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FILIFORM NILSOLITONS OF DIMENSION 8

ROMINA M. ARROYO

ABSTRACT. A Riemannian manifold (M, g) is said to be
Einstein if its Ricci tensor satisfies ric(g) = cg, for some
¢ € R. In the homogeneous case, a problem that is still
open is the so-called Alekseevskii conjecture. This conjecture
says that any homogeneous Einstein space with negative scalar
curvature (i.e., ¢ < 0) is a solvmanifold: a simply connected
solvable Lie group endowed with a left invariant Riemannian
metric. The aim of this paper is to classify Einstein solv-
manifolds of dimension 9 whose nilradicals are filiform (i.e.,
(n — 1)-step nilpotent and n-dimensional).

1. Introduction. A Riemannian manifold (M, g) is said to be Ein-
stein if its Ricci tensor satisfies ric (g) = cg, for some ¢ € R. Einstein
metrics are often considered as the nicest, or most distinguished metrics
on a given differentiable manifold (see for instance [1, Introduction]).

In the homogeneous case, a problem that is still open is the so-
called Alekseevskii conjecture (see [1, 7.57]). This conjecture says that
any homogeneous Einstein space with negative scalar curvature (i.e.,
¢ < 0) is a solvmanifold: a simply connected solvable Lie group endowed
with a left invariant Riemannian metric. It is important to note that,
nowadays, it is still unknown which solvable Lie groups admit a left
invariant Einstein metric.

In [6], Lauret has proved that any Einstein solvmanifold S is standard
(ie., [a,a] = 0, where a := [s,5]1, s the Lie algebra of S). The study
of standard Einstein solvmanifolds has been reduced to the rank-one
case, that is, dim a = 1, where strong structural and uniqueness results
are well known (see [3]).

A nilpotent Lie algebra n is called an FEinstein nilradical if it is
the nilradical (i.e., maximal nilpotent ideal) of the Lie algebra of an
Einstein solvmanifold. It is proved in [4] that n is an Einstein nilradical
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if and only if n admits an inner product (-, -) such that

(1) Ric(.y=cl+¢, ccR, ¢cDer(n),

B

where Ric (.., denotes the Ricci operator of the nilpotent Lie group
N endowed with the left invariant metric determined by (-,-). These
metrics are called nilsolitons, as they are Ricci soliton metrics: solutions
of the Ricci flow which evolves only by scaling and the action of
diffeomorphisms. Nilsolitons are unique up to isometry and scaling,
and s is completely determined by the Lie algebra n = [s,s]. So the
study of Einstein solvmanifolds is actually a problem on nilpotent Lie
algebras (see the survey [7] for further information).

In [13], it is proved that any nilpotent Lie algebra of dimension < 6
is an Einstein nilradical. A first obstruction for a nilpotent Lie algebra
to be an Einstein nilradical is that it has to admit an N-gradation (i.e.,
n=n; @ - ®n, such that [n;,n;] C n;y;) (see [3]). This condition
is necessary but it is not sufficient, the first examples of N-graded Lie
algebra which are not Einstein nilradicals were found in [8] and some
of them are 7-dimensional.

A nilpotent Lie algebra n is said to be filiform if dimn = n and n is
(n —1)-step nilpotent. The classification of filiform Einstein nilradicals
for dimn < 7 has been obtained in [8].

The aim of this paper is to classify nilpotent filiform Lie algebras of
dimension 8 which are Einstein nilradicals. After some preliminaries in
Section 2, we will begin our study in Section 3 by classifying nilpotent
filiform N-graded Lie algebras of dimension 8 up to isomorphism. We
will follow the paper [9], which is in turn based on results given in [2].
Table 1 shows a complete classification up to isomorphism of N-graded
filiform Lie algebras of dimension 8. In Section 4, we use Table 1 and
a characterization given in [9] to obtain the classification of filiform
Lie algebras of dimension 8 which are Einstein nilradicals, which is the
content of Table 2.

2. Preliminaries. We consider the vector space
={u:R" xR" — R" : p bilinear and skew-symmetric},

then
N = {u € V : p satisfies Jacobi and is nilpotent}
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is an algebraic subset of V' as the Jacobi identity and the nilpotency
condition can both be written as zeroes of polynomial function. There
is a natural action of GL,, := GL,,(R) on V given by

g-m(X,Y) =gu(g™' X,g7'Y), X,Y €R", g€ GLy, peV.

Note that each u € N defines a nilpotent Lie algebra given by
(R™, u); thus, N parameterizes the set of all nilpotent Lie algebras
of dimension n. Note also that x4 and A are isomorphic if and only if
they lie in the same GL,-orbit and so N/ /GL,, parameterizes the set of
isomorphism classes.

In the filiform case most of the standard invariants from Lie theory
(descending and ascending central series, center, rank, etc.) coincide,
so the next result will be a very useful tool to show that two filiform
Lie algebras are not isomorphic.

Lemma 2.1. Let n be a Lie algebra, and let C;(n) be its descending
central series (i.e., Co(n) = n and Cip1(n) = [n,C;(n)], i > 0).
Consider

I,;(n)={[z] en/Cj(n):dimIm(ad,) = s}, s,j€N.

If o : n — 0 is an isomorphism of Lie algebras, then $(I ;(n)) =
I, ;(n'), where ¢ : n/C;(n) = n'/C;(v') is the morphism of Lie algebras
given by @lz] = [p(z)]’, x € n.

Proof. Observe first that ¢ is an isomorphism of Lie algebras since
Cj(n) and Cj(n’) are ideals of n and n’, respectively, and ¢ is an
isomorphism of Lie algebras.

Let € n, and we define V = Im (ad,) and W = Im (ad ,(,)), so
W = (V) because

W = {[p(z), 2] : z € n'} = {[p(z), p(y)] : y € n}
={p([z,y]) : y € n}
=o({[z,y] : y € n}) = p(V).

We define also V. = Im(ad[y) y W = Im(ad [p(z)). Then V =
{llz), W] s y € n} = 7(V) y W = {[[e@)]', [p()]'] : y € n} = ='(W),
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where 7 and _ﬂ" denote the canonical projections, so, as ¢ is an
isomorphism W = 7'(W) = 7' (¢(V)) = &(7(V)) and then
Im (ad [y(¢)1) = 7' (Imad ,(5)) = 7' (p(Imad ))
= @(r(Imad.))
ﬁ(lm ad [I})'

!

Finauy &(I 5,7 (n)) =1 5,7 (

=

~—

. O

Let G be a Lie group with Lie algebra g. A left invariant metric on
G will always be identified with the inner product (-,-) determined on
g. The pair (g, (-, -}) will be referred to as a metric Lie algebra.

A consequence of the Alekseevskii conjecture (see [1, 7.57]), is that a
Lie group with a left invariant metric which is Einstein should be either
solvable or compact. This conjecture is still open.

Any solvable Lie group admits at most one standard Einstein metric
up to isometry and scaling. If S is standard Einstein, then for some
distinguished element H € a, the eigenvalues of ad H|, are all positive
integers without a common divisor, say k; < --- < k.. These results
were proved by Jens Heber in [3].

Definition 2.2. Let S be a standard Einstein solvmanifold, and let
di,...,d, be the corresponding multiplicities of k; < --- < k,.. Then
the tuple

(kad) = (kl < < kpydy, . 7dr)

is called the eigenvalue type of S.

In every dimension, only finitely many eigenvalue types occur (see

[3])-

Definition 2.3. Let (n,(-,-)) be a metric nilpotent Lie algebra. A
metric solvable Lie algebra (s = a®n, (-,-)’) such that [s,s] = n is called
a metric solvable extension of (n,(-,-}) if n is an ideal of s, [a,a] C n

and <'7 '>l‘u><n = <'a >

Definition 2.4. A real semisimple derivation ¢ of a nilpotent Lie
algebra n is called pre-Finstein if tr (¢ o ¢) = tr¢ for all 1) € Der (n).
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A pre-Einstein derivation always exists, is unique up to conjugation
and its eigenvalues are rational (see [10, Theorem 1]). If n is an Einstein
nilradical, then the derivation ¢ of (1), which is a multiple of ad (H),
is a pre-Einstein derivation (up to scaling).

Lemma 2.5. Let (n,(-,-)) be a metric nilpotent Lie algebra. Then
there exists at most one pre-Einstein derivation ¢ of n symmetric with
respect to (-,-).

Proof. Let p = Der (n) Nsym (n, (-,-)). We define on p the next inner
product: (A4, B) =tr(AB), A,B € p.
)

As f:p = R, f(A) = tr(A) is a linear functional, then there exists
an only B € p such that tr (A) = tr (AB) for all A € p, and if ¢ € p
then ¢ = B. O

It follows from Lemma 2.5 that a pre-Einstein derivation ¢ is sym-
metric with respect to an inner product (-,-). Then (-,-) is a nilsoliton
if and only if (-,-) satisfies condition (1) for a multiple of ¢.

Let n = (R", ) be a nilpotent Lie algebra of dimension n, and let
¢ € Der(n) be a pre-Einstein derivation of n. Suppose that all the
eigenvalues of ¢ are simple. Let {e;} be the basis of eigenvectors for ¢

and
p(eise;) g c”ek,

where 4 is a Lie bracket of n (note that for every pair (i, ), no more
than one of the ci-“j is nonzero). In the Euclidean space R™ with the
inner product (-,-) and orthonormal basis {f1, ... , fn}, define the finite
subset F = {afj =fu—fi—f;: ;é 0}. Let L be the affine span of
F, the smallest affine subspace of R” containing F.

Theorem 2.6 [9, Theorem 1]. Let n be a nilpotent Lie algebra whose
pre-Einstein derivation has all the eigenvalues simple. The algebra n
is an Einstein nilradical if and only if the orthogonal projection of the
origin of R™ to L lies in the interior of the convexr hull of F.

If N=#F and we introduce a matrix ¥ € R"™*" whose vector-

columns are the vectors af’] in some fixed order. Define the vector
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]y =(1,...,1)t € RN and the matrix U € RV*N by U = Y*Y. An
equivalent way to write Theorem 2.6 is the following

Corollary 2.7 [9, Corollary 1]. A nilpotent Lie algebra n whose
pre-Einstein derivation has all the eigenvalues simple is an Einstein
nilradical if and only if there exists a vector v € RN all of whose
coordinates are positive such that

(2) Uv=[1]n.

3. Classification of filiform N-graded Lie algebras of dimen-
sion 8. In this section, we will study filiform Lie algebras of dimen-
sion 8 admitting an N-gradation.

The rank of a Lie algebra n, denoted by rankn, is the dimension of
the maximal abelian subalgebra of Der (n) consisting of real semisimple
elements. If n is a m-dimensional nilpotent filiform N-graded Lie
algebra, then its rank is at most two. It is known from [2, Section
3] that if rankn = 2 then n is isomorphic to

mo(n) : pler,e;) =eip1, i=2,...,n—1,
my(n), n even : uler,e) =eir1, 1=2,...,n—1,
plei, en—iv1) = (=1)’en, i=2,...,n—1,

(see also [12]), and if rankn = 1 then n belongs to one and only one of
the following classes:

Ara2§T§n_3:p(elaei):€i+la 7::2)"'7”_17

(3) pleis ej) = cij€itjrrz, 1,j>2,i+j+r—2<n,
and

B,.,2<r<n-4:uee)=e, 1=2,...,m—2,

(4) plei, ej) = cijeiyjpr2, 1,j >2,i+j+r—2<n—1,

:u(eia enJrl*i) = (_1)i+len7

with at least one ¢;; # 0.
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The rank cannot be zero because in that case it would not admit an
N-gradation.

For a given dimension, to classify Lie algebras in the classes A, and B,
is involved. The numbers c;;’s must satisfy the Jacobi condition, and
even after finding those which do, it is difficult to obtain a complete list
of these algebras up to isomorphism. The main difficulty comes from
the fact that most common invariants from Lie theory usually coincide
for all algebras in one of these families, especially in a curve.

Observe that two algebras which lie in different classes cannot be
isomorphic, because if they were so they would have the same pre-
Einstein derivation (recall that when the rank is 1 the semisimple
derivation is unique up to conjugation and scaling) and that is absurd
because the eigenvalues of this derivation for A, are proportional to
(L,r,r + 1,...,n 4+ r — 2) and for B, are proportional to (1,r,7 +
1,...,n+7r—3,n+2r—3) (see [9]).

In this section we will study Lie algebras of the classes A, and B, for
n = 8 and then will show in Table 1 a complete list up to isomorphism.

Lemma 3.1. Fort e R, let (R®, ;) be the Lie algebra defined by

pe(er, ej) = ejta, i=2,...,17, ui(es, e3) = tes,

i (ez, eq) = teg pi(ez,es) = (t — 1er,
(e, es) = (t - 2)687 pe(es, e4) = ez,

pe(es, e5) =

Then n; s isomorphic to ng if and only if t = s.

Proof. If n; ~ ng, then there exists a ¢ : n; = ng isomorphism of Lie
algebras, so ¢(ej,... ,es) = (ej,... ,es), j =3,...,8, since

(pe(ng, pe(ney ooy pe(ng,ne) o)) = ps (s, s (s, - ooy ps(nsyms) <))
Therefore the matrix of ¢ respect to the basis {e1,... ,es} is given by

al bl
az bz
az bz c3
| aa bg cq ds

QP - as b5 Cs d5 l5
ag be ce do le fo
a7 bz c7 d7 U7 f7 g7
ag bg cg dg lg fs gs hs
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It is easy to see that b; = 0 by using that rank (ad ,(.,)) = rank (ad ., ).

Since ¢ is a morphism of Lie algebras, ¢(u:(es,€5)) = ps(p(es), ¢(e;))
for all ¢, j and therefore:

c3 = aiby, dgi=ajic3, Ils=ay1dy, f6 = ails,

gr =aifs, hs=aigr, tls =sbacs, (t—1)gr = (s — 1)bals.

Then we get that ta? = sby and (t — 1)a? = (s — 1)ba and so
ta% — a% = sby — by. Finally, a% = by and therefore ¢t = s. m|

Lemma 3.2. Letn be a Lie algebra of dimension 8 of class As. Then
n is isomorphic to one and only one of the following algebras:

my(8) pler,ei) = eit1, i=2,..,7,
ples, €;) = ejto, i ]
9a(8),a € R pler,e;) = ey, 1=2,...,7,
p(ez, e3) = (2 + ales, plez,es) = (2 + aes,
plez,es) = (1 + a)er, ples,eq) = er,
ules,es) = es, u(es, e6) = aes.

Proof. From the Jacobi identity and (3), it follows that co3 = coq,
Co5 = C24 — C34, C26 = C25 — C35 ¥ C34 = C35. Lherefore, the Lie algebras
of class Ao are:

Pap(er,e;) = eji1, i=2,...,7, Pap(e2,€3) = aes,
Kap(€2,€4) = aeg, Pap(e2,es5) = (a — b)er,
Kap(e2,e6) = (@ — 2b)es, tab(€3,€4) = ber,
Pap(e3, e5) = bes,

with a,b € R, some non zero.

If b=0, we get f1q,0 > p1,0 since f11,0 = gq-fta,0 by taking g, € GLg,
9o = diag(1,a,q,a,a,a,a,a), where diag (a,b,c,d,e, f,g,h) denotes
the diagonal matrix with entries a,b,c,... ,h. If b # 0 then p,p ~
[ha/b1 SINCE fig/h1 = Gb.plab for gy € GLg, gp = diag (1,b,...,b). Let
t = a/b. Then fe1 = fie, where p, is the bracket of Lemma 3.1 and so
we know that p; ~ ug if and only if ¢t = s.
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Let us now see that there does not exist ¢ € R such that p;; is
isomorphic to p1 .

Let © = c1e; + caex + czes. The matrices of ad ; relative to p;; and

p1,0 in terms of the basis {e1, ..., eg} are respectively given by
-0 0 0 0 0 0 0 07
0 0 0 0 0 0 0
—c2 0 0 0 0 0 0
ad. — | €3 0 cic O 0 0 0 0
z 0 71‘503 tCz (&1 0 0 0 0 ’
0 0 0 teo c1 0 0 0
0 0 0 C3 (t — 1)62 C1 0 0
L 0 0 0 0 C3 (t — 2)62 C1 0_
r 0 0 0 0 0 0 0 07
0 0 0 0 0O O O0 O
—c2 ¢ 0 0 O O 0 O
ad. — | —¢3 0 ¢2 0 0 O O O
z 0 —C3 C2 (C1 0 0 0 0
0 0 0 ¢ ¢g0 0 0 O
0 0 0 0 ¢c ¢t 0 O
L 0 0 0 0 0 ¢ ¢ Ol

Then, by Lemma 2.1, p; is not isomorphic to w0 because the first
matrix never has rank 2 while the second matrix does (¢; = 0,c2 =

0,c3 750) O

We will omit the proof of the following two lemmas because they are
similar to those for Lemmas 3.1 and 3.2.

Lemma 3.3. Fort e R, let (R®, u;) be the Lie algebra defined by:

/J’t(elaej) = €j+1, .7 - 27' .. 777 /J't(62763) = (t+ 1)667
ez, eq) = (t + e, pe(e2, es5) = tes,

pi(es, eq) = es.

Then n; is isomorphic to ng if and only if t = s.
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Lemma 3.4. Ifn is a Lie algebra of class A3 and dimension 8, then
n is isomorphic to one and only one of the next algebras:

a:(8),t € R pler,e;) =eita, i=2,...,7, plez,e3) =(t + 1)es,
plez,eq) =(t + 1)er, ules, es) =tes,
p(es, eq) =es

¢1,0(8) uler,e;) =eiy1, i=2,...,7, p(ez, e3) =eg,
ules, eq) =ez, u(ea, e5) =esg.

Lemma 3.5. Up to isomorphism there is only one Lie algebra of
class A4 and dimension 8, defined by:

01(8) wler,e) =eip1, 1=2,...,7,

plez,e3) = er,  plea,eq) = es.

Proof. From the Jacobi identity and (3) it follows that co3 = ca4, and

therefore:
/“La(el7ej):ej+17 ]:27 777

pa(ez,e3) = aer, pa(ez,eq) = aes.

with a # 0. Since a # 0, po ~ p for g, = diag (1, (1/a),...,(1/a))
because pq = gq-pi1- O

Lemma 3.6. Ifn is a Lie algebra of class As and dimension 8, then
n is isomorphic to

h1(8) wler,e) = eiy1, i=2,...,7, peze3) = es.

Proof. From (3) we get that the algebras of class A5 and rank 1 are:

,ua(elvej) = €j+1, .7 = 2)' .. 77a ,U‘a(eZae?:) = aesg, a 7é 0.

Since a # 0, then p, ~ p by taking g, = diag (1,(1/a),...,(1/a)). O
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Lemma 3.7. Let n be a Lie algebra of class Bs and dimension 8.

Then n is isomorphic to
1

b(8) u(er,ei) =eip1, i=2,...,6, p(ez,e3) = —5es,
plez, eq) = _%66: plez,es) = —%67,
p(es, eq) = er, pleieoi) = (—1)"es,

i=2,3,4.

Proof. From (4) and the Jacobi identity follows:
,U‘a(elaej)zej-l-lv .722, 76a ,u'a(627€3):ae5a
Pa(€2, €4) = aeg, a(e2,es) = 3aer,

/J’a(ehegfi) = (_1)Z+1687 1= 27 3747 Na(63,€4) = —2(167,

with a # 0.

Like a # 0, then p1q 2 p_1 /o since by taking g, = diag (1,a, ... ,a,a?)
we get that gq.pq = 1. O

Lemma 3.8. Let n be a Lie algebra of class Bs of dimension 8. Then
n is isomorphic to

t1(8) p(er,e) =eiy1, i=2,...,6, ules, es) = eg,

ez, e4) = ez, pleiyeg—i) = (—1)""es,
1=2,3,4.

Proof. From (4) and the Jacobi identity we obtain:

Ha(er,€5) = €jr1, J=2,...,6, ta(e2,€3) = aes
,u'a(€2,€4) = aey, ,Ua(ei,eg_i) — (71)Z+168;
i=2,3,4,
with a # 0.
Then Ga-la = M1 for Ga = dlag (l’ a,a,...,a, 0/2). O

Lemma 3.9. Up to isomorphism there is only one Lie algebra of
class By of dimension 8, defined by:
51(8) /,6(61,6]') = €j+1, .7 = 27 B a67 ,u(€2a 63) = e,
:u’(eia 69—1') = (_1)i+1687 t=2,3,4.
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Proof. The algebras of (4) for r = 4 are:

/J/a(e]_,ej) :ej+17 ]:27 767 :u'a(627e3) = aer,
,Ula(eia 6971') = (_]-)H_leS; 1= 27 374a

with a # 0.
Let g, = diag (1, q,... ,a,a?); then p, ~ uy, since gq.fq = 1. O

The results obtained in this section can be summarized in the follow-
ing theorem.

Theorem 3.10. Let n be an N-graded, filiform Lie algebra of
dimenston 8. Then n is isomorphic to one and only one of the Lie
algebras in Table 1.

4. Classification of filiform Einstein nilradicals of dimen-
sion 8. In this section we will determine which filiform Lie algebras
of dimension 8 are Einstein nilradicals. To do so we will apply Corol-
lary 2.7.

Recall that if rank n = 0 then n does not admit an N-gradation so n is
not Einstein nilradical. If rankn = 2, then n is Einstein nilradical (see
[5, Theorem 4.2] for my(8) and [11, Theorem 35] for m;(8)). Therefore,
to obtain a complete classification of filiform Einstein nilradicals of
dimension 8 we must study only the algebras of Table 1 which have
rank 1.

Every algebra n from A, or B, has only one semisimple derivation,
which is automatically a pre-Einstein derivation (up to conjugation
and scaling). As all eigenvalues of such a derivation are simple (they
are proportional to (1,7, +1,... ,n+ 7 —2) for A, and to (1,r,r +
1,...,n+r—3,n+2r — 3) for B,), the question of whether or not n
is an Einstein nilradical is answered by Corollary 2.7.

We will only analyze in detail three illustrative cases, as the proof is
completely analogous for any other Lie algebra appearing in Table 1.
The first case will be a Lie algebra which is not an Einstein nilradical,
the second one an algebra which turns out to be an Einstein nilradical,
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TABLE 1. N-graded filiform Lie algebras of dimension 8 up to isomorphism.

mo(8) uler,ei) =eip1,1=2,...,7.

my (8) pler,e) =eiy1,i=2,...,7,
u(ei, eg—i) = (fl)ieg, 1=2,...,T7.

m2(8) pler,e) =eiy1,1=2,...,7,

ulez,e;) =ejya,i=3,...,6.

uler,e;) = €i+1,1=2,...,7,
u(ez,e3) = (2 + a)es,
ez, eq) = (24 a)es,
ga(8), a €R u(ez,e5) = (L+ a)ey,
u(e2,eq) = aes,
u(es,eq) = er,
u(es, es) = es-
uler,ei) =eix1,1=2,...,7,
a(8), t € R | p(ez,e3) = (t + L)eg, p(ez, eq) = (t + L)er,
ez, e5) = tes, p(es,eq) = es.

ulel,e) =ejy1,i=2,...,7,

c1,0(8) ulez,e3) = eq, p (62,64) = ey,
p(ez, e5) = es.

01(8) pler,e;) =eiq1,1=2,...,7,

u(ez,e3) = ey, (62,64) = eg.

h1(8) u(er, e;) =ei+1,1=2,...,7,
ez, e3) = es.

uler,e;) = €i+1,1=2,...,6,

b(8) ez, e3) = —Ses, plea,eq) = —Leg,
p(ez,e5) = —3er, u(es, ea) = er,

M(ei,egfi) = (—1)i+168, 1 =2,3,4.
uler,e;) =eix1,1=2,...,6,
£1(8) ple2,e3) = eq, pu(e2,eq) = e,
plei eg—i) = (=1)"eg
u(el,ei) =e€i+1,t=2,...,6,
51(8) plez,e3) = er,
u(ei,e9—i) = (—1)i+1eg, 1=2,3,4.
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and in the third case we will consider a curve of Lie algebras that
depend on a real parameter. This curve has only one Lie algebra which
is not an Einstein nilradical.

We consider in R™ the canonical inner product (-,-) and {f1,..., fn}
the canonical basis.

Case 1. In this case, we consider the Lie algebra ¢; o(8) of dimen-
sion 8. ¢1 ¢(8) is nilpotent and has a pre-Einstein derivation with sim-
ple eigenvalues, ¢(e1) = e1, ¢(e;) = (i + 1)e;, ¢ > 2, with eigenvalues
{1,3,4,5,6,7,8,9}.

The finite set F = {af; : ¢f; # 0} is given by:
{+1,-1,1,0,0,0,0,0), (-1,0,-1,1,0,0,0,0), (-1,0,0,—-1,1,0,0,0),

(-1,0,0,0,-1,1,0,0), (-1,0,0,0,0,-1,1,0), (-1,0,0,0,0,0,—-1,1),
(07_17_17 Oa 07 17 07 0)7 (07_]—7 Oa_la 07 Oa 17 0)7 (Oa_la 07 Oa_la 07 O’ 1)}7

and with respect to this enumeration the matrix U defined in Section 2
is

rs o 1 1 1 1 0 1 17
0 3 0 1 1 1 1 -1 0
10 3 0 1 1 o0 1 -1
i1 0 3 0 1 1 o0 1

U=1|1 1 1 0 3 0 -1 1 O
11 1 1 0 3 0 -1 1
01 0 1 -1 0 3 1 1
i -1 1 0 1 -1 1 3 1
L1 o -1 1 0 1 1 1 3

Then, by using Maple, we obtain that the solutions to the system (2)
are

_tla—_tl +t17

(Lo w0 66 28 8
v 2817 281 281 1981 281

—E—Ft +12,81,1 @—t —t ti,ts € R
281 1 2,01, 2;281 1 2/ 1,02 .

Then, the system does not have a positive solution because the first
coordinate is always negative, and therefore by Corollary 2.7 ¢; o(8) is
not Einstein nilradical.
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Case 2. We consider the Lie algebra of rank 1, of class A4 and
dimension 8, 0;(8), it is nilpotent and has pre-Einstein derivation
given by ¢(e1) = e, d(e;) = (1 + 2)e;, 2 < i < 7, with eigenvalues
{1,4,5,6,7,8,9,10}).

The finite set F = {af; : ¢f; # 0} is:
{(-1,-1,1,0,0,0,0,0), (-1,0,-1,1,0,0,0,0), (-1,0,0,-1,1,0,0,0),
(-1,0,0,0,-1,1,0,0), (-1,0,0,0,0,—-1,1,0), (-1,0,0,0,0,0,—1,1),
(0,-1,-1,0,0,0,1,0), (0,-1,0,-1,0,0,0,1)},

and with respect to this enumeration, the matrix U is

3 0 1 1 1 1 0 17
0 3 011 1 1 -1
1 0 3 01 1 0 1
U — 1 1 0 3 0 1 0 0
1 1 1.0 3 O 1 0
11 110 3 -1 1
0o 1 001 -1 3 1
L1 -1 1 0 0 1 1 3
Solutions to (2) are
(3 7 29 20 13 32 7 R
= (6—27—@4‘&,@7@7@7@ —tl,@ —tl,tl), t1 € R.

Then by Corollary 2.7, 01(8) is Einstein nilradical because the system
has a positive solution considering 7/186 < ¢t; < 64/186.

Case 3. We consider the Lie algebras of rank 1, class As; and
dimension 8, g,(8), @ € R, which has pre-Einstein derivation with all
the eigenvalues simple, (¢(e1) = e1, p(e;) = ie;, ¢ > 2, with eigenvalues
{1,2,3,4,5,6,7,8)).

If @« # —2,—1,0 then the finite set F = {afj : cfj 0} is given by:

{(~1,-1,1,0,0,0,0,0), (—1,0,—1,1,0,0,0,0), (—1,0,0, 1,1,000),
(1,000 1100),(10000 1,1,0),(100000 1),
(, ,—1,-1,0,0,1,0), (0,0,—1,0,—1,0,0,1), (0, — 10,1,000),
(0, ~1,0,1,0,0), (0,— 100 ~1,0,1,0), (0, — 1000 ~1,0,1)}.
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Solutions of (2) are

3 9 4
’U=<——+t2+t1, +ito+tyg+ty +ts +ts, —= +ta+ 14+ 15,

17 17 17

12 11 7

ﬁ—t2—t4 t —t3,1—7—t2—t4—t1—t5,1—7—t2—t5,t1,t2,
14

ﬁ_ ty —t4 —t1 —t5 — t37t37t4)t5> tl;t27t37t47t5 €R.

Therefore, if o # —2,—1,0,9,(8) is Einstein nilradical by Corol-
lary 2.7 because the system has a positive solution, for example, taking
ty =2/17,to = 2/17, t5 = 1/17, t4 = 5/17, t5 = 1/17.

If o = 0 then the finite set F = {of; : ¢f; # 0} is

{-1,-1,1,0,0,0,0,0), (-1,0,—1,1,0,0,0,0), (~1,0,0,—1,1,0,0,0),
(-1,0,0,0,—1,1,0,0), (1,0,0,0,0,—1,1,0), (-1,0,0,0,0,0,—1,1),
(0,0,—1,-1,0,0,1,0), (0, ~1,0,0,1), (0,—1,-1,0,1,0,0,0),
(0 10 10100),(0 100 ~1,0,1,0)}.

We note that the matrix U for the case & = 0 is obtained by erasing
the last row and the last column of the corresponding matrix in the
case a # —2,—1,0, as the only vector which is missing in the new set
F is of;.
Solutions to Uv = [1] are
11ttt5t10ttt 2+tt+t3
vV = _— —_ _— _— —_ —_ _— _——
17 2 3 4, 17 25 17 2 3 1 17 2,02 3 17)

7 14
——=ttot+itz+ty + 4,11, =

17 17 t2t3t1t4at25t3at4>7

t17t27t37t4 eR.

This implies that go(8) is Einstein nilradical because by taking t;
=2/17,t9 = 4/17, t3 = 1/17, t4 = 1/17. we obtain a positive solution.
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If =1, F = {af; : ¢f; # 0} is given by

{-1,-1,1,0,0,0,0,0), (-1,0,-1,1,0,0,0,0), (-1,0,0,—1,1,0,0,0),
(-1,0,0,0,-1,1,0,0), (-1,0,0,0,0,-1,1,0), (-1,0,0,0,0,0,—1,1),
(0,0,-1,-1,0,0,1,0), (0,0,-1,0,-1,0,0,1), (0,—-1,-1,0,1,0,0,0),
(0,-1,0,-1,0,1,0,0), (0,—1,0,0,0,—1,0, 1)}.

Solutions of (2) are

8

2 4 1
=|—=—=t1 —ty,——1t t3,—— +t to,— +1t1 —t ty,t
(17 1=ty g 1+ t3, 17+ 4+ 2,17+1 3+ l4, 1,

! t tll t1 —tg —ta,t 3+t t3, t3,t
17 T T T Tl gm Tl s, s 1y

tla t25 t35 ty € R.
Therefore, g_1(8) is Einstein nilradical taking, for example, t; = 1/17,
ty = 4/17, t; = 1/17, ty = 1/17.
If @ = —2, the finite set F is

{(-1,-1,1,0,0,0,0,0), (~1,0,-1,1,0,0,0,0), (—1,0,0,-1,1,0,0,0),
(_17 07 ana _17 170’0)7 (_17 anaoa 07 _]-a 17 0)7 (_]—70a07 07 ana _17 1);
(ana 7]-7 717 05 07 1)0)5 (07 05 7]-)07 7170a07 1)7 (05 7]-)07 05 7]-)07 l’ 0))
(0,-1,0,0,0,—1,0,1)}.

Solutions of system (2) are

= 3 +tx+t 5 10 t 2 +t 8 7 t ts, t1,t
V= - — - _ I - _
17 2 1, 177 17 1 17 3 177 17 2 3,041,102,

14
l_7_t2_t1_t37t3 ) t17t27t36R-

So g_2(8) is not Einstein nilradical because the system does not have
a positive solution since the fifth coordinate of v is always negative.

Theorem 4.1. Let n be a filiform Lie algebra of dimension 8. Then
n is an Finstein nilradical if and only if n is not any of the following
algebras: m2(8), g_2(8), a_1(8), c1,0(8) (see Table 2).
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TABLE 2. Classification of filiform Einstein nilradicals of dimension 8.

Algebra Einstein | No Nilradi- eigenvalue type
nilradical | cal Einstein
mo(8) v 1<26<27<28<29<
30 < 31 < 32
my(8) v 10 < 123 < 133 < 143 < 153 <
163 < 173 < 296
ma(8) v
0a(8), a # —2 v 1<2<3<4<5<6<7<8
g-2(8) v
a:(8),t # —1 1<3<4<5<6<7<8<9
a,1(8) v
t1,0(8) v
01(8) v 1<4<5<6<7<8<9<10
h1(8) v 1<5<6<7<8<9<10< 11
b(8) v 1<2<3<4<5<6<7<9
£1(8) v 1<3<4<5<6<7<8<11
51(8) v 1<4<5<6<7<8<9<13
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