefore one of

+(3u* 4 4u?v? + 120%)

must be equal to a square in Q. This contradicts Lemma 2 (ii).
Therefore

a(T) 2 S5 = (—1,n, —2(3u* — 4u’v* + 120%),3),

and |Ss| = 16. To finish we show that show that a(Ps) # s(mod Q*")
for all s € S3. If this congruence were to hold then there would exist
integers e;, i = 1,2, 3, and e; € {0,1} such that

a(Ps) = £3°'n°2 (—2(3u* — 4u®v? + 120*))% (mod Q*?),
that is,

(6) —3(3u* — 4u®v? + 120%)
= +3°10°2(—2(3u? — 4u®v? + 120*))% (mod Q*?).



2040 BLAIR K. SPEARMAN

Examining the power of 2 dividing the left hand side of (6) we deduce
as in the proof of Lemma 1 that

22m | —3(3u? — 4u®v? + 120*)

for some nonnegative integer m so that for some nonnegative integer ¢
we have

220 || £3°1n°2 (—2(3u? — 4u%v? + 120%))°%.

Combining the method of proof of Lemma 1 (i) with a consideration of
the power of 2 dividing (3u* & 4u?v? + 12v*), we deduce that ey = e3.
Thus (6) reduces to

(1)  —3(3u* — 4u®v® + 120%)
= +3°13°2(3u? 4 4u?v? + 120%)°2 (mod Q*?).

Treating the cases (e, e2) = (0,0), (1,0),(0,1),(1,1) in order we deduce
from (7) that one of the following quantities must be equal to a square
in Q.

+ 3(3u* — 4u?v? + 120%),

+ (3u* — 4u?v? + 120*),

+ (3u* — 4u?v? 4+ 120%) (3u? + 4u%0? + 120*).

+ 3(3u* — 4u?v? + 120%) (3u* + du®o® + 120%).
This contradicts Lemma 2 (iv), Lemma 3 (i), Lemma 2 (iii) and Lemma
3 (ii). Thus «(T) contains the 17 elements in S3 U {—2(3u? — 4u?v? +
120*)} and as |a(T)| is a power of 2, we see that |a(T')| > 32. This
proves that the rank of T is at least 3. O

4. Infinitely many rational arithmetic progressions.

Corollary 1. There exist infinitely many congruent numbers distinct
modulo squares whose associated elliptic curves E,, have rank at least
3 and which contain a nontrivial arithmetic progression.

Proof. We need only verify that an infinite subset of the congruent
numbers given in Theorem 1 are distinct modulo squares. If this were
not the case then there would exist a finite set of nonzero rational
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numbers {d;,= 1,...,m} which are inequivalent modulo Q*2, such
that for each congruent number n in our Theorem we have
n = 6(3u* — 4u?v® 4 120%)(3u? + 4u%v? + 120%)
= d;(mod Q*2), for exactly one d;.
Equivalently, setting ¢t = u/v, we obtain
6(3t* — 4t +12)(3t* + 4t + 12) = d;3?,

for some rational number y depending on n. Our infinitely many
distinct values of n would give rise to an infinite set of distinct points
on the family of algebraic curves

d;Y? = 6(3X* —4X? +12)(3X* +4X? +12).

However this is impossible since we have finitely many curves of genus
three each of which has only finitely many points. O

Example 1. If we choose (t,w) = (1,7) satisfying (1) so that
(u,v) = (1,1), then (2) and (3) give the example referred to in the

introduction.
n = 1254,

(z1,y1) = (—198,17424) ,
(z2,y2) = (—363,22869) ,
(z3,y3) = (—528,26136) .
If we choose (t,w) = (9/14,1227/14) satisfying (1) so that (u,v) =
(9,14), then (2) and (3) give the following congruent number and
associated arithmetic progression in the z-coordinates.
n = 1362094185654 = 2 - 33 - 19 - 241 - 577 - 9547,
(z1,y1) = (—T726285533238, 982022971974022944) ,
(z2,y2) = (—522094929723,909026269374801699) ,
(z3,y3) = (—317904326208, 746779526919152496) .

Remark 1. Another infinite family of congruent number curves with
rank at least three is given in [3]. These congruent numbers have the
form

(8) N = 6(U* +2U%V? + 4V (U* 4 8UV? 4 4V*),
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for integers U,V with ged (U, V) =1 and T = U/V satisfying
T +14T2 + 4 =W?2, T #0,

for some rational number W. Despite the somewhat similar appearance
of these two families and the fact that the squarefree parts of both
sets of congruent numbers are congruent to 6 modulo 8, these families
are not identical. Although it is unknown if these families have any
overlap, we can easily give an infinite subset of the congruent numbers
n in this paper which cannot be equivalent modulo squares to any of
the congruent numbers N given in (8). Therefore these n comprise a
new family of congruent number curves with rank at least 3. For this
purpose we require pairs of rational numbers (w,t) satisfying (1) such
that if ¢ = u/v with ged (u,v) = 1 then 3  uv. Suppose that we can
do this. Let n be the congruent number given by (2). If there exists a
congruent number N given by (8) with the property that nN is equal
to the square of an integer then referring to (2) and (8) it would follow
that nN/36 = d? for some integer d. As a congruence modulo 3 we
would have
d? = 2(U? + V?)*utv* (mod 3).

This congruence is impossible since 2 is a quadratic nonresidue mod-
ulo 3 and 3 { 2(U? + V?2)*utv?. Tt remains therefore to find the pairs
(w, t) satisfying (1) such that if ¢ = u/v, ged (uw,v) = 1 then 3 { uv. We
consider the elliptic curve

(9) y® = z(a? +4/9z + 4).

A point of infinite order on this curve is P = (2/3,16/9). Induction
shows that if @ € {2P,6P,10P,...}, then v3(z(Q)) = 0, where v
denotes the usual 3 — adic valuation [5]. Further we note that, since @
is the double of a point on (9), (@) must be equal to the square of a
rational number say z(Q) = t2, t € Q. If we write t = u/v for integers
u,v with ged(u,v) = 1 then 3 { uv as required and the rational number
t has the property that

9t* + 4t + 36 = w?

for some rational number w. A further infinite subset of the congruent
numbers we just finished constructing would be distinct modulo squares



ARITHMETIC PROGRESSIONS 2043

using the same proof as in Corollary 1. This establishes the claim made
in this remark.

Example 2. There may exist other families of congruent number
curves containing nontrivial rational arithmetic progressions. For ex-
ample it might be possible to develop the properties of the following
family as was done for the family given in this paper. The curve

w? = 4t* — 4% + 1062 — 12t + 6,

has infinitely many points. Choose ¢t # +1,1/2, and set t = u/v where
u and v are integers with ged (u,v) = 1. Define the positive integer n
by

(10)  n=2(3u? — duv + 20%) (u? + 20%)(u* + 2uv? — duv® + 20%),
and three points (z;,v;), ¢ = 1,2,3 by
(11)

z1 = —2(u® + 2uv — 20%)2(u* + 2u?v? — 4ur® + 20*),
y1 = Su(u — 2v)(u® + 2uv — 20%)(u* + 2u®v? — dur® + 20*)?,

ry = —2(u* 4 2uv? — 4uv® + 20%)?,
Yo = 4(u* + 2u®v? — duv® + 201 (u? — wv + v?)v w,
z3 = —2u”(u — 2v)?(u* + 2uv? — duv® + 20*),

y3 = Su(u — 2v)(u* + 2uv? — duv® + 20*)% (v — wv + v?).

Then the points (z;,y;) on the congruent number elliptic curve y> =
z(x? — n?) have their x coordinates in arithmetic progression. If
we choose (t,w) = (—1/7,138/49) so that (u,v) = (—1,7) then the
formulas in (10) and (11) give (after scaling by 3%) the following
congruent number and three points in arithmetic progression on the
associated elliptic curve.

n=1978086 = 2-3-11-17- 41 - 43,
(z1,91) = (—1908386, 718997320) ,
(z2,y2) = (—971618, 1698388264) ,
(z3,y3) = (—34850, 369214840) .
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