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ON REPRESENTATIONS AND DIFFERENCES OF
STIELTJES COEFFICIENTS, AND OTHER RELATIONS

MARK W. COFFEY

ABSTRACT. The Stieltjes coefficients v (a) arise in the ex-
pansion of the Hurwitz zeta function {(s,a) about its single
simple pole at s = 1 and are of fundamental and long-standing
importance in analytic number theory and other disciplines.
We present an array of exact results for the Stieltjes coeffi-
cients, including series representations and summatory rela-
tions. Other integral representations provide the difference of
Stieltjes coefficients at rational arguments. The presentation
serves to link a variety of topics in analysis and special func-
tion and special number theory, including logarithmic series,
integrals, and the derivatives of the Hurwitz zeta and Dirichlet
L-functions at special points. The results have a wide range
of application, both theoretical and computational.

1. Introduction and statement of results. The Stieltjes (or
generalized Euler) constants «x(a) appear as expansion coefficients in
the Laurent series about s = 1 for the Hurwitz zeta function ((s,a),
one of the generalizations of the Riemann zeta function ¢(s). Elsewhere
[6], we developed new summatory relations amongst the values ~yx(a)
as well as demonstrated one of the very recent conjectures put forward
by Kreminski [19] on the relationship between i (a) and —yi(a +1/2)
as k — oo [5]. New series representations of the Riemann and Hurwitz
zeta functions, as well as series representations of v;(a) and v2(a) are
given very recently in [9].

In this paper, we present an array of exact results for the Stieltjes
constants. These include individual and summatory relations for paired
differences of these coeflicients for rational arguments. Our work pro-
vides a unification of several important topics of analysis and analytic
number theory. These include certain logarithmic sums, integrals of
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analytic number theory, special functions, the derivatives of the Hur-
witz zeta and Dirichlet L-functions at special points, and differences
of the Stieltjes constants. As the corresponding logarithmic sums are
slowly converging, our results provide useful complements and alterna-
tives to numerical computation. In addition, our analytic results and
accompanying representations of 74 (a) provide a basis for inequalities
and monotonicity results for the Stieltjes constants.

We may stress the fundamental and long-standing nature of the
Stieltjes coeflicients. They arise in the expansion of the Hurwitz zeta
function about its unique polar singularity. They can be used to write
other important constants of analytic number theory, and they appear
often in describing error terms and as a result of applying asymptotic
analyses. As well, they can be expected to play a role in investigations
of the nonvanishing of L-functions and their derivatives along the line
s = 1 and elsewhere in the critical strip.

An expository paper of Vardi [27] discusses the evaluation of certain
logarithmic integrals (or their equivalents through change of variable)
and describes the underlying connection with Dirichlet L-series. How-
ever, the presentation is illustrative and no connection with logarith-
mic series or the Stieltjes coefficients is mentioned. Much more re-
cently, Medina and Moll [20] have followed Vardi’s approach and given
a number of examples for integrands containing a rational function.
Additionally, Adamchik [2] considered differences of the first derivative
of the Hurwitz zeta function at rational arguments and related them
to logarithmic integrals.

The Hurwitz zeta function, initially defined by

(1.1) C(s,a):Zﬁ, Res > 1,

n=0

can be analytically continued to the whole complex plane C — {1}.
The defining relation for the Stieltjes constants in terms of a Laurent
expansion is

o _1\k a
(1.2) ¢(s,a) = sil +Z%(S_l)ka s#1.
k=0

This equation reflects that ((s,a) has a simple pole at s = 1 with
residue 1. By convention, -y represents (1) and thus explicitly we
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have [4, 15, 18, 21, 25, 29]

1 — (—1)*
(1.3) c(s):8_1+z(k#(s—1)k, s#1.
k=0 )
As noted in [29] and again in [30], we have vo(a) = —(a), where

1 =T"/T is the digamma function, so that vy = vy, the Euler constant.

Our main results are presented in the following set of propositions.

Proposition 1. We have the summatory relation

1y 3 %[%H(a) — i (B)] = In [58] . Rea>0, Reb>0.

Let L4y be a Dirichlet series corresponding to a real character X of
modulus k£ with Xg(k — 1) = +1. Then we have

Proposition 2. For X a nonprincipal Dirichlet character we have

-

%Lik(s) - = _Ti W
16) _ klmilxk(m) [g'<1,7;:> —Ink <<1, 7:)]
(1.7) = k! mzkjlxk(m) [71 (%) +ink w(?ﬂ
s B /0°° (lln_u; 7) < mil Xk(m)em“> du,
"o
(1.9)
;—;L:I:k(s) - = T; Xk(n,lhﬁ .
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k

(1.10) =k mz::le(m) {C”(l, %) — 2k C'(l, %)
+Ink g<1%>]

(1.11) =k ;Xk(m) [72 <1, TZ) —2Ink (1, ’:)

—1n2k¢(1,%>]
(1.12) :/0 [” ”+2321:_J,:u7 <2 (Zxk m“)du.

Proposition 3. Suppose that Xi is a nonprincipal character and
that Xr(k —1) = —1. Then

(1.13)

- Zxk <—> = kL (1) —Ink zk:xk(m)w<%>
- k/o lln_u;,l < Z Xk (m m“) du
—Ink ;xk(m)¢<%>

k
= k1/2(1n27r+fy Zka m)

m=1

k
kY21 TT e (™
k2 In mr:[l <k>
k m
—Ink Tnz_:lxk(m)lp(?).

Proposition 4. Suppose that X is a nonprincipal character and
that X (k —1) = +1. Then
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S (F) <kt -tab S o(7)
S [T (S e
_4nk§;xumw<%)
a0 (2)

S we(02)]
Ik éxk(m)w<%>.

Proposition 5. LetI'(s,t) be the incomplete Gamma function. Then

for0<a<1l, mmn=0,1,2,..., we have
(1.15)
(a) = i In"(k+a) In"*(m + a) ~ In"(m+a)
Tn @ _k=0 k+a n+1 2(m+a)
—i—Z{ln"(j—i—a—i—l)—ln"(j—i—a)
j=m
1
_ ln—‘rl 1 ln—‘rl .
7(714_1)[ (j+a+1)- (j+a)]

—(a+j+1/2)[T[n,In(j + a)] = T[n, In(j + a + 1)]

—I'ln+1,In(j+a)]+Cn+1,In(j + a+1)]] }

Proposition 6. Let H, = .;_, 1/k be the nth harmonic number.
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Then we have for Rea > 0

(1.16)
1(a) = 5 (a4 1)
+ ,;1 ((k_i)f) [(C(k+1,a) —a (k'H))H + (k4 1,0a)]

Proposition 7. Let the generalized harmonic number H(Q) =
Sh /K2 = (1) =4/ (n+1) = 7%/6 —¢'(n + 1). Then we have
for Rea > 1/2

vi(a) = —%m? <a _ %)

(1.17) o .
+ kz::l FEGTD [HoiC(2k + 1,a) + ¢'(2k + 1, a)],
and
(1.18)
1, 1
—72(a) = gln <a - 2>

oo

. (2)
! kz::l 4k(2k +1) [(Hgk — Hy, )C(2k +1,a)

S 2Ho (' (2k + 1,a) + C"(2k + 1, a)]
More generally, for k> 1 andn > 1, let
s2k+1,n—m+1)
(’I’L -—m+ 1)m+2k:7n
where (z)q, = T'(2+a)/T(z) is the Pochhammer symbol and s(n,m) are

the Stirling numbers of the first kind. Then we have
(1.20)

_ 1 nt1 1
Yn(a) = m——— In <a 2)

n

i 2k+1 Z() (k,m)¢t™ (2k + 1, ).

k=1 =0

(1.19)  rp(k,m)=(—-1)m " , 0<m<mn,
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Proposition 8. Let s(n,m) denote the Stirling numbers of the first
kind. Then we have for Rea > 0,

(1.21) okt

- %s(k 1,2k + Lat 1)

2
+ sk +1,3)C(k+ La+ 1)},

and, for general n > 2,

(i)

(1.22)
(@) =~y W ) Y
n—1 j
x [(~1)F¢M(k+1,a+1) — Z—.’ > %
=0 '

xs(k+1,7+2)¢C" T V(k+1,a+ 1)].

Let {x} = & — [x] denote the fractional part of x. It is known that

(1.23) Ilz/ol{i}dswl—%

a result that is reproved and discussed in the Appendix. We show
herein

Proposition 9. We have

1 1 1 [e’s] [e%s)
(1.24) 125/ / {m}dﬂcdyZ/ / %dydaz:l—ﬁ*%.
0o Jo Y 1 z TY



1822 MARK W. COFFEY

Proposition 10. Put

1,1 1 1
(1.25) InE/ / / {7}dw1dw2---dwn, n>1.
o Jo 0 (T1Z2" " Tn

Then we have
n—1 )
(1.26) Li=1-%"2.
iyl
=0

The next section contains useful properties of special functions,
mainly Dirichlet L series, needed for the proofs. The proofs as well
as some Corollaries and Remarks are given in the succeeding section.

2. Special functions. With B,(z) the Bernoulli polynomials,
their periodic extension is denoted P,(z) = B, (z — [z]). In particular,
P(z)=z—[z] — 1/2.

The polygamma functions ) are connected to the Hurwitz zeta
function via ¢(™(z) = (=1)"*'n!¢(n + 1,2) for integers n > 1 [12].
Therefore, we obtain from equation (1.2) for the trigamma function

1 - (*l)k
(2.1) W(@) =1+ ()
k=0

and more generally,

(22) ™) =(-1 "“{ +§Z e k} n>1

This equation may be taken as an infinite linear system. Its inversion
would yield the Stieltjes coefficients in terms of polygammic constants.

We now introduce Dirichlet L-functions Li(s) (e.g., [16, Chapter
16), that are known to be expressible as linear combinations of Hurwitz
zeta functions. We let X, be a real Dirichlet character modulo k, where
the corresponding L function is written with subscript =& according to

Xr(k —1) = £1. We have

oo k
(2.3) Lik(s) = Z Xe(n) = % Z Xk(m)g"(s, T}:), Res > 1.

ns
n=1 m=1
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This equation holds for at least Res > 1. If Xj is a nonprincipal
character, as we typically assume in the following, then convergence
obtains for Re s > 0.

The L functions, extendable to the whole complex plane, satisfy the
functional equations [31]

(2.4)

L_i(s) = %(2%)%*3“/2 cos (?)F(l —$)L_x(1—s),
and
(2.5)

Lik(s) = ! (2m)°k =t/ 2 sin <%>F(1 —8)Lik(1 —s).

T
Due to the relation

™

(2.6) I(1-9)(s) =

sinms’

these functional equations may also be written in the form
2.7)  L_x(1—s)=2(2m)"*k*"/?sin (%S)F(S)Lk(s),
and

(2.8)  Lap(l—s) =2(2m) k" /2 cos <§>F(3)L+k(s).

Integral representations are known for these L-functions. In particu-
lar, we have

Lemma 1 [31]. For X;, a nonprincipal Dirichlet character we have
(2.9)

1 gyt k o
Lig(s) = F(s)/o 1_e_ku<mz_lxk(m)e >du, Res > 0.
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Proof. For Res > 1 and Rea > 0, we have the integral representation
(e.g., [24, page 89])

1 0o tsflef(afl)t
(2.10) C(s,a) = F(s)/o .

We use equation (2.3) to write

00 ts—le—(m/k—l)t

_s kK
(2.11) Lir(s) = 113(5) > xk(m)/0 — 7 &

m=1

We then put v = t/k, giving the Lemma for Res > 1. By analytic
continuation for X nonprincipal, it also holds for Re s > 0.

3. Proofs of Propositions.

Proof of Proposition 1. We supply two different proofs. For the first,
we apply the relation [24, pages 87, 92]
(3.1) ¢'(0,a) =InT(a) — In V2.

From equation (1.2) we have

32w+ Y S @6 -

Then putting s = 0 and using equation (3.1) we have

).

(3.3) ¢'(0,a) — ¢'(0,b) = In [

and the Proposition follows.

For the second proof we initially assume that a > 0 and b > 0. We
apply the representation [8, Proposition 3a]

1 k 1nk+1 a
= —1 —
wle) =g = e
(3.4) n zRe /°° (y/a —i)In"(a — iy) p
aJo (1+y?/a®)(e*y —1) 7

Rea > 0,



STIELTJES COEFFICIENTS AND OTHER RELATIONS 1825

and have
1 1
Z_:k—'yk_H §lna—|—a—alna—1
+ 2Re /°° (y/a —i)(a — iy) In(a — iy) dy
(35) e A ([ Car )

o (@1
where we have used elementary exponential sums, and Im In(a — iy) =

—tan~!(y/a). As f;z/;(s) ds = In[l'(b)/T'(a)], the Proposition follows
from Binet’s second expression for InT'(2) [24, pages 17, 91],

InT(z) = <z - ;) Inz—z

*° tan~ (t/z)

1
+§ln(27r)+2/ a1 t,

0
Rez > 0.

(3.6)

By analytic continuation, the result (1.4) is extended to Rea > 0 and
Reb > 0.

Remarks. The representation [30]

" In" a n"t'(m+a n"(m+a
Vn(a)_zl (k+ )71 (m+a) In"(m+a)

_k:O k+a n+1 -~ 2(m+a)

(3.7) o
+/ Py(2)f! () dz,

m

0<a<l, mmn=0,12...,

where f,(z) = In"(z + a)/(z + a), or its equivalent may also be used
to prove Proposition 1, in view of [10, page 107]

InT(s+1)=(s+1/2)Ins—s

3.8 o0
(3.8) +11n27r—/ Pi(z) dz, Res>D0.
2 o (z+9)
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The representation (3.4) may be used to develop many other summa-
tions, including for |z| < 1,

X _k 1 z

z 1 z—1 P a
39) gﬁ'yk—&-l(a)zga Ina+ (a 71);2,;1na
‘ z 1
a—ly '
+ 2Im / 21'ry — 1 In (a — Zy) dy

Since ('(—1) =1/12—1In A, where is A is Glaisher’s constant, we find
from equation (3.2) that

>, 2n 1
(3.10) > 1 =InA— 2 <0.

n=0

Proof of Proposition 2. For part (a), equations (1.5) and (1.6) follow
from equation (2.3). For equation (1.7), we differentiate equation (2.3)
and use the important relation for X nonprincipal

k-1 k
(3.11) > Xe(r) = xi(r) =

Evaluation of the result at s = 1 gives equation (1.7). For equation (1.8)
we have from Lemma 1
(3.12)

0 1 ® T lnu — 4(
&Lik(s) - T(s) /0 1—eku < Z X (m > du,

where we used I''(s) = I'(s)9(s). Evaluating at s = 1, with ¢/(1) = —v,
gives equation (1.8).

Part (b) follows very similar steps. In obtaining equation (1.12), we
use ¥/ (1) = ¢(2) = 7?/6.

Remark. A key feature of Proposition 2 connecting the values
L', , (1) with differences of Stieltjes constants is the nullification of polar
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singularities. An example of various relations of this Proposition is
given by

(3.13a)
a a+1 0 e )"
n(a) () =al S
a+1 a
-l (% )”ﬁ(aﬂ
(3.13b) +2Z “Lnﬂl).

When a = 1/2, the Dirichlet L-function appearing on the right side of
equation (3.13a) is L_4(s).

Proof of Proposition 3. The first two equalities in Proposition 3 follow
directly from Proposition 2. For the third, we express L’ , (1) in terms
of known quantities of L’ ,(0) from the functional equation (2.4) or
(2.7). Given that ((0,a) = 1/2 — a, we have from equation (2.3) that

010 L= X wim(}-2) =-1 3 mud

where we used property (3.11). Parallel to equation (1.6) we obtain

- kléxk(m) {(’ (0, %) ~Ink g(o, %)}

“lnk Lax(0) + i:le(m) 1nr<%>,

0

ELj:k(S)

(3.15)

where we used both equations (3.1) and (3.11). From the functional
equation (2.7) we find

k1/2 k1/2
(3.16) ~L",(0) = - —(Ink —In27 —v)L_y (1)—I—TL' &(1).
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This equation can be solved for L’ (1), where equation (3.15) gives
L’ ,(0) and by the functional equation (2.4) we have L_j(1) =
(m/k*/?)L_1(0). The result is

(3.17)
k

k
T T my [T
L' (1) = —W(ln%r—i—fy) g mXg(m) — Wln H X ( )<?>’
m=1

m=1

yielding, by the first line of equation (1.13), the conclusion of the
Proposition.

Remark. We note that the digamma function, like the Gamma
function itself, satisfies a number of identities that may be used to
re-express equation (1.13). These include the reflection formula

(3.18) P(z) — (1 —2) = —mcot 7z,

as well as the multiplication formula for integers m,

m—1

(3.19) Y(mz) =Inm + kz:: ¢<z + %)

In addition, we recall that by means of Gauss’s formula ([24, page 19])
the value ¥(p/q) for any rational argument can be written as a finite
combination of elementary function values. As concerns differences of
higher order Stieltjes coeflicients, similar identities may be written for
the trigamma and higher order polygamma functions.

Examples. As examples of Proposition 3, we may write the follow-
ing, using equation (3.18).

(3.20)
7@ 7@) _ %{mzwﬂ 31 Egg;] +1n3},

n() (5) = gmerer o ]
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(3.22)

(2 = (2) = oy Enze ) - o[ EO) i),
02 n(5) <2 (2) =0 (3) (7)1 (3) ()

_ T (/7T /7T (4/7)
= ~Vir{nar s i [T e T |

and

520 2(57) =) =)+ )+ (1)

)+

11

)

() () () () ()

s G Rt ]
—i—lnll}.

In such equations, we could just as well use the duplication formula

F(I) 2172z
=V i)

(3.25)

to re-express the Gamma function ratios. More generally, we may use
the multiplication formula

n—1
k
2 r = (27)(1=m)/2pna—1/2 | | 'fz+2).
(3.26) (nz) = (2m) n z+

k=0

Proposition 3 shows that the logarithmic sums

In‘(n + a) B In‘(n + b)]

(3.27) Ye(a) — ye(b) = Z [ n+a n+b

n=0
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for rational values of a and b are essentially logarithmic constants. The
integrals corresponding to the examples (3.20)—(3.24) are easily written
from equation (1.13) and we omit the details. Comparison can be made
to tabulated integrals that are expressible in terms of logarithmic ratios
of Gamma function values [2, 12, 20, 27]. These include entries on
pages 532, 571-573 and 580-581 of a standard table [12].

Regarding examples (3.20), (3.23), and (3.24) we may recall that, for
k an odd prime, there is exactly one nonprincipal Dirichlet character
X, modulo £.

By [5, Proposition 3] or as a special case of Proposition 5.1 of [6], for
integers ¢ > 2 we have
(3.28)

Ky r ln
Z%<—> =~ +q(-1)*
r=1 q

k+1

—l—qZ( > an V-

Given Proposition 3, we may now combine various sums and differences
of Stieltjes coeflicients to find identities in terms of the values v, =
~k(1). As a very particular instance, we have

Corollary 1. The values v1(1/3) and v1(2/3) may be separately
written in terms of 1.

This statement follows from Proposition 3 at k£ = 3 (Example (3.20))
together with equation (3.28) at ¢ =3 and k = 1.

Proof of Proposition 4. When Xi(k — 1) = 1, Lyx(0) = 0,
an:l mXg(m) = 0, and from (3.15)

(3.29) = i— 1nr( 5 )

Differentiating equation (2.3) twice we have

(3.30) L, i_ [QInk 1nr<’:> +<”(0,TZ>].
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Differentiating the functional equation (2.5) we find

1 2m
B30 2= 2(r e () )2 - 0]
Then using equations (3.29) and (3.30) we determine
(332) Liy()

= k‘l/Q[ (In27 + ) In H rXk(m) <—> Z Xk (m (0%)]

Substituting into the first line of equation (1.14), the Proposition is
completed.

Examples. We have from Proposition 4 at k& = 5 using equa-
tion (2.6),

om (2) (2) () ()

= —\/3{2(7 +In2n) ln%(l +V5) —¢" <o, 1)

5
1" 2 1! 3 I 4
< (%W (“3)‘4 (075)

+2In5coth ! \/5}

We have from Proposition 4 at k = 10 using equation (2.6),

0 2(8)-2(3) () (3

:\/ﬁ{ (y+In27)In (3+\f) < 110>

" 3 7 " 9
I GORM GBI

+3v2In10coth™! \/5}
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From the well-known Hermite formula for (s, a) (e.g., [24, page 91])

a=® al”® > sin(stan~! y/a) dy
3.35 = 2
( ) C(Sa a) 2 + s—1 + /[; (y2 4 a2)s/2 (627ry _ 1)’
we obtain
1
¢"(0,a) = 3 In?a+ 2alna —aln®a — 2a
(3.36)

_ 2/"" fan~! (9>Mdy,
0 a/ (e2™ —1)

Evaluation of the integral for rational values of a, or combinations of
rational values of a, would be of interest in regard to Proposition 4. It
appears that a contour integral evaluation may be possible, with the
integrand having simple poles along the imaginary axis at y = ji and
residues (i/27) tanh™'(j/a) In(a® — j2) there. However, this is likely to
give an infinite series representation of ¢"’(0, a), whereas another closed
form is desirable.

Proof of Proposition 5. From the representation (3.7) we may proceed
as follows:

j+1
Py(z)fy(z) dz

by
/,. (2§~ 1/2)f,(x) do

By using the expression for f,, we obtain

gk I‘Mg

| P@ri i

I
3

J

(3.38)
0 jta+1 1 1
Py( z)dr = - — +1/2)—
/ 1 ( = Z/Ha L (a+37+ /)362]

j=m
X (n In" 'z —1n" m) dx

00 jta+1 n—1__1.n
:Z{— (a+j+l/2)/ o™ 2=In"2] x2 In” z] dz

j=m j+a 2
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1 n+ly - 1 _1 n+ly/ -
wr ™ (J+a+1)—In""(j +a)
+In"(j+a+1) —ln"(j—i—a)}.

The remaining integrals may be performed as [12]

Jratlpn g
(3.39) / L2 e = Tln+ 110G +a)) = T+ 1,In(j +a+ 1)
j+a

The insertion of equations (3.38) and (3.39) into equation (3.7) provides
the Proposition.

Remarks. Semi-infinite integrals over P; as we have just performed
are of much interest in connection with applications of Euler-Maclaurin
summation.

In conjunction with equation (1.15) we may note that for n a non-
negative integer we have [12, page 941]

n m

(3.40) I'(n+1,z) =nle™® Z %
m=0 :

Similarly we may obtain other explicit summation representations of
the Stieltjes constants by working with [30]

n+1

= sn+1,n+1—-k
Cula) = (-1y=tm Y A0 LAELZH
(3.41) k=0
i In* 2
></1 Pn(m—a)Wdrc, n>1.

We omit the details.

Proof of Proposition 6. By the use of [3]

A k41
In“(j+a) Wn""(N+a)
42 = li —
(3.42) Yi(a) = lim [E Ta DRk

N —o0
7=0
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at k = 1 we have

N 2
In( _ In*(NV
[ W)
N0 j—i—a 2
7=0
N N
_ lm Zl (j+a) 7/ ln(m—l—a)dx
N—o0 i j+a 1—a T+a
:iln(j—i— a) /1 ln(:p+a)dm
j=0 .7+ l-a zT+a
_/ooln(;c—i—a)d
(3.43) 1 Tta
1 In(j + a)
=—--1
n“(a + +Z ita
j=1
_i/j"'lln(x—i—a)
ol T+ a
1 1

In( | j
+Z/ [ng—i—a n(rc—l—.j—i—a)
j+a r+j+a

We now apply the generating function for harmonic numbers

= In(1+ 2)
44 1) H, 2 = -2 T2 1,
Y e s L

to expand the integrand in this equation. We have

Iy In@+y) _IW(+a/y <; 1)

y z+y z+y z+y oy
__M_ln_y{é_l]
z+y y LL+z/y)
(3.45) :_lln(l—i—x/y) _ln_f:(_ )kx_k
y l4z/y ! y*
:i(—l)k(H’;;llny)mk.
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We obtain for the integral in equation (3.43)
(3.46) / ka dx
0 ,7 + a)k+1

k [Hi — In(j + a)]
k+1 (j +a)kti

k:l

Summing this expression over j = 1 to oo gives

Sacliac [Hi —In a

(347) kz_:lz_; k+l k]_i_a()jkjl )]
(=D*

k+1)

C(k+1l,a+1)Hy + ' (k+1,a+1)]

—

((k +) 0 [(C(k+1,a) —a~ kY H

+¢(k+1,a) +a *Yng],

M st

where we used the relation {(s,a+1) = ((s,a) —a* and its derivative.
Inserting equation (3.47) into equation (3.43) gives the Proposition.

We mention a second method for proving Proposition 6, by using the
integral representation (2.10) for ((s,a). This method can also provide
an integral representation of v;(a). In particular, since

l e8] tk —(a—1)t

et —

we have the term of equation (1.16)
oo _—(a—1)t 1 —t
e e
"k+1 - —1——|Intdt.
+1a)= /0 et —1 [t t } .

This integral may be evaluated per logarithmic differentiation of

o} e—(a—l)t 1 e—t
3.50 8 S —1—-—|dt
(3:50) /0 et —1 [t t ]

=T(B)[a® — B¢(B+1,a)], Ref > 1.

oo

(3.49) Z

k:l
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Then one may apply the operator (9/0/3)s=0, use the functional equa-
tion of the Hurwitz zeta function, and the relations ¢(0,a) = 1/2 —a
and (3.3).

For the other summation term in equation (1.16), using (2.10), we
have

(3.51) I; ((k_i)l)g(k +1,a)Hy,

0o ef(a+1)t . t/2 t
:*‘/0 m[7(1+6)+26 cosh (5) Int

1, t
] ()
v=-1/2 2

ov
where I, is the modified Bessel function of the first kind (e.g., [12,
pages 958, 961]).

Note 1. By integrating the generating function relation (3.44) we
obtain the term of Proposition 6

— (D% iy 1o fa+l
(3.52) ;(k+1)a Hy=—In — ).

Corollary 2. We have

M= —% n*2+3 ((k_i)f) [(C(k+1) = 1)Hy, + ¢'(k+1)]
(3.53) =

- (_l)k /
= Z_: it 1)[C(k+ DH +¢'(k+1)).

Corollary 3. Proposition 6 permits the recovery of relation (3.28)
atk =1,

(3.54) 2% (;) =(¢—Dm— q(; + 7) Ing.
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In verifying this statement we use
g—1

(3.55) <<k+1 —> = (¢" = 1)¢(k + 1).

T

Proof of Proposition 7. We use [7, Corollary 3| for Rea > 1/2,

oy _a—1/2)7 (a—1/2)'"
¢'(s,a) = —?ln(a -1/2) - TGor

(350 Z 4’“ 2k + l
X {[ (s +2k) — 9 (s)]¢(s + 2k, a) + ¢'(s + 2k, a)},

and apply the definition (1.2). For equation (1.18) we use the property

(357) & ()pk = (s)pali(s + k) — 6(5)],
so that
(358) % B (S)2k = (2/€)'H2k,

More generally, we use the expansion

(3.59) (a _ %)1 _ i (—.l')j " <a - %) (s 1)

=0 7

and apply the product rule to find equation (1.20).

Proof of Proposition 8. We will use a generating function for the
Stirling numbers s(7, k),

n

(3.60) %lnm(l—i—m):m! io: s(n+1’m)($77

w1 lz| < 1.

n=m—1
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Proceeding similarly to the beginning of the proof of Proposition 6, we
have generally

k

1 k In®a
= — | 1
- Yi(a) ) n“(a+1)+ .
+§ - - - dx
o L jta z+jta

j=1

Now we apply the expansion (3.60) to write for part (i)
In*y  In*(z+y)

Yy T+y

- 2
Z k+1[ k In? y+—s(k+1 2)lny+—s(k+1 3)}

(3.62)

We then substitute this equation into equation (3.61) at £k = 2 and

perform the integration. We then perform the summation over j, using
o p

(3.63) > o = (P et 1),

- j+a k:+1
J:

and part (i) follows. Similarly, for part (ii), in place of (3.62) we use

In"y In"(z+y)

3.64

(3.64) — P

:Zy [( k1" y—i—k' Z (k+1 j+2) ™Iyl
k=1

We substitute this equation into equation (3.61), perform the integra-
tion, perform the summation over j using (3.63), giving equation (1.22).
The Proposition is complete.

Remarks. Proposition 6 corresponds to the well-known special case
of the harmonic numbers wherein s(n + 1,2) = (—1)"*!n!H,. The
connection of Stirling numbers with sums of generalized harmonic

numbers H{"” is well known. For example, we have s(n + 1,3) =

(—D)rnl[HZ — HY)/2.
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As for 71 (a), an integral representation for 7, (a) may be developed
using equation (2.10). We omit such consideration.

If desired, Proposition 8 may be used to write an expression for
the differences v,(a) — yn(b). We have been informed that Smith
has also obtained equation (1.22), and numerically studied its rate of
convergence [23].

Proof of Proposition 9. Although this result is supposedly proved in
[22], we have not been able to obtain it, and so present our own proofs.
These methods of proof may themselves be of independent interest.

Proof 1. We first establish

Lemma 2. We have

We have

T
A
z Y [z]+{z} Y
[y [,
lz] Y

2

2] Y
(3.66) Zi/m(yyf’bdy/[j@yf”dy
j=[=1"7 x
:J;z] [ln <JJL1> _jG - J%ﬂ

()2

The sum here is given by (cf. the Appendix)

(3.67) | N |
> |n(5) -] x5 () 7]
[2]—1
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[2]
1
:1—7—2[1nj—1n(j—1)——_

i=2 J
=1—y—Inz]+ Hy -1
= Hpy) — Infz] — 7.

Inserting this expression into equation (3.66) we obtain the Lemma.

Using the Lemma, we have
(3.68)

e d
1 X x

[ (a7
[ (m2)Y]

|
=
5 E
—N
—
S
=
\
=2
\
E
&,
|
_|._

M
j=1
1 M
T 2

= lim {(1—7)lnM—§ln M—i—;

M — o0

Now the term

(3.69)
M . M j . M M
Jj+1 1 j+1 1 j+1
j=1 j=1k=1 k=1 j=k
Mo
:Z%[ln(M—i—l)—lnk]
k=1
Ink

Then by equation (3.68) we have

1
I, = lim {(1 —y)InM — §ln2M

M —o00

(3.70) Mo
n
+HM1n(M+1)—Z —HM+1+1}.
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We recall the asymptotic form Hy =InM +v+ O(1/M) as M — oo
and appeal to equation (3.42) at a = k = 1:
(3.71)
1
I, = lim {lnMylnM §ln2M

M— o0

M
. 1.5 Ink In M
Jim (5wt 35—y neo(5E )}
=l=-7-m.
The alternative form of I5 in equation (1.24) results from the change

of variable (u,v) = (1/zy,z), with inverse transformation (z,y) =
(v,1/uv), and Jacobian

(3.72) O(z,y)

Then we obtain

(373) L= / RC PR / / i bzt
0 1/UUU t

For the second equality we have used the simple transformation (v, u) =
(1/t,z), with corresponding Jacobian

(3.74) O(,y)

We may obtain a second shorter proof of Proposition 9 by using a
known result, namely the integral representation [17]
(3.75)

© 1 < Ipkly
Vo = — tln tdPy(t) = t—2(k—lnt)P1(t)dt—5k0/2,
1 1
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where 6, is the Kronecker symbol. We interchange the order of
integration in the second form of I on the right side of equation (1.24),

giving
ooy
I = / {i}; dx dy
1 J1 Ty
= {y}
(3.76) :/1 ?lnydy

(3.77) :Al{%}lnvdv.

Therefore, from equation (3.76) and equation (3.75) at k& = 1 we obtain

[P 1/2
]2:/ Mlnwdw
1 w
(3.78) :—y—1+/ ) dw+1/ nw
1 'LU2 2 1 w2

11
= m-v+s+-=-m—-7+1L
n-vtyty;=-m-7+

Remark. Since 0 < {z} <1 for z > 0, we easily have from equations
(A.1) and (3.73) or (3.76) the inequalities 0 < I; < 1and 0 < I < 1.

From Proposition 10 follows

Corollary 4. We have

1
n—00 2°

(3.79) lim I, = —((0) =

Proof of Proposition 10. For this we use the change of variable

(Z1,22, ... y&p) = (Un, Upn—1,--. U2, 1/Uugus - -u,), with the Jacobian
0 0O --- 01
0 o --- 1 0
(3.80) J= : 0 1 0 i|l=——"
0 1 ... 0 o ¥zrUn
1 0O --- 0 0
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where €, = £1. Specifically, if n is of the form 4m or 4m+1, ¢, = —1,
and e, = 1 otherwise. Then

(3.81) I, —sn/ / / {ul}Hln" .
1/uz Vup_1 U1 z o Ui

We then multiply integrate to find

1 “Hui}
(3.82) In:(n_l)! L In" " uy duy.

We now note from equation (3.75)

1

= BCE) /100 TI'(n,Int) dPy(t)

1 ® pnl¢ 1
(nfl)!/l g Nit)dt+s,

where we applied [12, page 941], integrated by parts, and used I'(n, 0) =
(n —1)! for n > 1 an integer. We then have the Proposition, as

n—1 oo n— 1
e _ 1 In 1 1
kK (n—1)! /1 <{t} > dt+

(3.84) k=0 1
1 < In" ¢
= t}———dt + 1.
o), e

??‘|\2

(3.83)

Remarks. We have found that the subjects of Propositions 9 and 10
have recently been of interest elsewhere [11]. It would be interesting
to have a probabilistic argument for Corollary 4.

Summary. We have obtained new explicit analytic results for the
Stieltjes coefficients including series representations and summatory
relations. Other integral representations based upon the properties
of Dirichlet L-functions provide the difference of Stieltjes coefficients
at rational arguments, and these give inequalities. Our results have
implications for other coefficients of analytic number theory and other
fundamental mathematical constants.
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APPENDIX

A.1. Integral expression for 1 — vy. We show here that

Proposition A1l. We have

(A.1) Ilz/ol{l}dm: m@daczlf'y.

x . z?
Proof. We recall that {z} = Pi(z) + 1/2 = « — [z], giving
Il = / @ dx
1 T
o i+l -
G
. j x T
o0 . + 1 l
(A.2) _ [1 (f—) - —}
Z B Jj+1

N
1
= li In(j+1)—Inj— ——
im jz_l{n(] ) —Inj ]+1]

[nN—-Hy+1]=1-7,

lim
N —o00
where we used the telescoping nature of the sum in the next-to-last

line.

As a variation on this proof, we may note that a sum above is a case
of the summation [13, 44.9.1, page 290)

(A.3) i[m(’“kr”) _%] — vz +InT(z + 1).

k=1
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We then obtain

(A.4)
i[m(u>_;]:i{m(m>_1+1_;]
= i)t g J A EES

= /1 1
= —~+InT'(2) + <—,——>
ol (2) ; T
=1-7.

Similarly, this sum may be found at = 0 in [13, 44.9.4, page 290] or
at x =1 in [13, 44.9.5, page 290].
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