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BOUNDARY PRESERVATION BY ANALYTIC MAPS
BETWEEN BORDERED RIEMANN SURFACES

PISHENG DING

ABSTRACT. This note shows that an analytic map from
one compact bordered Riemann surface onto another must
map the boundary of the domain surface onto the boundary
of the image. To establish this result, we use a certain rigidity
property of analytic arcs. In light of this discussion, we
note that the Riemann-Hurwitz formula for an analytic map
between bordered Riemann surfaces hold when the condition
of boundary preservation is replaced by the condition that the
map in question be surjective.

1. Introduction. Let X; and X5 be compact bordered Riemann
surfaces. Suppose f is an analytic map mapping X; onto X,. By the
o

open mapping theorem, any point in the interior X; of X; must be

mapped into the interior X of Xo. In this note, we show that f must
map the boundary dX; of X; onto the boundary 0Xs of Xo.

Applying this result to the special case in which the two bordered
Riemann surfaces are subsets of the Riemann sphere X, we conclude
that a meromorphic function from one compact subset of ¥ with
analytic boundary onto another must map the boundary of the domain
onto the boundary of the image. This, in particular, allows a complete
description of the family of analytic functions mapping the closed unit
disc onto itself (without the assumption that the maps preserve the unit
circle).

We also note that, in the Riemann-Hurwitz formula for an analytic
map between bordered Riemann surfaces, the hypothesis that the map
in question preserve boundary can be replaced by the condition that
the map be surjective.

The proof of our main result will draw upon a certain rigidity property
of analytic arcs, which we first establish in Section 2. We then prove
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the main theorem in Section 3 and conclude with a discussion of some
consequences of this result.

Throughout this note, we let I denote the unit interval [0, 1], S the
unit circle, D the open unit disc, H the open upper half plane, and %
the Riemann sphere C U {o0}.

2. Rigidity of analytic arcs. We make some observations
regarding analytic arcs which will be essential for the proof of our main
theorem.

Let X be a Riemann surface and 7 : J — X (J being a real interval)
be an analytic arc. For convenience, we denote by [y] the image set
~[J], i-e., the trajectory of v. The analytic arc v : J — X is said to be
regular if v'(t) # 0 for all ¢t € J.

It is known that the trajectory [y] of a regular analytic arc ~ is
a rigid object, in the sense that any arbitrarily small portion of it
determines the unique maximal regular analytic arc containing [7]
as a subarc; see [3]. (This rigidity is not the same as uniqueness
of analytic continuation, as a given curve may have two completely
different parametrizations that are not continuations of each other in
any way. For example, both a(t) =t +4v/1 — t2 and §(t) = ie*™/? for
t € (—1,1) parametrize the upper semicircle SN H, but « and § are
not related at all by analytic continuation.)

We show a variant of the general rigidity result under a somewhat
different hypothesis. We begin with a lemma.

Lemma 2.1. Let vy : I — C be an analytic arc (not necessarily
regular). If [yY] "R is infinite, then [y] C R.

Proof. Consider Im ~(t), which is real analytic on I. The infinitude of
[v]NR implies that Im v vanishes infinitely often on I. By compactness
of I, we conclude that Imy =0 on I, i.e., y(t) € R for t € I. O

Remark 2.2. The following “naive” generalization of Lemma 2.1
is false: “Given v an analytic arc (not necessarily regular) and ¢ a
mazimal regular analytic arc on a Riemann surface X, if [y] N [0] is
infinite, then [y] C [0].” Consider the following two simple counter-
examples:
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1. For all ¢ € R, let y(t) = t + isint, regarded as an arc on the
Riemann sphere X. Let C' = R U {00}, which is a great circle on X
and the trajectory of a maximal regular analytic arc. Clearly [y] € C,
despite the fact that [y] N C is infinite.

2. Let X be the standard torus C/(Z + i¢Z). For all t € R, let
v(t) = t — it and §(t) = t + +/2it (both considered as curves on X).
Again, [y] N[4] is infinite but [y] Z [4].

In the first example, [y] is not compact but [0] is, whereas in the
second, [y] is compact but [4] is not. However, if we require that both
[v] and [¢] be compact, the conclusion that [y] C [§] can indeed be
drawn.

Theorem 2.3. Suppose that v : I — X is an analytic arc (not
necessarily regular) and that § : R — X is a periodic regular analytic
arc on X. If [y] N [0] is infinite, then [y] C [d].

Proof. Let w be an accumulation point of [y] N [§] (which may
be a self-intersection point of §). There can only be finitely many
elements of §~!(w) within any period of §. By the choice of w, there
exists a top € d !(w) such that every open interval J containing to
satisfies the condition that [y] N [6]|s] is infinite. By regularity of ¢,
we can find an open interval Jp containing #y such that § extends
to a conformal map (also named J) on a neighborhood U C C of
Jo. Then V = §[U] is an open neighborhood of w and there is an
analytic inverse (8|y)™' : V. — U. For some interval Ky C I, the
arc (0]y) ! o 7|k, satisfies the hypothesis of Lemma 2.1, and therefore
[vI&,] C [0]5,] C [6]. Compactness of I and [d] then allows this set
inclusion to propagate throughout [7]. o

Corollary 2.4. Suppose that g is a function analytic on a neighbor-
hood of the unit circle S and that g[S]| N S is infinite. Then g[S] C S.

By giving S the standard parametrization ¢t — €™ for t € I, g[5]
can be realized as the trajectory of an analytic arc, which may not
be regular as g may have critical points on S. Corollary 2.4 then
follows immediately from Theorem 2.3. However, note that, under the
hypothesis of Corollary 2.4, it is not necessarily true that g[S] = S,
e.g., consider g(z) = expli(z + (1/2))].
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3. Boundary preservation. We now establish the main result of
this article.

Theorem 3.1. Suppose that X; and X are compact bordered
Riemann surfaces and that f is an analytic map mapping X1 onto
Xg. Then f[aXl] = an

Before giving the proof, we recall certain facts about bordered Rie-
mann surfaces.

Remark 3.2. 1. Analyticity of f on 0X; is understood to mean that
f is analytic on some ambient Riemann surface Y; (open or compact
without boundary) containing X; as a compact subset. The choice of
Y7 causes no ambiguity.

2. Every compact bordered Riemann surface X can be obtained from
some compact Riemann surface without boundary by excising a finite
number of coordinate discs; see [2, page 429]. Thus, each boundary
circle C of X can be given a global analytic parametrization by the unit
circle S, i.e., C does not have to be broken down into local coordinate
patches for its analytic parametrization. (This is not essential, but
provides convenience for the following argument.)

Proof of Theorem 3.1. By the open mapping theorem, 0X, C f[0X].
In particular, f[0X;] N 0X5 is an infinite set.

Then, for some boundary circles C; and C; of X; and X3, respec-
tively, f[C1] N Cs is an infinite set. By the preceding remark, we may
use some global analytic parametrizations puy : S — Ck (k € {1,2}) to
construct g = p5 "o f opy. Then, g[S] NS is infinite. By Corollary 2.4,
glS] C S, ie., f[C1] C Cs.

Since there are only finitely many boundary circles, applying this
argument a number of times yields the desired inclusion f[0X;] C
6X2. O

In the context of classical function theory, we obtain the following
result as a direct consequence of Theorem 3.1.
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Theorem 3.3. Suppose that X1 and X2 are compact subsets of 3
each bounded by finitely many disjoint regular analytic Jordan curves.
If f is meromorphic on X, with f[X;] = Xa, then f[0X;] = 0X,.

It is well known that any nonconstant analytic function g mapping
the closed unit disc D into itself with g[S] C S is a finite Blaschke
product, i.e.,

n
z—«
g(z):cH—_k for some n € N, ap € D and c € S.
k_ll—akz

Theorem 3.3 shows that the condition g[S] C S can be replaced by the

condition g[D] = D.

Corollary 3.4. An analytic function mapping the closed unit disc
onto itself is a finite Blaschke product.

Remark 3.5. To see the significance of the analyticity condition on
0X, in Theorem 3.3, consider for example f(z) = z? and X; the closure
of the Jordan domain with 0X; = (H N S)UC where C C D is the
trajectory of any simple arc in the lower semidisk joining —1 and 1.
The curve C can be so chosen that 0X; is the trajectory of a C*
arc. Clearly, f[X1] = D. However, unless C is the lower semicircle,
fIlC] ¢ S = dD. Of course, analyticity of the boundary curves is not
an absolute necessity for boundary preservation. For certain special
cases in which 0X; and 0X, are piecewise regular analytic, boundary
preservation does hold; see [1] for the case when X; and X, are
polygons in C.

Finally, we remark upon the relation between valence and boundary
preservation of analytic maps.

Remark 3.6. Suppose that X, (k € {1,2}) are compact bordered
Riemann surfaces of genera g with ny boundary components and that
f: X1 — X5 is a surjective analytic map. Theorem 3.1 shows that f
maps 0X; onto 0X5. By analyticity of X, it is easy to see that f
has no critical point on 0X;. Thus, the map f is a ramified covering of
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X, by X, and, in this situation, the Riemann-Hurwitz formula relates
the topology of the two surfaces to the valence of f. Let N denote the
valence of f and v the total order of the branch points (i.e., the number
of critical points of f counted with multiplicity). The Riemann-Hurwitz
formula in this context states that

291 —2+4+n1 = N(2g2 — 2+ ng) +v.

In the classical case when X C X, gr = 0 and the formula takes the
following simple form:

ny — 2= N(ng —2)+v.

(See [4] for the general Riemann-Hurwitz formula and [5] for the
classical case.) Due to Theorem 3.1, these formulae remain valid
without the additional hypothesis that the map f preserve boundary.

Acknowledgments. The author expresses his gratitude to the ref-
eree for pointing out the appropriate context for the matters discussed
herein.
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