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A WEIGHTED PARTITION FUNCTION
CONNECTED TO THE ROGERS-SZEGO POLYNOMIALS

LOUIS W. KOLITSCH

ABSTRACT. In this paper we present a weighted partition
function which is connected to the Rogers-Szego polynomials.
The function is also connected to the generating function for
C4(n), the number of four-component multipartitions of n in
which each part in the ith (¢ = 1,2,3) component is larger
than the number of parts in the next component with the 4th
component’s parts being larger than the number of parts in
the 1st component.

1. Introduction. In [1] Andrews showed that the generating
function for Cy(n), the number of four-component multipartitions of
n in which each part in the ith (i = 1,2,3) component is larger than
the number of parts in the next component with the 4th component’s
parts being larger than the number of parts in the 1st component, can
be written as
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In this paper we will investigate the sum ZW-Zl(q(ij))/(q)iH,l. This
is the second factor in Andrews’ result multiplied by q. We will show
that this generating function can be interpreted as a weighted partition
function and that this function can be expressed in terms of the Rogers-
Szego polynomials in two different ways. The proofs presented will be
explained combinatorially.

2. How can we interpret our function as a weighted partition
function? Using a Ferrers graph we will show how each term in our
sum, ¢* /(q)it;—1, (for a fixed choice of i and j) can be used to generate
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ordinary partitions. Since for different choices of ¢ and j we can get
the same ordinary partition, the resulting interpretation will be that
of a weighted partition generating function. The exponent on ¢ in the
numerator, ij, will be used to form ¢ rows of j nodes. The partitions
generated by 1/(¢);+j—1 are partitions where the parts are at most
1+ 7 — 1 or, if we look at conjugates, these are partitions into at most
t+ j — 1 parts. We will view these as the latter and will split these
partitions into two pieces—the first piece will consist of the largest i parts
in the partition (the portion of the large triangular region in Figure 1
that is above the line segment) and the second piece will consist of the
remaining parts (the portion of the large triangular region below the
line segment in Figure 1). Note that if the partition contains i or fewer
parts then the first piece will be the complete partition and the second
piece will be the empty partition (the portion below the line segment in
Figure 1 will not exist). The number of parts in the second piece is at
most j — 1. To form our ordinary partition we will place the first piece
to the right of our rectangle of i X j nodes and will place the conjugate
of the second piece (a partition with parts < j —1) below our rectangle
of i X j nodes. This process is illustrated in Figures 1 and 2.

Let me illustrate that this interpretation counts certain ordinary
partitions more than once. The partition of 5 = 4 + 1 is counted
withi=1,j=2;¢=1,75=3;and i« =2, 7 =1 as shown in Figure 3.

ixj Conjugate of a partition into
rectangle parts<i+j—1

FIGURE 1.
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FIGURE 2.

FIGURE 3.

The number of times that a particular partition is counted will be
called its weight and we will describe how the weight is determined in
the next section.

3. How do we determine the weight of an ordinary partition?
All we have to do is look at the process of Section 2 in reverse. An
ordinary partition, A = A + Ar_1 + - -+ A2 + A1, where A\, > A1 >
-+« > Az > A1, is counted for a particular ¢ and j if its Ferrers graph
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has an 7 X j rectangle in the upper left hand corner and, when there
are parts below the rectangle (r > 7), there are at most A._; 1 —j such
parts and they are all less than j. For ¢ = r we see that j can vary from
1 to A1 and for 7 < r we see that a rectangle of height i exists provided
Ar—it1—Ar—;—(r—1) > 0. The width of the rectangle, in this case, can
vary from A._; +1 to A.—;+1 — (r — ). Thus we see that the weight of A
is given by A; + Z::_ll v(i) where v(i) = 0if A\p—jp1 — Ay — (r—4) <0
and equals A\,_;+1 — A\r—; — (r — i) otherwise.

In the next two sections we will look at two different ways to rewrite
this generating function.

4. How can this generating function be expressed in a
different form? We will rewrite our generating function based on the
size of the part containing the bottom edge of the i x j rectangle. If the
part containing the bottom edge of the rectangle is m = 1, then j =1
as well and there are no parts below the rectangle. These partitions
are generated by ¢/(¢)s. When the part containing the bottom edge
of the rectangle is m = 2, j = 1 or 2 and again there are no parts below
the rectangle. These partitions are generated by ¢/(¢?)oo + ¢°/(4?)o-
When m =3, j =1, 2, or 3, and we can have a single node below the
rectangle for 7 = 2 and no nodes below the rectangle for j = 1 and
j = 3. Thus, for m = 3, the partitions are generated by

3 3 3
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In general, if the part containing the bottom edge of the rectangle is m,

then j = 1,2,..., or m and the generating function for these partitions
is .

o M
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since, for a given j, there can be at most m —j parts below the rectangle
with each part less than j. We obtain the following theorem.

Theorem 1.
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This theorem is the result in the fourth line of Andrews’ proof of
Theorem 11 [1] (simply let £ +¢ = m — 1). The inner sum is just

the Rogers-Szego polynomial Hy(t) = Zf 0 [ } t/ [2] when ¢t = 1 and

k = m — 1. Thus our result can be expressed as

Theorem 2.

We will now insert a parameter z to keep track of the part containing
the bottom edge of the rectangle. Observing that any part > i from
1/(q)i+j—1 adds a node to the part containing the bottom edge of the
rectangle, we obtain

Theorem 3.

s ™ 3 )

5. Another way to express the generating function. We
can also rewrite our generating function based on the size of the i x j
rectangle plus the number of parts below the rectangle. When j =1
there are no parts below the rectangle and the term in our generating
function is

i>1

When j = 2 there are either no parts below the rectangle or the parts
below the rectangle are all ones and the term in our generating function

is
ILD pEe

a>0 i>1

2i+ai

In general, when j = k+ 1 there are either no parts below the rectangle
or the parts below the rectangle are all less than or equal to k& and the
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term in our generating function is

(a1+az+---+ag)i

k+1):
E q1a1+2a2+"'+kak E q( i
(Q)i

a1,az,...,ar >0 i>1

The inner sum in this expression is equal to 1/(g?*+aztFarth+l) "1
by Corollary 2.2 in [2]. Thus we have the following theorem.

Theorem 4.
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k>1ai,az,...,ax>0
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If we insert a parameter z to keep track of the width of the rectangle
plus the number of parts below the rectangle, the generating function
on the righthand side of the equation in the previous theorem becomes

Z((q; _ 1) +30 3 grmtertebhas e tor e tath
o)

k>1a1,as,...,a5>0

1

To insert the parameter z into the function on the lefthand side of the
equation we simply note that any part greater than ¢ from 1/(q)i+;1
yields a part below our rectangle. So we have,

Theorem 5.
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k>1ai,az,...,a; >0
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6. Is the generating function in Section 5 also related to
the Rogers-Szego polynomials? Let’s sort the terms in the
generating function on the righthand side of the equation in Theorem 4
according to the appearance of ¢*((1/(¢™%?)s) — 1), m > 0. Note that
q'((1/(g™*?)) — 1) appears when ¢ has been partitioned into m parts
<1, m—1parts <2,...,0 parts < m+1. The generating function for
partitions into m parts <1, m—1parts <2,...,0parts < m-+1is
H,(q) = Z;n 0 [m] ¢’. Thus our generating functlon can be expressed

as follows.

Theorem 6.

q] - —1+ZH (mL) —1>.

ij>1 (@)i+j—1 m>0

If we insert the parameter z to keep track of the width of the rectangle
plus the number of parts below the rectangle, our generating function

becomes
() S )
(9) = (¢™%) oo

7. Some other observations. It should be noted that we get
similar results if we start with the function }_, .5, ¢"/(¢;¢)i+;. In
fact, we have the following theorem. a

Theorem 7.
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