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ON ORTHOGONAL CHORDS IN NORMED PLANES
JAVIER ALONSO, HORST MARTINI AND ZOKHRAB MUSTAFAEV

ABSTRACT. It is known that a convex plate of diameter 1
in the Euclidean plane is of constant width 1 if and only if
any two perpendicular intersecting chords have total length
at least 1. We show that, in general, this result cannot be
extended to normed (or Minkowski) planes when the type of
orthogonality is defined in the sense of Birkhoff. Inspired by
this, we present also further results on intersecting chords in
normed planes that are orthogonal in the sense of Birkhoff
and in the sense of James.

1. Introduction. A convex body in Euclidean space R%, d > 2,
is called of constant width if the distance between any two parallel
supporting hyperplanes is constant. There is a large variety of non-
circular and, for d > 3, nonspherical convex bodies of constant width
(see, e.g., the surveys [6, 8]). The most famous one is the Reuleauz
triangle in the Euclidean plane. It is representable as the intersection
of three circles of radius r > 0 which are centered at the vertices of an
equilateral triangle of side-length 7.

The notion of convex body of constant width is naturally extended
to normed linear (or Minkowski) spaces, and so one can also define
Minkowskian analogues of Reuleaux triangles (see [6, 12, 13] and [14,
subsection 4.2]).

Makai and Martini [11] proved that in the Euclidean plane a convex
body of diameter 1 is of constant width 1 if and only if any two
perpendicular intersecting chords of it have total length greater than
or equal to 1. Soltan has posed the question of characterizing the
Minkowski geometries for which the analogue of this result holds
(see [11, 13]). In this case, instead of perpendicularity, we consider
orthogonality in the sense of Birkhoff.
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Our purpose is to show that, in general, the result from [11] cannot
be extended to Minkowski planes. More precisely, we will construct
unit circles of Minkowski planes for which already this result does not
hold. Furthermore, we will prove new results on orthogonal chords of
unit circles of Minkowski planes, when their orthogonality is defined in
the sense of Birkhoff and James; cf. [5, 9, 10].

2. Definitions. A generalized orthogonality in a real normed linear
space X is a binary relation that coincides with the usual orthogonality
if the norm is induced by an inner product. In this paper we shall deal
with Birkhoff and isosceles (or James) orthogonalities.

Given z,y € X, z is said to be Birkhoff orthogonal to y (z Lp y) if
lz+Ay|| > ||z|| for every A € R (i.e., if the line z+ Ay, A € R, supports
the ball of center 0 and radius ||z|| at z); and z is said to be isosceles
orthogonal to y (z L y) if ||z + y|| = ||z — y]|.

A generalized orthogonality L is said to be symmetric if x L y implies
y L x, and it is said to be homogeneous if x 1L y implies ax L By
for every a,8 € R. Birkhoff orthogonality is always homogeneous
but, in general, not symmetric; and isosceles orthogonality is always
symmetric, but homogeneous only in inner product spaces. More about
these orthogonalities can be found in the papers [1-5, 9, 10].

From now on, X = (R2,] - ||) will denote a real two-dimensional
normed linear space (i.e., a Minkowski plane) with unit sphere Sx =
{z € X :||lz|| = 1} and unit ball Bx = {z € X : ||z| < 1}. In view
of our examples below we recall (although this is obvious) that By is
a convex body (i.e., a compact, convex set with nonempty interior) of
constant width 2.

For u,v € Sx, u # v, we denote by [u,v] the chord of Sx with
endpoints v and v. We say that [u,v] is mazimal if, for every A > 0,
lv+ A(v —u)|| > 1 and ||u+ A(w — v)|| > 1. Thus, we can say that Sx
is strictly convez if all the chords with endpoints in Sy are maximal.

We should emphasize that in the formulation of the question of Soltan
orthogonal chords stand for maximal orthogonal chords. As we will see,
the maximality of the chords plays a crucial role.

3. Counterexamples. Examples 1 and 2 show that if we consider
Birkhoff orthogonality then the result of Makai and Martini cannot be
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extended to Minkowski planes. In fact, we will present unit circles of
Minkowski planes that have two maximal and intersecting orthogonal
chords with total length less than 2. For that purpose it is sufficient to
consider maximal chords with a common endpoint.

Example 3 shows that there are unit circles all of whose maximal
and intersecting chords that are Birkhoff orthogonal have total length
greater than or equal to 2 and that this bound can be attained by
non-degenerate maximal chords.

In Example 4 all the non-degenerate maximal and intersecting chords
that are Birkhoff orthogonal have total length greater than 2, showing
that this property is not characteristic for Euclidean circles.

Example 1. Let 1/2 < a < 1 and consider the norm whose
unit circle is the octagon with vertices vy = (a,1), va = (—a,l),
vy = (-1,2—-1/a), v4 = (-1,1/a — 2) and v; = —v;_4, 4 = 5,...,8
(see Figure 1). Then the chord [vy,v3] is parallel to the diagonal
[v1,v5], which implies that the chord [va,v3] is Birkhoff orthogonal to
the chord [v1,v2]. A simple calculation shows that ||v; — v2|| = 2a and
|lva—wvs|| = 1/a—1. Thus the sum of the lengths of these two maximal
chords is less than 2.

One could also round off the sides vyvs, v4vs, vgv7, and vgv; in such
a way that the unit circle would be smooth, not strictly convex, and
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FIGURE 2.

the maximal chord [ve,vs] would still be Birkhoff orthogonal to the
maximal chord [vy,vs].

Example 2. Let X be the Minkowski plane R? endowed with the
lso — I3 norm defined by

i = { el el im0
|z1| + |z2| if z129 <0,

where = (1, 22). That is, the unit circle is the hexagon with vertices
+(1,0), £(1,1), £(0,1). Let w = (1,0), v = (1,a), w = (—a, —1) with
0 < o <1/2. Then u,v,w € Sx, ||lu —v|| = ¢, ||[v —w|]| =1+ «, and
v—u Lpv—w, but

lu—v]|+||lv—w|] =14+ 2a < 2.

However, [u,v] is not a maximal chord. To avoid this, consider
(following the same idea) R? endowed with the I, — [, norm

B lzl|p, if zqz2 >0,
2lp,q = .
llzlly if z12z2 <0,



ON ORTHOGONAL CHORDS IN NORMED PLANES 27

with 1 < ¢ < p < 400, g being “small” and p being “large” (see Figure
2). Then we get a unit circle similar to the hexagon above but strictly
convex. Let 0 < a < 1/2, u = (1,0), and v, = ((1 — a?)'/?,a). Then
ullp,g = [lvpllp,g = 1 and

— = — — —1—(1=aP)/r
lvp — ullp,g = llvp —ullg < |lvp —ufi =1—-(1—0aP) +ap_T+>wa'

Let wyp 4 be the unit vector that satisfies v, —u Lp v, — wp 4. Then
Wp,q _i wp,1 = (—a,—(1 - ap)l/p) and
q—

vp = Wp,qllp.g = llvp —wpqllp qjﬁ l|lvp —wp,1llp = 21/p(a+ (1 _ap)l/p)'

Therefore,

lpg T lvp — wpgllpg <1—(1— aP)t/P 4 llvp — wpqllp

20 +1 < 2,

l|lvp — u
—
(p,q) = (+00,1)

which implies that we can find p and ¢ such that ||v, — ullpq + [|vp —
Wp.qllp,g < 2. Moreover, if we take p and ¢ such that 1/p+1/q = 1, then
Il - lp,q is @ Radon norm, i.e., a norm for which Birkhoff orthogonality
is symmetric; see [7].

Example 3. Let X be the Minkowski plane R? endowed with the
maximum norm. Then Sx is the square of vertices ¢; = (1,-1),
ca = (1,1), e3 = (—1,1) and ¢4 = (—1,—1). Assume that u,v,w € Sx
are different points such that [u,v] and [v,w] are maximal chords and
u—v Lg v—w. We will show that ||v — u|| + ||[v — w|| > 2. For this
purpose we can assume, without loss of generality, that u € [c1, c2] and
v € [eg,c3]. Since u — v Lp v — w, we have that w € [c3,cq] U [cy, c1].
Let u=(1,a), - 1<a<land v=(8,1), -1 <8 <1 If wE [c3,cal,
then w = (=1,7) with —1 < 4 < 1 and so ||v — u|| + ||v — w|| =
masc{|5— 1], 1 - af} + max{|5+ 1], [1 ~]} > |6 1| +|5+1 = 2. On
the other hand, if w € [cq, 1] then |Jv —ul|+||v —w| = ||lv—u|| +2 > 2.
Finally, to see that the bound 2 can be attained by non-degenerate
chords, we can consider v = (1,0), v = (0,1) and w = (—1,7v) with
0<~<1.
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Example 4. Let X be the Minkowski plane R? endowed with
the norm whose unit circle Sx is the regular octagon with vertices
uyp = (]-ao)v Uz = (1/\/571/\/5)7 uz = (071)7 Ug = (_1/\/§al/\/§) and
U; = —Ui_4, % =D0,...,8 Assume that u,v,w € Sx are different points
such that [u,v] and [v, w] are maximal chords and v—u L g v —w. We
will show that ||[v — u|| + |[v — w|| > 2. For this purpose we need
to consider several cases according to the position of u, v, and w in
Sx. For the sake of brevity we will reproduce only three representative
cases. The others follow in a similar way.

Case 1. Assume that v = u; and v € [ug,us). Then v =
Aug + (1 — Nug with 0 < XA < 1, and v — u = p(pus + (1 — p)ua)
with 0 < p < % and p = )\(\/5 -2) 4+ V2, which implies that
lv—u|| = p. Since v —u L g v — w, the vector v — w must be parallel
to the chord [us, u4], which implies that w = Aus + (1 — A\)ug and then
v—w = ﬁ(%ul + %Ug), with p = 2(\/5 -1+ A2- \/5)) Thus we get
lo—ull +|lv—wl=p+p>2

Case 2. Assume that u = u; and v = us. Then v — u = v/2uy. Since
[v, w] is maximal and v—u L g v—w, we have that w € [ug, us|U[us, ug]-
Let 0 < p < 1. Ifw= pug+ (1— p)us, then v—w = p(yus + (1 —v)ug)
with 0 < v < 1 and p = p(v2 — 2) + V2. On the other hand, if
w = prus+(1—p)ug, then v—w = p(yuz+(1—7v)us) with 2 <+ < 1and
p = u(v/2—2) +2. Thus, in both cases |[v—ul|+|v—w| = V2+p > 2.

Case 3. Assume that v = pu; + (1 — pug, 0 < p < 1 and
v=Aug + (1 — Aus, 0 < XA < 1. Then,

At+p—1 > ()\—i—u—l >
v—u=|——F—-plut+| ——+1—-X)us.
< vz V2 ;

If A+ p > 1, then v — u = p(aus + (1 — @)uy) with 0 < o <  and
p=(V2—-2)(A—1)+2(v/2 — 1)u. Moreover, w = Aus + (1 — \)uy and
v—w = p(3us + Lup) with p = 2(v2 — 1) + 2A(2 — v/2). Then,
lv—ull +[v—wl| =p+p =vV2+(2-V2A+2(v2-1)p >
V24 2-vV2) (A=) +2(V2 - Dp=2+u(3v2—4) > 2. IF A\t p =1,
then ||v —u|| = pv/2. In this case w can vary from w; = Aus + (1 —\)uy
to we = Auz + (1 — A)ug. Therefore |[v — w|| > ||[v — wy]| and, as in
the above case, ||v — wy|| = p. Thus [[v —u|| + |lv —w| > pv/2 +75 =
2+ u(3v/2 —4) > 2. Finally, if A + u < 1, the line (v — u) cuts
[ug, us], which implies that w = Auz + (1 — A)ug and, in consequence,
lo —ull + v —w|| = [lv - ul| + 2> 2.
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4. Further results. Examples 1 and 2 show that there are unit
circles where we can find two intersecting maximal chords that are
Birkhoff orthogonal whose total length is less than 2. Our next theorem
shows that, nevertheless, one of the two chords always has length
greater than or equal to 1. Its proof gives more information than that
contained in the enunciation.

Theorem 5. Let u, v and w be three different points in Sx such that
v—u lpv—w. If ||lv—u|]| <1 and [v,w] is mazimal, then ||v—w|| > 1.

Proof. Since 0 < ||v—u|| <1, we can assume that u and v are linearly
independent. Let «, 8 € R be such that w = au + Sv. We can assume
that @ # 0, otherwise w = —v and |[v — w|| = 2. The proof will be
divided into two steps. In the first step we show that o + 8 < 0, and
in the second that [|jv — w|| > 1.

Step 1. Assume that a + 8 > 0. We shall get a contradiction to the
hypothesis. For that aim we need to consider several cases according
to the signs of a and g.

1.1. Assume first that 8 > 0. Since v — u L p v — w, we have

lafllv —ull = (@ + B)v — w|| > [|e+ ] - 1]
=la+p-1]

= [la(v —u) +w —of| > |af[lv — ul|.
Therefore,
(1) lalllv —uf = la+8 - 1.
Now, if @ > 0, then 1 = |jw|| < a+ 3, and from (1) we get

S S I T

allv — ull

allv — ull
_Ma+B-NDv+ov—w|
allv — ull

:1,
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which contradicts the maximality of the chord [v,w]. On the other
hand, if & < 0, then 1 = |Jw|| > |8] — || = a + B, and from (1) it
follows

e

| = allv — ul|w + (e + B)(w — v)|

—allv —ul|
_ A —a=Bw+ (a+B)(w—0)|
—allv — ull

=1

)

again contradicting the maximality of [v, w].

1.2. Assume that § < 0. Then o > 0, since we are assuming a+4 > 0.
Since 1 = ||w|| > |a| = |8 =a+ B and v —u Lg v — w, we get

Q=Blv—ull <|(1=B)(v—u)+w-1
(2) = [[(a+8—1)u
=1l—-a-—0.

Moreover,
B)  L=lwll=[8(v—-u)+(a+Bul <-Bllv—ul+a+p.

Adding the inequalities (2) and (3), we get |[v—u|| < 0, which is absurd.
The same absurdity would follow by assuming « + 8 = 0.

Step 2. From Step 1 we know that o+ < 0. Again we shall consider
several cases according to the signs of @ and S3.

2.1. Assume that @ < 0 and 8 > 1. Then
lw =2l =llau+(B—Dv[[ > ]a] - |8 -1=1-a—-B>1

Moreover, if ||w — v|| = 1, then w = (v — u)/||v — u|| and [v,w] C Sx.
If, in addition, ||v — u|| < 1, then also [v —w,v] C Sx.

2.2. Assume that @« < 0 and 0 < 8 < 1. Then

1= [lwl = I6(v = w) + (o + B)ul| < Bllv - ul| — = 5,
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and therefore
low + (8 = Dw|| _ |of = |8 -1

lw =l =

B - B
_Boa-1_ p+p1—[v—u)
g B
=2—|lv—ul|>1L
Moreover, if ||w —v|| = 1, then ||jv — u|| = 1 and o = —1, which implies

that [u —v,u] C Sx.
2.3. Assume that a < 0 and 8 < 0. Then
lw =] =[(a+8-1)v+alu—v)
zla+ B =1 —|afllu— vl
=1—-a—B+alu—o
=1-f—a(l—|lu—v]])>1.

Moreover, ||w —v|| = 1 only if 8 = 0 and ||u — v|| = 1, which implies
that w = —u, and the unit sphere Sx is the square with vertices +u,
+v.

2.4. Assume that o > 0 and 8 < 0. Then
lw—=2ll=B-Dv+aul| > [B-1-|af=1-a-B>1,

since (recall case 1.2) aa+ 3 < 0. O

The next theorem shows that any triangle inscribed to Sx with two
sides that are isosceles orthogonal has the third side limited by op-
posite points. Thus, we can say that “isosceles rectangular triangles”
inscribed to circles in a Minkowski plane behave like rectangular trian-
gles inscribed to Euclidean circles. Examples 1 and 2 showed that the
same is not true with “Birkhoff rectangular triangles.”

Theorem 6. Let u, v and w be three different points in Sx such
that [v,u] and [v,w] are mazimal. If v —u L1 v —w, then w = —u.

Proof. Throughout the proof we must have in mind that, due to
v—u Ly v— w, then

(4) [lw —ul| = |12v — u — w].



32 J. ALONSO, H. MARTINI AND Z. MUSTAFAEV

Moreover, 2||v — u|| = ||2v — v — w — (u — w)]|| < 2|jw — ul|, and then
(5) v = ull < [lw — ul].
If w and v were linearly dependent, then necessarily v = —u. Then, by

(4),2 > |w+v|| = ||3v—w]|| > 2, which implies that ||v+2(v—w)]|| = 1,
contradicting the maximality of the chord [v, w]. Thus we can assume,
without loss of generality, that u and v are linearly independent. Let

a,B8 € R be such that w = au + Bv. If 3 = 0, then w = —u.
Moreover, if & = 0, then w = —v, and from (4) we have that
2 > |lutv|| = ||3v—ul| > 2, contradicting the maximality of [v, u]. Next

we will show that the other possibilities also contradict the hypothesis.

Case 1. Assume that « > 0and 8 > 0. Then 0 = ||w||—1 < a+S—1.
If o < 1, then from (5) we have that

lo = ull < Jlw—wul] = I(1 —a)(v—u) + (a+ 5 - 1)
<l-o)fv—ul|l+a+p-1,
and we get
(6) allv —ul| <o+ B 1.
On the other hand, if @ > 1, then, again from (5), we have that
allv —ul| < aflw —uf| = [[(a = Dw + Bv[| < + B - 1,
and we also obtain (6). Therefore,
1
v+ m(v —w) H
which contradicts the maximality of the chord [v, w].

Case 2. Assume that « < 0 and 8> 0. Then 1 = |lw| > |8] — o] =
B + «a, which gives

_ofv—ul|
a+pB—-1"

)

(7) l-a—p2>0.

2.1. Assume that —1 < o < 0. Then, from (5) and (7), it follows

that
12v —u—w|=[[(1+a)(v—u)+(1—-a=p)

<(@+a)flo-uf+1-a-p8
<(l+o)w—ul+1-a=5,



ON ORTHOGONAL CHORDS IN NORMED PLANES 33

and from (4) we get that —aljw — ul]] <1 — «a — 3. Then

o (=a=g) e

contradicting the maximality of the chord [v, w].

2.2. Assume that a < —1. If 8 < 2, then

el _,
l-a—p8 —

lu—wll=l2v—u-wl=-0+)ut+2-BF)v[|<1-a-5
On the other hand, if 8 > 2, then from (7) we get

BlI2v — v —wl| = [[(8 = 2)(u —w) +2(1 - a — B)u]|
<(B-2)u-wl+2(1-a-p),

and again we obtain that ||u — w|]| <1 — a — 8. Thus,

u+$(u_v)H_

contradicting the maximality of the chord [u, v].

Case 3. Assume that o < 0 and 8 < 0. Then
22 lu+w—20=(B-2)v+(1+a)ul| 22-8-[1+a| 22,

where the last inequality follows because —a 4+ < 1 < —a — .
Therefore, ||u+w —2v|| = 2. Moreover, if 1+ a > 0, then a+8+1=0

and
2 —u —
”‘g(”‘“)H:M:L

contradicting the maximality of [u,v]. On the contrary, if 1 + a < 0,
then 1 +a — 3 =0 and

L

+l—|—a( ) 2o —u—w|
T e VT T 2 -

contradicting the maximality of [v, w].
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Case 4. Assume that « > 0 and § < 0. Then 1 —a — § =
Jw[| = |af + 5] = 0 and

2= B)lw—ul| =B(2v —u—w) —2(1 —a—B)ul
=Bl2v —u —w|| 4+ 2(1 — a — B).

IA

Thus we get from (4) that ||2v —u —w]|| < 1—«a — B, which implies that

1+a 20 — u — w||
= (v = B h———_ e )
v+1_a_ﬂ(v u)H —a_p5 =0
contradicting the maximality of [u, v]. o

Remarks. 1) Theorem 6 is not true if the chords are not maximal:
consider, in Example 3, v = (1, 1), v = (1,1) and w = (0, 1).

2) If u,v € Sx, then ||[v — u|| + ||[v + u|| > 2. Therefore, from
Theorem 6 it follows that any two maximal chords of Sy that are
isosceles orthogonal, with a common endpoint, have total length greater
than or equal to 2. The bound 2 can be attained by non-degenerate
chords: consider, in Example 3, v = (1,0) and v = (0, 1).
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