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EXTENSIONS OF POSITIVE LINEAR FUNCTIONALS
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ABSTRACT. The family of all extensions of a nonclos-
able hermitian positive linear functional defined on a dense
*-subalgebra 2o of a topological *-algebra 2[7] is studied with
the aim of finding extensions that behave regularly. Under
suitable assumptions, special classes of extensions (positive,
positively regular, absolutely convergent) are constructed.
The obtained results are applied to the commutative integra-
tion theory to recover from the abstract setup the well-known
extensions of Lebesgue integral and, in noncommutative in-
tegration theory, for introducing a generalized non absolutely
convergent integral of operators measurable with respect to a
given trace o.

1. Introduction. In many fields of pure and applied mathematics
there are several problems that can be abstractly formulated in the
following way.

Let 2 be a topological *-algebra, with topology 7 and continuous
involution *, and let 2y be a dense *-subalgebra of 2. Given a positive
linear functional w on Ay (ie., w(a*a) > 0, for every a € Ap) is it
possible to extend w to some elements of 2A?

For instance, if we take as 2 the *-algebra of Lebesgue measurable
functions on X = [0, 1] with the topology of convergence in measure, as
2o the *-algebra of continuous functions on X, and as w the Riemann
integral, then the Lebesgue integral provides an extension of w. Further
extensions of w were found by Denjoy, Perron, Khintchine, Henstock,
Kurzweil, Foran and many others (see, e.g., [3, 4, 5, 6, 9, 13, 16]).
These extensions of the Lebesgue integral do not share with it a relevant
property: a measurable function f can be integrable without |f| being
integrable. For this reason, they are usually called non absolutely
convergent extensions.
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Another rather familiar situation where the problem of extending
positive linear functionals arises is that of the so-called noncommutative
integration. In this case the starting point is a von Neumann algebra
which admits a normal semifinite faithful trace o. In the 1950’s Segal
[14] first formulated the notion of a measurable operator and defined
the space L' (o). Some years later, Nelson proposed an alternative (but
fully equivalent) approach by defining LP(c) as the completion of the
ideal

Tp ={A e Mo(|APP) < o},

with respect to the norm
1
IAll, = (o(JAPP)P.

This more abstract procedure leads (up to an identification) to Banach
spaces of operators affiliated with 9t which are measurable in Segal’s
sense. The problem of further extensions on the noncommutative
integral (which is, of course, nothing but the problem of extending
the trace o to larger families of measurable operators) has not been
investigated, as far as we know.

From the point of view of applications, the problem of extending posi-
tive linear functionals also arises, in a natural way, in quantum physics.
In the Haag-Kastler formulation of quantum statistical mechanics, one
defines the so called *-algebra of local observables gy, which is, roughly
speaking, the union of the net of the *-algebras of observables in re-
gions of finite measure of the configuration space. In the original Haag-
Kastler approach all these algebras were supposed to be C*-algebras so
that the *-algebra of observables of the system, i.e., the uniform com-
pletion 2 of Ay is a C*-algebra too. A state of the system is defined
as a normalized positive linear functional on 2y and then extended to
2. But in this case, the extension is immediately obtained since every
positive linear functional is automatically continuous! However, the
assumption that all the algebras under consideration were C*-algebras
was too strong and revealed not to be satisfied by many concrete phys-
ical models. For this reason, in the 1970’s it was proposed (first by
Lassner, [10, 11]) of completing 2y not with respect to the uniform
topology but with respect to a locally convex topology, called physi-
cal, obtaining in this way a new structure called locally convex quasi
*_algebra, which is endowed only of a partial multiplication (see, also,
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[1, Chapter 10, 11]). At this point the problem of extending states
of the system has not necessarily a trivial solution, since they can be
discontinuous or even worse (nonclosable).

In this paper we will discuss first from an abstract point of view
the general problem of extending a given hermitian positive linear
functional w defined on a dense subalgebra 2, of a topological *-algebra
2 to some subspaces of 2 (of course, if 2, has a unit the assumption
of hermiticity of w may be omitted). In particular, in Section 2, we
will focus our attention to the case were w is nonclosable, since in the
opposite case the problem has a unique (and well-known) solution. The
starting point of our discussion will be the notion of slight extension,
which is treated for general linear maps in Kothe’s book [8]. Our
first result proves that there exists infinitely many positive extensions
of w whose graph is contained in the closure of the graph of w. We
also characterize the maximal ones. Then we consider a special kind
of extensions which we call positively regular whose definition closely
reminds that of the Lebesgue integral for measurable functions and
proceed, under suitable assumptions on 2 and w, to the construction
of non absolutely convergent extensions.

In Section 3, we will prove that the Henstock-Kurzweil integral is
just one of the extensions defined in an abstract way in Section 2 of
the Riemann integral. Among all possible extensions of the integral,
we show that the Lebesgue one is the maximal absolutely convergent.

Section 4 is devoted to noncommutative integration. We prove that
extensions of the trace o beyond the space L! (o) do really exist and we
explicitly construct one of these extensions that behaves in a similar
fashion to the Henstock-Kurzweil integral in the commutative case.

2. Slight extensions of positive linear functionals.

2.1. The simplest cases. As mentioned in the Introduction the
problem of extending a given hermitian positive linear functional w
defined on a dense *-subalgebra 2 of a topological *-algebra 2[7], with
continuous involution *, may have, in some situations, easy solutions,
namely when w is 7-continuous or closable. To begin with, we shortly
discuss these two cases.
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Case 1. w is 7-continuous. This is a trivial case, since w can be
extended to 2 by continuity.

Case 2. w is closable.

This means that one of the two equivalent statements which follow is
satisfied. Define

G, = {(a,w(a)) €Uy xC;ac Q(o}
e If a, — 0 with respect to 7 and w(a,) — ¢, then £ = 0.

e G, the closure of G,,, does not contain couples (0, ) with £ # 0.

In this case, we define
D) ={aeU:FHan} C Ay, ay — a and w(ay) is convergent},

and
w(a) = liénw(aa), a € D).

The closability of w implies that w is well defined. The functional @ is

linear and is the minimal closed extension of w (i.e., Gz is closed).

Remark 2.1. If w is closable, the continuity of the involution implies
that @ is hermitian, i.e.,

w(a*) =w(a), forall a € D(w).
Hence, w(a) is real for every a € D(w) with a = a*.
Example 2.2. Let X = [0,1], 2 be the *-algebra of Lebesgue

measurable functions on X, 7 the topology of convergence in measure,
Ao = C(X) the *-algebra of all continuous functions on X and

1
wlf) = | f@)do
0
Then w is not closable. Indeed, the sequence f,(z) = nz(l —z2)" — 0
pointwise and then in measure. But

! n 1
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This example shows that it really makes sense to consider the problem
of extending w, even if w is not closable. This will be done in the
subsection 2.2.

2.2. Nonclosable functionals.

2.2.1. Slight extensions: preliminaries. We specialize to
the case of hermitian positive linear functionals the notion of slight
extension given in [8, Chapter 7, Section 36.7] for arbitrary linear maps
and we give without proving them the basic properties.

If w is not closable, G, contains couples (0, £) with £ # 0.

Let S,, denote the collection of all subspaces H of 2 & C such that
(gl) G, C H C Gy;

(g2) (0,¢) € H if, and only if, £ = 0.

Then, to every H € S, an extension corresponds to wg, to be called
a slight extension of w, defined on

D(wg)={aecA: (a,¢) € H}

by
wr(a) =4,
where ¢ is the unique complex number such that (a,?) € H.

Moreover, by applying Zorn’s lemma to the family S, one has
Proposition 2.3. w admits a mazximal slight extension.
Put o

Ko ={a€: (a,¢) € G,, for some ¢ € C}.

K. is a subspace of 2 with the property that a € I, implies a* € K.

Proposition 2.4. For every mazimal slight extension & of w,
D(w) =K,.

Remark 2.5. The previous proposition says, in other words, that all
maximal slight extensions have the same domain /C,; thus, they only
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differ for their values on elements which do not belong to 2ly. On the
other hand, it is clear that if a slight extension has K, as domain then
it is maximal.

Also the following proposition is a simple adaptation of the one given
in [8].

Proposition 2.6. If w is not closable and Ay is a proper subspace
of K, then w admits infinitely many mazximal slight extensions.

2.2.2. Hermitian and positive extensions. The slight extensions
defined above are neither hermitian nor positive, in general. As we are
looking for positive extensions, it is natural to begin with considering
the problem of the existence of hermitian slight extensions.

If 2 is an arbitrary *-algebra, we put

P = {Za;‘ai; a; € Ql}
i=1

Elements of P(2) are called positive.

Definition 2.7. Let & be a slight extension of w, and let D(&)
be its domain. We say that @ is positive if &W(z) > 0, for every
z € D(@) NP(A).

From Proposition 2.4, it follows, in particular, that a maximal slight
extension & is positive, if @(x) > 0, for every z € K, N P().

2.2.3. Hermiticity. Let w be a nonclosable hermitian positive
linear functional and let (a,f) € G,,. Then there exists a net {a,} such
that a, — a and w(ay) — £. The 7-continuity of the involution and
the hermiticity of w on 2y imply that ¢, = a* and w(ae) = w(as) — £
Hence, if (a,¢) € G, then (a*,f) € G,. In particular, if (a,?) € G,,
and a = a*, then there exists ¢ € R such that (a,#') € G,,. Indeed,
(a,f) € G,, implies that (a,f) € G,; hence, taking into account that
G., is a vector space, (a, Rf) € G, where R{ denotes the real part of £.
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Now let H,, denote the collection of all subspaces H € S, for which
the following additional condition holds

(h3) (a,f) € H implies (a*,¢) € H.
From (g2) and (h3) it follows
(h4) (a,¥) € H and a = a*, implies ¢ is real.

Every H € H,, defines a slight extension wg of w on the domain
D(wg)={aeU: (a,0) € H}.

The functional wy is, first, defined on an element a = a* € D(wgy) by
wp(a) = ¢, where ¢ is the unique real number such that (a,?¢) € H.
An arbitrary element a € D(wg) can be written as a = b + ic, with
b= (a+a*)/2 and ¢ = (a —a*)/2i. Since H is a vector space, (h3)
implies that b,¢ € D(wg). Whence,

wg(a®) =wy(b* —ic") =wg(b) —iwg(c) = wy(a).

Therefore wy is hermitian. Moreover,

Proposition 2.8. The following statements hold.
(i) w admits a mazimal hermitian slight extension.

(ii) Let @ be a mazimal hermitian slight extension of w. Then
D(w) =K,.

(iil) If w is not closable and 2y is a proper subspace of K, then w
admits infinitely many maximal hermitian slight extensions.

Proof. (i) H,, satisfies the assumptions of Zorn’s lemma. Then it has
a maximal element H.

(ii) As it is clear, for every hermitian slight extension ¢, one has
D(@) C K. Let a € K, \ D(&). Then also a* € K, \ D(&), since if
a* € D(w), then a € D(®) and this contradicts the assumption. Now
put b = (a+a*)/2 and let £ € R be such that (b,¢) € G,. Consider
Gs @ ((b,0)), where ((b,¢)) denotes the subspace generated by (b,?).
Clearly, Gy @ ((b,¢)) C H,, and this contradicts the maximality of @.

(iii) Since w is not closable, G, contains couples (0,m) with m # 0.
We may assume that m € R. Let b € K\ with b* = b, andlet £ € R
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be such that (b, ¢) € G,. Then there exists a maximal hermitian slight
extension & such that Gz D G, ®{((b, £)). Clearly (b,¢)+\(0,m) € G,
for every A € R\ {0}. For each ), there exists a maximal hermitian
slight extension whose graph contains (b, £)+A(0,m). It is clear that, for
different values of )\, the corresponding maximal hermitian extensions
are different. O

Remark 2.9. From (ii) of the previous proposition it follows that every
maximal hermitian extension is maximal.

2.2.4. Positivity. We begin with defining
P, ={(a,w(a)): a € P(Up)}.

Clearly, P, C G, and therefore P, C G,. If (a,f) € P,, then there
exists a net {(aq,w(aq))} C P, such that

o — a and w(as) — L.

Hence, a € P(p) and £ > 0. Therefore
P, C{(a,f) €G,:a€P®y), >0}

The converse inclusion does not hold in general. Clearly,

{a€eU:(a,0) € P,} CK,NPRp) C K, NPA).

Remark 2.10. If K, NPA) = {a € A : (a,f) € P,}, then every
maximal slight extension is positive (and, therefore, hermitian). This
seems, however, to be a very strong condition.

Let P, denote the collection of all subspaces K € H,, satisfying the
following additional condition

(p5) (a,¢) € K and a € P(2), implies £ > 0.

Then, to every K € P,,, it corresponds a positive slight extension wg
of w, defined on

D(wg)={a€eU: (a,¢) € K}
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by
wg(a) =4, a€ D(wk).

Then, by (p5) wk is a positive slight extension of w.

Proposition 2.11. The following statements hold.
(i) w admits a mazimal positive slight extension.

(ii) Let & be a mazimal positive slight extension of w. Then
D@)NPAR)=KE :={a €K, NP®): (a,¢) € Gy, for some £ > 0}.

(iii) Let w be nonclosable, and let P(Ao) # K}. Then w admits
infinitely many positive slight extensions.

Proof. (i) P, satisfies the assumptions of Zorn’s lemma. Then it has
a maximal element H.

(ii) Let a € K!; then (a,f) € G, for some ¢ > 0. Assume
that a ¢ D(®). Then Gy C Gy @ ((a,f)) € P,. Hence, @ is not
maximal positive. This shows that K C D(&) N P(™A). Vice versa, if
a € D(w) with a € P(2), then &(a) > 0, by the positivity of &. Since
(a,(a)) € G, then a € K},

(iii) Since w is not closable, G, contains couples (0,m) with m # 0.
We may assume that m > 0, since {(0,k) : (0,k) € G,} is a
subspace of G, stable under involution. Let ag € K! \ P(2l), and
let £ € R* be such that (ag,f) € G,,. Then there exists a maximal
positive slight extension & such that Gy D G, & ((ap,£)). Clearly
(ao,€) + A(0,m) € G, for every A € RT. Therefore, for every A,
there exists a maximal positive slight extension whose graph contains
(ao,€) + A(0,m). Also in this case, the extensions corresponding to
different values of \ are different. O

Remark 2.12. All maximal positive slight extensions are defined on
the same set of positive elements. However, if @ satisfies D(&)NP(2A) =
K¥, @ need not be maximal positive. Finally notice that a maximal
positive extension needs not be maximal.

Definition 2.13. Let 2 be a *-algebra and 2, = {b € 2 : b = b*}.
We say that 2 has the property (D) if, for every a € 2, there exists
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a unique pair (a;,a_) of elements of 2, with a;,a_ € P(2) and
ara_ = a_a4 =0, such that

(Dl) a=at+ —a_;

(D2) (a+b)4 < ay + by, for all a,b € Ap, with ab = ba;
(D3) (Ma)s = Aay, for all a € Ap, A € RT;

(D4) if a € Ap Ny, then ay € P(Ap).

Remark 2.14. From (D2) it follows that (a +b)_ < a_ + b_, for all
a,b € Ay, with ab = ba. Indeed,

(a+b)_-=(a+b)y—(a+b)<ay+by—a—-b=a_+b_.

If (D) holds, and a = a*, we put |a| := a; +a_. For a generic element
a € 2, |a| is, in general, not defined. From (D2), if ab = ba, we get

|a 4+ b| < |a| + |b], for all a,b € Ap,.

Definition 2.15. We say that a positive slight extension @ has
property (I) if

a € D(@) = |a| € D() and |&(a)| < &(|al),
for all a € D(w), with a = a™.

In what follows, a special role will be played by the condition
(1) a € D(W) < at,a_ € D(w).
For this reason we give the following

Definition 2.16. Let 2 satisfy condition (D). A slight positive
extension @ of w is called absolutely convergent if (1) holds.

Proposition 2.17. Assume that W is an absolutely convergent slight
extension of w. Then a € D(@) if, and only if, |a| € D(&). Moreover,
W has the property (I).
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Proof. The first statement is clear. Moreover, let a be an hermitian
element of D (@), then it easily follows that

w(a)] = |wlay) —wla- )| < @(ay) +@(a) =&(la]).

Proposition 2.18. Ifw admits an absolutely convergent slight exten-
sion & which is mazimal positive, then the domain of & is span{K}},
the linear span of K.

Proof. Let @ be a maximal positive extension and assume that
ay € D(&), for every a € D(w). Since w(as) > 0, it follows that
ay € Ki. Similarly, a_ € K}. This implies that a belongs to
span {1}, the linear span of !. Since the converse inclusion is
obvious, we conclude that D(w) = span {K} 1. O

Proposition 2.19. Fvery w has a maximal absolutely convergent
slight extension.

Proof. Let P, be as in subsection 2.2.4, and let AC,, be the subfamily
of P, whose elements K satisfy the additional requirement

(Pac) (a,) e K = (a4,04) € K,

where, as usual, £, = max{0,¢}. Then AC, satisfies the assumptions
of Zorn’s lemma, hence it has a maximal element. O

2.3. Positively regular extensions. In this section we will con-
struct a particular slight extension of a nonclosable hermitian positive
linear functional w, following essentially the model of the construction
of the Lebesgue integral. In this general framework, however, some
further conditions must be imposed.

Definition 2.20. A slight extension @ of a hermitian positive linear
functional w is said to be positively reqular if

W(a) =sup{w(d) :0<b<a;be U},
for all a € D(&) NP(A).
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We now give a condition for a positively regular extension of w to
exist. To this aim, for every a € P(2l), we define

m(a) ={beAp:0<b<a}l,
w(a) = sup{w(b) : b € m(a)}.

Proposition 2.21. Assume that 2 has property (D) and that the
following conditions are fulfilled.

(APy) If (an) is an increasing net of elements of P(2o), converging
to a € P(A), then w(ay) — w(a).

(AP3) For every a € P(2), there exists a net {an} C m(a) such that
ao — a increasingly and w(ay) — &(a).

Then, w defines an absolutely convergent positively regular slight exten-
sion of w.

Proof. Assume that 2 has property (D), and let w be a nonclosable
hermitian positive linear functional on 2y x 2.

Now, put
)={aeP®):w(a) < x}

Conditions (AP (AP3) imply that

Pw
1) and
(2) a,bePw)=a+be P(w) and w(a+b) = w(a) + w(b)
(3) a€ePw),A>0= da € P(w) and w(Aa) = Aw(a).
Put
Hw)={acA:a=0a" and at,a_ € P(w)}
D(w)={a+1ib: a,be H(w)}.
If a = a*, then a can be written, in a unique way, as a = ay —a_ .
Thus, if a € D(w), we define
w(a) :=wl(ay) —w(a_).

We need to prove that w is additive on hermitian elements. Let a,b €
H(w). By (D2) of Definition 2.13, it follows that (a + b)+, (a + b)_
P(w). It remains to prove that

w(a+b) =w(a)+wb), foralla,be Hw).
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Put ¢ = a + b. Then,
ct—c_=ay—a_+by —b_.
Whence
cy+a_+b_=c_+ay+0b;.
Therefore, by (2),

w(cy) +wla ) +wb ) =w(c)+w(ay) +w(by).

From this equality the statement follows easily. Finally, we extend w,
by linearity, to D(w). We finally remark that w is a slight extension
because of (D) and (AP;), and it is absolutely convergent since if
a € D(w), a =a*, then ay,a_ € D(w) by definition. O

Remark 2.22. We notice that the construction itself of W implies that
if a € D(w), then ¢* € D(w) and w(a*) = w(a), for every a € D(w).

Problem. Is w maximal? Or under which conditions is it maximal?

Proposition 2.23. Let 2 have property (D) and w satisfy (AP),
and (AP),. Consider the statements

(i) w is mazimal positive;

(i) P(&) = K

(iii) Fvery a € P(2) such that there ezists a net {a} C P(Uo) with
ao = a and limw(ay) < oo belongs to P(w).

Then

(i) <= (ii) = (iii).

Proof. (i) < (ii) is clear. We prove that (ii) = (iii). Assume that
a € P(2), and let {aq} C P(Ao) with aq — a and limw(aq) = £ < oo.
Then (a,f) € G, with £ > 0. This implies that a € K} = P(w). O

Proposition 2.24. If w admits an absolutely convergent positively
regular extension @ which is maximal positive, then this extension is
unique.
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Proof. Let w' be another absolutely convergent positively regular and
maximal positive extension. If a € D(w'), then ay,a_ € D(@) NP ()
(because maximal positive extension are defined on the same set of
positive elements). Moreover, if a € D(w’) N P(2A),

w'(a) = sup{w’(b); b < a} = sup{w(b); b < a} = &(a).
Hence, if a € D(w'), we have
w'(a) = w'(ay) = w'(a) = &(ay) — &(a) = @(a),
Le., w = . O

Proposition 2.25. Let b € D(w) N P(A) and a € A such that
0<a<b. Thena € D(w)NPA).

Proof. Let c € gy, with 0 < ¢ < a, then ¢ < b. Hence,

w(a) = sup{w(c); c € Ay, 0 < c < a}
< sup{w(c); c € Ay, 0 < c < b}
= w(b) < oco. O

2.3.1. Further extensions. In this section we will strengthen the
assumptions on 2A[r| and on w in order to construct extensions that
behave more regularly.

Assume that 2(y contains an approzimate identity with respect to 7,
i.e., a net {e,} of elements of P(2p) with the properties

(i) o < B = ea < ep;

(ii) eqa = a, for every a € .

. . . T
Remark 2.26. Since * is T-continuous, one also has ae, — a, for every
ac Q(().

From now forth, with the symbol w we will always denote the
extension of w constructed in the proof of Proposition 2.21.
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Let us now consider the vector space
D(°w) = {a € A: eqa € D(w), for all o, and {&(eqa)} is convergent}.
Then we define
‘w(a) = li;nw(eaa), a € D(ow).

It is easily seen that “w is a linear functional on D(°w), but, in general,
Ao ¢ D(°w) and, a fortiori D(w) ¢ D(°w). So we cannot conclude
that °w is an extension of w. Sufficient conditions for this to hold will
be given in Proposition 2.28.

Remark 2.27. 1In general, the domain D(°w) is not stable under
involution. More precisely, if we put

D(w®) ={a € U:ae, € D(w), for all o, and {w(aey)} is convergent},
then another functional w® can be defined by

w®(a) = li;nw(aea), a € D(w®).

In general, w® # °w and both these possible extensions depend upon
the net {e,}. Taking into account Remark 2.26, it is easily seen that
a € D(*w) & a* € D(w°).

In what follows we will suppose that 2y is a pre C*-algebra (i.e., a
normed *-algebra whose norm || - ||o satisfies the C*-property |la*a|lp =

|lal|3, for every a € 2p). Then its completion Ao is a C*-algebra. For
every a,b € 2y the following inequality holds

b*a*ab < ||a||3 b*b.

Hence, since for any pair of elements z,y of a C*-algebra such that
0 <z <y, one has zt/? < yl/z, we also have

(4) (b*a*ab)'/? < [laflo (b*0)"/2,
i.e.,

(5) |ab] < lallo [b]-
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We remind that by (D4) of Definition 2.13, if a,b € 2o then |abl,|b] €
Ap.

Let us also suppose that the norm topology of 2y is finer than the
topology induced on 24y by 7. Then 2, contains a bounded approximate
identity, that is, a net {e,} of elements of 2y with the properties

(1) fleallo < 1, for every
(i) a < B = eq < eg;

(iii) lim, |leaa — allo = 0, for all a € Yp.

However, in general, {e,} is not contained in 2y, unless 2y is an ideal
of Ap. If {eq} C o, then {ey} is an approximate identity also with

respect to T, since T is coarser than || - ||.

Moreover, by (5), it follows that
(6) lw(ab)| < w(lab]) < [lallow([b]), for all a,b e Ap.

In the next proposition we will assume that (6) extends to D(w).

Proposition 2.28. Let A[r] and w satisfy (APy) and (AP;). As-
sume, in addition, that

(i) Ao s a pre C*-algebra with a norm || - ||o such that the norm
topology of Ao is_finer than the topology induced on Ao by T and
,P(Qlo) = Q[o N 'P(Q[o),

(ii) Ao admits an approzimate identity {e.}, with the property
lleallo < 1, for every a;

(i) if a € Ay and x € D(w), then ax € D(w) and |w(az)| <
lallow(lz()-
Then D(w) € D(°w) and °w(a) = w(a), for every a € D(w).

Proof. Tt is sufficient to prove the statement for a € P(2). By (AP3),
if a € P(2) there exists a net {a,} C P(2p) such that a, < a, for every
9, ay — a and w(a,) — @(a). The T-continuity of the multiplication
implies that, for each fixed @, eqa, — eqa. Now, by (iii) it follows that
eq@ € D(w). It remains to prove that

1i61¥n w(eqa) = wla).
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First observe that the assumption P(2g) = o N P(Ag) implies |7,
Theorem 4.3.2] that w is continuous on 2y. Then, for each fixed v, we
have

wleaay — ay)| < [|lwlllleaay —aqllo — 0.

Hence, for each fixed v and for every € > 0, there exists an a;(v,¢)
such that

w(eqar —a~y)| < =, forall a > ai(vy,¢).
v v

Wl M

Finally, from w(a,) — w(a), it follows that there exists 7. such that
lw(ay) —w(a)| < %, for all v > ..

Moreover, also taking into account that a —a, > 0, we obtain from

(iii),

w(catsy) —@(caa)| < Bllay —al) =bla—ay) < 5, V7> 7.

Wl ™

Hence, for v > 7. and a > a;i(7., &) we get

jw(a) = w(eaa)| < lw(a) - wlay)| +[w(ay) - wleaay)|

+ |w(eqay) — w(eqaal) <e. O

We show now a situation where the assumptions of Proposition 2.28
are fulfilled.

Proposition 2.29. Let 2[r] satisfy the following conditions
(a) The map a — |a| is T-continuous;
(b) P(A) is T-closed.

Assume that gy is a pre C*-algebra. Then the following statements
hold.

(i) D(w) is a left module over Uy (i.e., ax € D(w), for every
z € D(w), a € Ap);
(i) |

ii) |w(az)| < ||allow(|z]), for all x € D(w), a € WAp.
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Proof. Let © € D(w). Then there exists a net {z,} C 2 such that
To — x and w(z4) — w(z). For a € Ay we get, by (5),

laza| < [lallo|zal-
Since & — |z| is T-continuous, taking the limit over a, we obtain
jaz| < [|aflo]]-

By Proposition 2.25, it follows that |az| € D(w) and then az € D(w).
Since w is positive on D(w) NP(2), by Proposition 2.17, we get

|w(az)| < |lallow(|z]), for all z € D(w),a € Ap. o

Remark 2.30. Assume that w is a trace, i.e., w(ab) = w(ba), for every
a,b € Ay. If the assumptions of Proposition 2.29 are satisfied, then
one easily proves that w(az) = w(za), for every € D(w) and a € .
This, in turn, implies that *w = w®.

Assume that w satisfies the following condition of lower semicontinu-
ity:

(LS) For every net {an} of elements of P(A) such that an, — a € 2,
one has

w(a) <liminfw(ay).
[0

Of course, a € P(2), by (b). Under these assumptions we can prove
the following abstract version of the Lebesgue dominated convergence
theorem, whose proof is similar to the classical one.

Proposition 2.31. Let A[7] satisfy (a) and (b) of Proposition 2.29
and w satisfy (LS). Let {an} be a net in A, T-converging to a € .
Suppose that there exists b € D(w) such that |ag| < b, for every a.
Then a € D(w) and lim, w(|aq — al) =0.

Proof. Since |an| < b, then |a|] < b, P(/A) being 7-closed. By
Proposition 2.25 it follows that |a| € D(w). This implies that a € D(w).
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Clearly, |aq —a| < 2b. Let {co} be the net defined by ¢, = 2b—|aq —al.
Then, lim, ¢, = 2b. Consequently, by (LS), we have

W(2b) < liminf w(2b — |ay — a|) = w(2b) — limsupw(|a, — al).

This implies that

limsup w(|aq — a|) < 0.
Hence,

limw(|ag —al) = 0. O

Remark 2.32. If w satisfies (LS), then the three conditions of Propo-
sition 2.23 are equivalent.

Proposition 2.33. Let [r] satisfy (a) of Proposition 2.29 and w
satisfy (LS). If a € A and there exists a net {an} C g such that
Ao — a with lim, w(|aa|) < 0o, then a € D(W).

Proof. From a,, — a, it follows that |a,| — |a|. Then by (LS),

w(la]) < liminfw(|a,]) < .
Hence, |a| € D(w). This, in turn, implies that a € D(w). o

Remark 2.34. The previous proposition says, in other words, that w
is a maximal absolutely convergent slight extension of w. Moreover it
is positively regular and positive. Then, by Proposition 2.24, it is the
unique extension of w with these properties.

3. Applications to commutative integration. Let us consider
the situation of Example 2.2. In this case, the positively regular slight
extension w of w exists and w is nothing but the Lebesgue integral
on [0,1]. This extension is not maximal. There exist, in fact, many
possible extensions of the Lebesgue integral. We consider in what
follows the Henstock-Kurzweil (HK) integral and we show that it
actually is a slight extension of w.
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In what follows, we denote by m(E) the Lebesgue measure of a
Lebesgue measurable set F.

Proposition 3.1. If f is HK -integrable on [a,b], then there exists
a sequence {f,} of continuous functions such that f, — f in measure

and [° f — (HK) [* f.

Proof. The claim is well known for Lebesgue integrable functions [17,
Theorem 3.14].

In [12] it was proved that if f is H K-integrable on [a, b], then there
exists a sequence of measurable sets {E,} such that U,E, = [a,b], f

is Lebesgue integrable on E,,, for each n, and (L) fEn f— (HK) f; f.

Now, for each n, let {gn,m} be a sequence of continuous functions

such that g, ,, — fXg, in measure and f: Gn,m — (L) fab [Xg,. We
define f, = gn,m,, where m,, is the first m satisfying the conditions:

) \ / P / " i,

®  o{oc@lilmm. @ - @2 <

1
<=
n

Remark that

{z €a,b]: |fu(z) - f(z)] > €}
c {x € [a,b] : |fulz) — fXB, (2)] > %}

U {x € la,b] : |f(x) — fXE,(z)] > g}a

and that fXg, — f in measure.
Given g,n > 0 let N > sup{2/e,2/n} be such that for n > N we have

m({e e ol 190,00 - f@) > 5 ) < 1
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Then, by (8), taking into account that f, = gn m,, for n > N, one has
m({z € [a,8] : | fu(z) — f(2)] > €})
< m({x: |fr(z) — fXE, ()] > })

+m({$ f(@) - fxe, (o)) > %}>

< m({x: |fn(@) = fXB, (2)] > %}) +Z

N M

1 n 1 n _mn n_
<45 <yty<gsty=n

This implies f,, — f in measure.

The convergence f: fn— (HK) f: f follows immediately by (7) and
by the convergence (L) [, f — (HK) f; f. o

The next proposition shows that the HK-integral is not even a
maximal slight extension.

Proposition 3.2. There exists a measurable function f which is not
HK -integrable on [0,1], and a sequence {f,} of continuous functions
such that f, — f in measure and the sequence {fo fn} is convergent.

Proof. Let C be the Cantor ternary set. Then

oo 2"
C= ﬂ U Jin7
n=1i=1
where with Jy,, Jon, ..., Jon, we denote the intervals involved at the
step n of the construction of the Cantor set. Let {pr} be a fixed
sequence of natural numbers, with 0 = p; < ps < --- < p, < --- such

that
2pn+1_pn_1 _ 1 >n- 3pn'
We define h(n) = pr, whenever pr, < n < pr41.

It is known that each point x € C' can be uniquely represented as
r =) ¢n/3", where ¢, =0 or ¢, = 2, for every n. Let F be the
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function defined on [0, 1] by F(z) = > cpn)/3™,ifC Dz =3 c,/3",
and linear on each interval contiguous to C.
Foran [3] proved that the function f defined as f(z) = F'(x) on each

interval contiguous to C' and as f(z) = 0 on C, is not HK-integrable
on [0, 1].

By an easy adaptation of the algorithm used in the proof of Propo-
sition 3.1, to complete the proof it is enough to prove that there exists
a sequence {g,} of Lebesgue integrable functions such that g, — f

almost everywhere and the sequence {(L) fol gn} is convergent.

For each natural n, let F,, be defined by

and linear on each interval contiguous to C. Then, for each z € [0, 1]
we have

Now let J be one of the intervals J;,,. Then there exist dy, ... ,d,, with
di=0o0rd; =2fori=1,...,n, such that

Therefore, each ¢ € J can be represented by

< d; o ¢

i=n-+1
with ¢; € {0,1,2}, for i =n+1,.... Consequently, for x € J we have
“~ dp;
Fu(z) =) 35 ),
i=1

Thus the function F,, is absolutely continuous on [0, 1], being constant
on the intervals J;,, and linear on each interval contiguous to Ufiljm.
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Let g, be defined as follows:

gn(z) = {

0 if © € U2 Jin
F!(z) on[0,1]\ U?llJm.

It is clear that g, is Lebesgue integrable and that (L) fol gn = Fn(1).
Thus, by (9),

n

lim(L)/0 g =F(1)=1.

Now let I = (a,b) be an interval contiguous to C. Then, for every z € I
we have, by the definitions of F' and F,,, f(z) = (F(b) — F(a))/(b—a)
and g, (z) = (F,(b)—F,(a))/(b—a), for every n € N. Therefore g,, — f
pointwise in [0, 1]. o

Lemma 3.3. Let f be a measurable function on [0, 1] such that there
exists a sequence {f,} of continuous functions converging in measure

to f, with lim,, fol |fn| < +00. Then, f is Lebesgue integrable.

Proof. Indeed, if f, — f in measure, then {f,} contains a subse-
quence {f,,} converging to f almost everywhere. By Fatou’s lemma,
we then obtain

1 1
/ |f|§liminf/ | Fr] < 00. O
0 k—oo [o

Remark 3.4. The previous lemma cannot be deduced directly from
Proposition 2.33, since the condition (LS) is not necessarily satisfied if
7 is taken as the topology of convergence in measure.

Proposition 3.5. Let f be a non negative measurable function.
Then f € K., if, and only if, f is Lebesgue integrable.

Proof. 1t is well known that if f is Lebesgue integrable, then f € IC,.
Vice versa, if f € K, then f is Lebesgue integrable, by Lemma 3.3. O

The previous proposition shows that the Lebesgue integral is a max-
imal positive extension of the integral on C(X) where X = [a,b]. It
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is also absolutely continuous and positively regular. Hence, by Propo-
sition 2.24, there are no other absolutely convergent extensions of the
Riemann integral.

4. Applications to noncommutative integration. Let 9 be
a von Neumann algebra on a Hilbert space #, and let ¢ be a normal
faithful semifinite trace defined on M1, .

Segal, who begun the studies on non-commutative integration, intro-
duced the notion of measurable operator. For the basic definitions and
properties on noncommutative integration we refer to [14, 15, 18].

We first remind how the topology of convergence in measure on 9 is
defined.

For €,6 > 0, let N(¢,0) = {A € 9 : for some projection P €
M, ||AP|| < ¢ and o(Pt) < 6}. We endow 90 with the translation-
invariant topology 7 generated by the system {N(e, d);€,6 > 0} of
neighborhoods of 0. The 7-completion I of 9 is a *-algebra and it
is called the *-algebra of measurable operators. We remind that the
mappings

(i) A~ A* of M — IM;

(ii) (A,B) — A+ B of M x M — M

(iii) (4, B) — AB of 9 x M — N,
ll@ve Al/miql/l\e/ continuous extensions as mappings of M — M and
MxIM — M. The mappings (i), (ii) and their extensions, are uniformly

continuous. The map (iii) is uniformly continuous on products of sets
which are bounded in measure [18].

Let 1 <p < 400, and put
Tp ={X € M:0(|X|P) < o0}

Then, J, is a *-ideal of M. As in [14], we denote with LP(c) the
Banach space completion of J, with respect to the norm

IXlp == o (X IP)'/?, X € Tp.
As usual, we put L>® (o) = 9.

If X is measurable and X = X*, then the operators X, X and |X|
are measurable operators.
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If A is a measurable operator and A > 0, one defines

p(A) =sup{o(X); 0< X <A, X € J1}.

Then the space L(o) can also be defined [14] as the space of all
measurable operators A such that u(]A|) < oco.

The integral of an element A € L'(0) can be defined, in an obvious
way, taking into account that any measurable operator A can be
decomposed as A = By — B_ +iC; —iC_, where B = (A + A*)/2 and
C=(A—-A")/2.

Proposition 4.1. The following statements hold.

(i) For all A € ﬁ, A is a closed, densely defined operator affiliated
with 9.

(ii) If A € M then for all € > 0 there is a projection P in I with
AP € M and o(P*) <e.

From the previous discussion, it follows that u is exactly the positively
regular extension ¢ of o, as defined in Section 2. More precisely,

Proposition 4.2. pu is a positively regular, absolutely convergent
extension of o.

Moreover, the following generalization of (ii) of Proposition 2.29 holds
[15].

Lemma 4.3. Let A€ L'(0) and X € M. Then XA € L'(o) and

(10) (X A)| < (I X]u([AD).

Also, in this case, one can pose the problem of extending o to
other measurable operators. As far as we know, extensions of o to
other classes of measurable operators have not been explicitly defined.
This will be done in what follows simply by applying the results
of subsection 2.3.1 (in particular, Proposition 2.28). As noticed in
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Remark 2.26, since o is a trace, u® = °u and the results do not depend
on the order in which the operators are multiplied.

Since J; is a *-ideal of the von Neumann algebra 91, J; contains
an approximate identity of 9t [2]; in this concrete case, this means
that there exists a net {E,}qecr of positive operators in # with the
properties

(i) E4 € Jh, for every a € I;
(i) ||Eal| < 1, for every a € I;
(i) o < 8 implies E, < Eg;
(iv) |[EaA — Al — 0 for every A € Ji.
Since J; is a *-ideal, one also has |AE, — A|| = 0, for all A € J;.

Let ~
D(°u)={AeM: E,Ae L' (o),
for all & € I and lim p(E,A) exists finite}.

For A € D(°y), we put

“u(A) = lim p(Eq A).

From Lemma 4.3, it follows that Proposition 2.28 can be applied
to state that °u is an extension of y once we have checked that the
condition P(J1) = J1 N'P(J1) holds. But, by the definition itself, we
have

P() =M N 2P(J)N T
The converse inclusion is clear.

Finally we remark that if A € L'(o), then E,A € L'(o) for every
a € Z, by Lemma 4.3. In conclusion, we have shown that

L'(o) S D(°p).

In general, the equality does not hold, as we will see from the following
example.

Example 4.4. Let # be a separable Hilbert space and {¢;}{> an
orthonormal basis of 7. For any positive operator A € B(H) = 9, the
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natural trace tr on B(H) is defined as

0o
Z Pk Asak
k=1

As is well known, tr (A) is independent of the orthonormal basis and
tr is a normal faithful semifinite trace on the von Neumann algebra
M = B(H).

If p > 1, we denote as usual, by 7, the following *-ideal of B(H).
Tp={X € M:tr (| XP) < oo}.

Then, as it is well known, 7, is a Banach space with respect to the
norm
1
X, = @ (IX[P)Y?, X €T,

In what follows we will only consider the cases p = 1 and p = 2. With
the notations introduced in the previous sections, we have, in this case,
L'(tr) = T;. We remind that

TiCTs and ||A| < [All2 < |Al1, forall A€ T;.

Let us now define, for each ¢ > 1, the following closed subspaces of
H,

|
H, := linear span{¢,, n € {1,2,.. .Z}}M,

and let P, denote the projection onto H,. The family {Ps}scn is an
approximate identity of 1.
Indeed, for every A € T; C 7T,
o0

IPA~ A? < ||PA~ Al =) (PA — A)pr, (P A~ A)gy).
k=1

Now, Pypr, = @i, if k < £, and Pypr, = 0, if & > £. Then, a simple
computation shows that, if Apy = > "7 cprr, then

D (PeA = A)py, (PLA - A)py) = Z |ckr|2 — 0, as £ — oo.
k=1 k=0+1
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For every
f=Y drpr € H,
k=1

we put
]_ k—1

Z — k-

Then A is a well-defined bounded operator on H. Indeed,

> -1 k—1 > -1 j—1
R O S M )
k=1 j=1

1
Z Zlal® < IIFI1%

Moreover,

;_\

r(1A]) = (ox, [Alpr) = ZE Pk, Pr) = +00.
k=1 k=1

Hence, A ¢ T;.
For every £ € N, we have AP, € T;. Moreover, A € D(tr®), since

°tr (A) = Jim tr (PA) = lim ;(% P, Apy)

14

= lim Z(gpk,Agak)

£—
Rt

~(-DF!
Z_iffoo; & (or, or) n

This example shows that, in general,
D(w)\L'(0) # 2.

By the definition itself, every A € D(°u) can be approximated by
a net {A,} of operators of J; such that A, — A in measure and
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w(Ay) = °u(A). The next proposition shows that, in fact, a sequence
{A,} enjoying the same properties can be found.

Proposition 4.5. If A € D(°u), then there exists a sequence
{A,} of bounded operators of Ji such that A, — A in measure and

1 (An) = °p(A4).

Proof. If A € D(°u), then lim,, u(E,A) exists finite. For each n € N,
let us choose an element E, A of L' (o) such that [*u(A) —p(Eq, A)] <
1/2n.

Now, for each n € N, let {G,, ,, } be a sequence of bounded operators
of Ji such that Gy, — Ea,Ain || -||1. We define A,, = Gy, 1, where
m,, is the first m satisfying the condition

1
(11) l1(Grm,) — #(Ea, A)| < m
Therefore,

°1(A) = w(An)| < |1(Grm,) = 1(Ea, A)| + °u(A) = u(Ea, A)| < %

Finally, we notice that, since E,, — I in measure, then also 4, — A
in measure. ]

The following statement is the analog to Lemma 3.3 in the non
commutative case.

Proposition 4.6. Let 9 be a von Neumann algebra, and let A be
a measurable operator with respect to the finite trace o on M. If there
exists a sequence of operators {An} of M converging in measure to A,
with lim,, 0(|A,|) < +oo, then A € L(o).

Proof. Without loss of generality we may assume that A and all the
A,’s are hermitian. Moreover, since, by assumption, o(I) < oo, we
may also assume that o(I) = 1.

Since A, — A in measure, for every n € N, we can choose a
projection P,,, such that

1
[(A— AP, <1 and o(Pf) < —.

2n
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Since o(P;r) — 0, we also get o(P V Pl) — o(Pt), for every
k € N. Then, we can define inductively a sequence of natural numbers
Ny < Ny < -+ < Ng <--- such that

(i) Ny =1,
(ii) O'(Pﬁk \% Pf\;kﬂ) < U(PJ{,-k) +1/2F k=1,2,....
For k =1,2,..., we set Qx = A\J2, P, ,. Then

RQi<@Q2<- - <Qrp<---.
Moreover, by (ii), it follows that

1

1
+op ot o

ok
k=1,2,...;7=0,1,2,....

o(Py, V-V Py, ) < o(Py,)

- k

The previous inequality implies that

1
J(Qk)ZU(PNk)_ij, k=1,2,....

Hence, for o(Py;, ) — 0, we have

1> lim 0(Qk) > lim o(Pyn,) =0(I) =1.
k— o0 k— o0

Now, by the definition of Pp,, it follows that

1PN, A = PnyAng [l < (|1Pnv A = P Ang L
= ||APy, — An,Pr, || [ 1]l1 £ 1.

Hence, by the properties of the norm,
||PNkA||1 <1+ ||PNkANk||1 <1+ ||ANk||17

since | Py, An, | < |An, |- Similarly, taking into account that Q < P, ,
it is easily shown that |QrA| is bounded and |QrA| < |Ppn, A|. Hence,

o(|QrAl) < o(|PrnAl) <1+ o(|An,])-
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Since limy, (] A,|) < 400, for k large enough, we get

o(|QrAl) <2+ limo(|An,|)-

The sequence {Q} is increasing (using the faithfulness of o, it can
also be shown that @ 1 I) and, therefore, also {|QrA|} is increasing.
Moreover, as seen before, sup,, ||QrA|1 < oo. Therefore, by [15,
Corollary 3.2] there exists B = sup |QrA| € L'(0) and |||QrA|— Bl —
0. It remains to prove that B = |A|. For this, we first show that
QrA — A in measure. Due to the continuity of the involution, this
is equivalent to showing that AQx — A in measure. Let § > 0 and
R be a projection in 9 such that AR is bounded and o(R*) < 4.
Define Ry, = Qi A R. Then we have ||(AQr — A)Rk|| = 0 for every
k € N and o(R) = o(Qif V RY) < 6, for sufficiently large k, since
Qi 1 I. Thus, QyA — A in measure. This implies that AQ,A — A2
in measure. Now, from |||QrA| — B||1 — 0, it follows that |QrA| — B
in measure, whence AQ;A — B? in measure. Therefore A2 = B? and,
in conclusion |A| = B. O

Proposition 4.7. Let A be a positive measurable operator. Then
A € K, if, and only if, A € L'(0).

Proof. By the definition itself, if A € L!(o) then A € K,. Vice versa,
if A € K,, then A € L'(0), by Proposition 4.6. O

Concluding remark. In the case of non commutative integration,
we have discussed the possibility of constructing an extension °u of the
integral u, based on the choice of an approximating identity {E,} in
the von Neumann algebra 9t, and we have given sufficient conditions
for °u to enjoy basic reasonable properties. Nevertheless, it is clear
that there are still too many possibilities of choosing {E,} for making
our approach fully satisfactory. A more restricted choice (possibly,
uniqueness) could only be obtained by requiring that the corresponding
extension “u enjoys a series of properties making it closer and closer
to the known extensions of the Lebesgue integral. We hope to discuss
this aspect in a further paper.
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