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PRINCIPAL VALUES FOR THE SIGNED RIESZ KERNELS
OF NON-INTEGER DIMENSION

LAURA PRAT

ABSTRACT. For positive measures pin R® and 0 < a < 1,
we study the p-almost everywhere existence of the principal
values of the a-Riesz transform of p,

lm / I ),
e=0 J 1y apse ly — z|

We show that the L2?(p)-boundedness of the a-Riesz trans-
form implies the existence of the above principal value for
p-almost all x € R™. We also prove that if p has positive and
finite upper density p-almost everywhere, then the set where
the principal value does not exist has positive py-measure.

1. Introduction. For any 0 < a < n, we shall consider the natural
a-dimensional generalization of the Cauchy kernel 1/z, z € C, in R"
defined by

€z n
Ka(l') = W, forz € R \{0}

For a non-zero Radon measure p on R", the a-Riesz transform of
is defined, for = ¢ spt (u), by

RO () = / Koy — ) du(y).

Here we are using vector-valued integrals, which can be defined in terms
of the coordinate functions.

Since the definition above does not make sense in general for €
spt (@), one considers the truncated a-Riesz transform of p, defined by
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Rou(z) = / | Kaly=2)dutw),

for any € > 0 and z € R™.

Recall also that the a-Riesz transform is said to be bounded in L*(u)
if the operators R® are bounded in L?(x) uniformly in ¢ > 0.

The maximal a-Riesz transform is defined as

RS p(w) = sup |[RZ p(x)|-
e>0

Recall that the L2-boundedness of Ry comes from the L? bounded-
ness of the a-Riesz transform. This follows from standard Calderén-
Zygmund theory if the measure is doubling. In the general case,
Nazarov, Treil and Volberg proved in [12] that if the a-Riesz transform
is bounded in L?(u), then the maximal a-Riesz transform satisfies a
Cotlar type inequality (slightly different from the classical one) which
yields immediately that RY is bounded in LP(u), when p € (1, 00).

In this paper we study the p-almost everywhere existence of the
principal values
(1) lim RZ p(z).

The first result of this paper shows that the L?(u)-boundedness of
the a-Riesz transform implies the existence of the principal value (1)
for p-almost everywhere z € R™. For a = 1 and n = 2, i.e., the Cauchy
integral on C, this is a known result of Tolsa [16]. In fact, in [16] he
proves a more general result that gives a geometric characterization of
those positive Radon measures p on C such that for any finite complex
Radon measure v on C, the principal value of the Cauchy integral of v
exists for py-almost everywhere z € C. Our first result reads as follows

Theorem 1. Let 0 < a < 1, and let i be a positive Radon measure
on R™ with compact support such that the a-Riesz transform R*yu is
bounded in L?(w). Then the principal value (1) exists for p-almost all
z e R"™.

Recall that a measure p is Ahlfors-regular of order «, if there exist
positive constants c¢; and cy such that for all x € sptu and all
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0 < r < diam (spt p),
cr® < uB(z,r) < cor®.

According to Vihtila (see [21]), in R", for 0 < a < n, a ¢ Z, there
are no non zero Ahlfors-regular measures p of order o for which Ry is
bounded in 2. Hence Theorem 1 does not say anything about Ahlfors-
regular measures.

Recall that the upper and lower a-densities of u at € R™ are defined
by

pB(z,r) B(a:,r).

6" (p, z) = lim sup and 0% (p,z) = lim i(l)if K
r—

r—0 re

Mattila and Preiss [7] showed that for 0 < a < n, if p is a
non-zero Radon measure on R™ such that for p-almost all x € R"™,
0 < 0%(p,z) < 0**(u,x) < oo and such that the principal values (1)
exist p-almost everywhere, then o must be an integer and g must be
a-rectifiable, i.e., there exist a-dimensional C''-submanifolds M; such
that ,U,(Rn \ Uz’Mi) =0.

When 0 < o < 1, we can generalize this theorem from [7], getting rid
of the hypothesis of having positive lower density u-almost everywhere.
Namely, we show that for 0 < o« < 1 and p a measure with positive
and finite upper density p-almost everywhere, it cannot happen that
the principal value in (1) exists p-almost everywhere. Our result reads
as follows:

Theorem 2. Let 0 < a < 1, and let p be a positive measure in R™
such that 0 < 0**(u,z) < oo for p-almost all x € R™. Then the set
where the principal value (1) does not exist has positive u-measure.

Mattila [5] has obtained a result closely related to Theorem 2. He
has proved that for a finite, positive measure y on C and 0 < «a < 2, if
for p-almost all z € C,

0% (p,z) >0, in the case a <1,

0<02(p,x) <O (u,x) < oo in the case a > 1,

and the principal value (1) exists and is finite, then o = 1.
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The difficulty in extending Theorem 1 and Theorem 2 to values
1 < a < n is due to the fact that the Riesz kernels enjoy a special
positivity property for a < 1, which fails for every « in the range
1 < a < n. This lack of positivity makes the treatment of the case
1 < a < n much more difficult (see [3, 4, 19] for ways to circumvent
this difficulty).

In [20], Tolsa generalizes the result from [7]. He proves that for
0<a<n,a€Z,if uis a non-zero Radon measure on R™ such that
for p-almost all z € R™, 0 < 6**(u, ) < oo and such that the principal
value (1) exists p-almost everywhere, then p must be a-rectifiable.
Getting rid of the hypothesis 0 < 6%(u, z) p-almost everywhere (as in
Theorem 2), which was an open problem raised by the authors in [7].

The arguments to prove the results from [7] and [5] use tangent
measures and hence, they are very different from the ones used in
[20] and in this paper. In [20], Tolsa obtains precise L*-estimates
of Riesz transforms on Lipschitz graphs, and in this paper the special
positivity property that the Riesz kernels enjoy for 0 < a < 1 plays a
role analogous to the L2-estimates (see Section 2).

Mattila and Verdera ([8]) have recently shown that L?-bounded
singular integrals in metric spaces with respect to general measures
and kernels converge weakly. For measures with zero density they have
shown the almost everywhere existence of principal values.

The paper is organized as follows. In Section 2 we review the
symmetrization method and its relation with the L?(u)-boundedness
of the a-Riesz transform. In Section 3 we prove Theorem 1. The
fourth and last section is devoted to the proof of Theorem 2 by using
an adaptation of a deep result of Nazarov, Treil and Volberg (see [11,
13, 15]).

2. L? bounds for the a-Riesz transforms and the symmetriza-
tion method. For 0 < a < 1, we can use the technique of symmetriz-
ing the kernels to study the L?-boundedness of the Riesz transforms.
The symmetrization process for the Cauchy kernel introduced in [9]
has been successfully applied in these last years to many problems of
analytic capacity and L? boundedness of the Cauchy integral operator
(see [6, 10, 17, 18] for example; the survey [2] and the book [14] con-
tain many other interesting references). Given three distinct points in
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the plane, z1, 2o and z3, one finds out, by an elementary computation
that

(2) (21,22, 23)% = Z L

> (20(1) = 20(3)) (20(2) — 20(3))

where the sum is taken over the six permutations of the set {1,2,3},
and c¢(z1, 22,23) is the Menger curvature, that is, the inverse of the
radius of the circle through 23, 29 and z3. In particular, (2) shows that
the sum on the right hand side is a non-negative quantity.

It can be shown that for 0 < o < 1 the symmetrization of the Riesz
kernel K,(z) = z/|z|'*® also gives a positive quantity. On the other
hand for 1 < o < n the phenomenon of change of signs appears when
symmetrizing the kernel K, as one can easily check.

For 0 < a < n the quantity

Ty(2) — Lo (1) Ts(3) — Lo (1)
3 . ,
®) z,,: |Zo(2) = To() [T T3y — Ton)| T

where the sum is taken over the six permutations of the set {1, 2,3}, is
the obvious analogue of the right hand side of (2) for the Riesz kernel
K, . Notice that (3) is exactly

2 pa(xlam% w3)7

where p, (21, 22, x3) is defined as the sum in (3) taken only on the three
permutations (1,2, 3), (2,3,1), (3,1, 2).

The relationship between the quantity p.(x,y,z) and the L? esti-
mates of the operator with kernel K, is as follows. Take a positive
finite Radon measure p in R™ which satisfies the growth condition
pB(z,r) < Cor*, x € R™, r > 0. Then (see in [10, 14] the argument
for a = 1, or see ([15, page 960]) for the case 0 < a < 1)

@ [ B @) ) ~ pac()] < MGl

where M is some positive constant depending on n and o and

o) = [ [ patecw,2) dute) duty) duco),
Se
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with
Se ={(z,y,2): [z —y| >¢, |t — 2| >cand |y — 2| >¢}.

Thus,
) pali) < 35up [ |REu(@) du(e) + Cllul,
where
pal= [ [ [ palo.y.2) dute) du(y) duz).
In [15] the following useful lemma was proved:

Lemma 3. Let 0 < a < 1, and let u be a positive Borel measure
with 0 < 0**(u, ) < oo for p-almost all x € R™. Then

///pa(xl,xz, z3) du(z1) du(z2) du(zs) = +oo.

Remark. Lemma 3 together with (5) gives us that if 0 < @ < 1, and
if p is a positive Borel measure with 0 < 6**(u,x) < oo for p-almost
all z € R", then the a-Riesz transform is not bounded in L?(u).

3. Proof of Theorem 1. It is well known (see [1, page 56], for
example) that if the a-Riesz transform R*y is bounded in L?(p), then
there exists some positive constant C such that

uB(z,r) < Cor®, for x € R™, and r > 0.

Therefore, for all x € R™ we have 68**(u,z) < Cp. The remark
after Lemma 3 tells us that, in this situation, L2-boundedness of the
a-Riesz transform can only happen if the upper density is zero. Hence,
since we are assuming that the a-Riesz transform Ry is bounded in
L?(u), Theorem 1 will be proved if we show that the principal value
lime_,o R p(z) exists for u-almost all z in the set

Z ={z € spt (u) : 07%(x, u) = 0}.
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The proof of this fact follows ideas of [16].

It suffices to verify the following statement. For every & > 0, there is
an ng such that there exists a K5 C Z for which u(Z \ Ks) < § and

(6) |RS-—npp(x) — Ry mu(x)| <0, for z € K5, m,n > ny.

Then setting B = N32; U2 Ky, we find that u(Z \ B) = 0 and
lim,._,o R%u(z) exists for z € B.

For future reference, if F,G C R" are p-measurable, set

pul@F.G) = [ pal,) dulaz) dusoa)
Frlc
and
= / / / Do (T, 2, x3) du(x1) du(zs) du(zs).
FJFJF
Let v > 0 be fixed later. For each m set

Gym = {x € Z: uB(z,7) < 4r* and p,(z, B(z,7),R") < +*

m

1
f0r0<r§—}.

Then Gy m C Gym+1- The L2-boundedness of the a-Riesz transform
together with (5) gives us p,(z, R",R") < 400 for y-almost all z € R"
and hence lim, o p,(z, B(z,r),R™) = 0. Therefore,

(7) [ (Z\ 9 G%m> —0.

Fix v < (100v/3M + 1)~ (where M is the constant in (4)). By (7)
there is an m; such that u(Z \ G m,) < 6/4. Let p > 0 be fixed later.
There are an open neighborhood U of G, ,,,, and a compact subset K
of Gy m,, such that p(U \ Gy m,) < p and p(Gym, \ K) < p.

For a set V, let yy denote the restriction of 4 to V. For z € K and
n,m such that 27,27 < d := dist (K, U*), we have

R$pi() — R-mp(w)| = | RS-t (@) — RS-mpiv ()|
< ‘R;—nﬂU\K(w) Ry mpon\ i (@ )‘
+ ‘Rg‘,n,um
=I(z)+I1(x

7) = R§- i (2)

(
)-
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Notice that I(z) < 2R uy\k (z), and set

K, = {23 eK: Rf,u|U\K(.’13) < 6/4}

We claim that (choosing p > 0 appropriately) we have pu(K \ K;) <
§/4. To see this, notice that the L?(u)-boundedness of RS gives us

u(K\ Ky) = N{iﬂ € K: Ripo\k(z) > 5/4}

16, .
< SB[ (uu(U \ K)
o 32p
< ||RS ||2L2(p,)6_2;
hence, choosing
53
P ooipaz
12872 0 )
we have p(K \ K1) < 6/4 and
)
I(z) < 3 for z € K.

Now we deal with the term IT(z). Since we are assuming that the
a-Riesz transform is bounded in L?(u), we can consider a weak * limit
operator R® of the truncated operators {RZ }, in the Banach space
of the operators bounded in L2(u), for some sequence {e,}, — 0.
Then, for a compactly supported f € L?(u) we have R"‘f(y) = R*f(y)
for p-almost all y ¢ spt (f) (this is a consequence of the fact that if
y € spt (1) \spt (f) is a Lebesgue point of R“f; then }N%o‘f(y) = R*f(y)).

The Lebesgue points of EO‘MK with respect to jx satisfy

1

b [ R ) () = B (o).
rli% NIKB(ZL'J') v/B(z,r) M‘K(y) ‘U‘K(y) IulK(x)

Hence there exists some 8 > 0 such that the set

1
NIKB(mv T)

)
< —

K(;:{a:EKlz =

/ R dpy e —R* e ()
B(z,r)

for0<r<ﬁ,}
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satisfies p(K; \ Ks) < §/4. Choose 8 > 0 such that

1 )
0 < min (d
< ﬂ = i ( ’ 2777,1’ 16000100m1>’

where C7 > 0 will be determined later.
We claim that, for all x € Ky,

(8) 1() < g if 9= 9= < g,

so that if we take ng such that 270 < 8 and p < §/4, then (6) holds
and

MZ\Ks) < i(Z\Goymy) + (G \ K) + p(K\ K1) + (K \ K5) < 6.

So we are only left with the task of proving claim (8). Assume m < n.
We distinguish between two cases:

1. For k =2,...,n—m, we have 2'7%y x B(z,2F"17") < px B(x,
2F=m). Then

II(z) =

S‘—nmx(w) — Ry (%)

/ dpi i (y)
2k—l-n<|p_y|<2k-n ly — z|*

1+a)(k: n+m)/,t‘KB($ 92— )

(9) < 2(k—1-n)a
k=1

_oc'u|KB(x2 m—n k
=2 9—ma 2 22

S 21—‘,—0{ 'LlllKB(x72 ) S 21—‘,—0{

27ma

l\DIQq

7=

2. For some 2 < k < n —m, we have 21y B(x,28171) >
MKB(x,Q"’_"). Let 2 < m* < M* < n — m be the least and largest
integers with this property. Then arguing as in (9) we obtain

N|KB('T, Qm*—n—l)

1+
2(m*—n—1)a <2 a’y

RSk (%) = Ry —naptyie ()] < 2170
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and

e a ak B l"27m a
‘R2M*,RN‘K($) - R2—m/~L‘K(-T)‘ S 21+ % S 21+ Y-
Moreover,

B(z,2m " o
‘Rgm*_n_1H|K($) - Rgm*—n#\K(w)‘ < % < 2%y.

Set F = K N B(z,(2m1)"!). Putting all of the above estimates
together and using that 2™ —" 2M"—n < 3 < (2m;)~!, we obtain

I1(w) = | RS- gy (@) = RS- i xc(a)|

< o¥rany 4 0%y 4 ‘R;‘munﬂ\K(w) - RgM**"/‘\K(x)‘

N

<107+ [ R pise (@) — Buse gt ()

1)
<10t ‘Rgm*—nMF(iB) - R?M*—nu\F(w)‘-

If we show that for x € Ky,

(10)  [Rgemp (@) ~ [Rmac(a) - Ry p@)] | < 3
and
() B e (@) [Rmsc(a) — R e@)] | < 3

hold, then claim (8) will be proved.
To prove (10) split it as follows:

‘RS‘muan(m) - [éaN\K(fv) - Ra:“’lK\F(x):| ‘ <A+B,

where

1 ~
A:‘Ro‘m*,n z)— _ / R® d
e M) B 2 i) gy PIFW) 5 )
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and

1 / ~
B= - R*u pdu
N\KB(:U72m —n—l) B(z,2m"—n-1) St

B @)~ B p (@)

We first deal with term A.
(12)

1
A< Ry ()

- M‘KB(x,2m*fnfl)

/ EaruﬂF\B(a:,Zm**")(y) d/v‘\K(y)‘
B(z,2m"—n-1)

1
R” mrm d .
+ “U,KB(-Tyzm*nl)/B(zgm*nl) /“L\FOB(J:,2 )(y) NK(y)‘

Notice that, since € Z and diam (F) < 1/my, then u(F N B(z,r)) <
~r®, for all » > 0. Hence, integrating on annulus, we get for p-almost
all y € B(z,2™ ~"~') and some positive constant C; < 3,

RSm*—nMF(m) - RQM‘F\B(Z‘,Zm*fn)(y)‘

= ‘RaruﬂF\B(z,Zm**")(m) — R*pyp\ (z,2m* ) (Y)

o NB($,2k+1+m*_n)
< Gz —y| Z (2k+m*=n)lta
k=0

< C12%y < 6.

Now integration on F N B(z,2™ ~"~1) gives

1
N\KB(-T; 2m*7n71)

Rgm*an\F(x)

X/ Ea/j’\F\B(z,Qm*—") dpjk | < 6.
B(z,2m"—n-1)
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For the second term in (12), we will use that the L?(y ) norm of the
a-Riesz transform is small. By Cauchy-Schwartz inequality and (4),

1 ~
13 R~ me—m () d
(13) Bz /B(Mm*_n_l) LrnB(z,2m - (Y) dp i (Y)

|1 R 1ty pB(2,2m =) | L2 (0| P B (2,2m —n))
/JJ|KB(Z‘7 gm* —n—1)1/2

~ SUPeso IR 1y FB(e,2m-m | L2 (u B (z,2m* —))
— N\KB(ma 2m*—n—1)1/2

_ [pu(F 0 B@,2 ) + 349%u(F 0 B(a, 27" )]
- /J,|KB(ZL',2m*_n_1)1/2

B(z,2m =) \ /2

,U|KB($7 2m*—n-—1
<29V3M + 1,

where inequality (13) comes from

1
pu(yaFan) S Pu <y7B<l‘a _>5Rn> S 727 for Yy S
my

Hence,
20

To estimate B, we will use that x is a Lebesgue point of EO‘MK with
respect to p g . Write

1 / - _
B< * R* y)d y) — R® T
‘M|KB(xv2m _n_l) B(z,2m*—n-1) ,U|K( ) ’u‘K( ) 'u\K( )

1
,LL|KB($7 2m*7n71)

+ | R b1\ Be 2y ) (@) -

/ RO 150\ B, (2m1)-1) d#\K‘
B(l.72m*—n—1)
= Bl + BQ.

The definition of K; gives us B; < §/100. For Bs, notice that if
|z —y| < 2™ ~"~1 < B, then integrating on annulus and using the
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a-growth of the measure (with constant Cp) we get,

R\ B(z,(2m1) 1) (@) = B\ B, (2m1>fl>(y)‘

pr B(@, 2541 (2ma) ™)
< Clﬁz (2F(2m,) 1)ita

~ 2°‘+201m1,800.

Hence, since for p-almost all y € B(z, 2™ ~"~1),

R g\ B(z,(2m1)-1) (¥) = R 11K\ B(z,(2m1) 1) (¥)5

if we integrate on B(z,2™ ~"~1) we obtain

é
B; < < —
2 <8C1m1BCy < 500"
which implies
B< 2
— 200
Therefore, for all z € K,
26 30 6
A+B< —+ —
ths 25 + 200 =5

which is (10). Inequality (11) can be obtained in a similar way. O

4. Proof of Theorem 2. For the proof Theorem 2 a version of
a deep result of Nazarov, Treil and Volberg [11] will be needed, (see
[15]). The result reads as follows:

Theorem 4. Let 0 < a < n and p be a positive measure on R" such
that 6**(u,z) < +oo for u-almost all x. Assume that R%u(z) < +oo
for p-almost all z. Then there is a set F with u(F) > 0 such that the
a-Riesz potential R* is bounded in L*(ur).

Proof of Theorem 2. It is obvious that if the principal value

lim RZ p(z)

e—0
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exists for p-almost all z € R™, we have RYu(z) < oo for p-almost all
x € R™. Since all the hypotheses of Theorem 4 hold, there exists a
compact set ' C R™ with u(F) > 0 such that the a-Riesz transform
is bounded in L?*(pp). Therefore, po(pr) < oo by the standard
argument reproduced in (5). This contradicts Lemma 3. Therefore,
the set where the principal value (1) does not exist has positive pu-
measure. O
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