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SIMPLICITY OF THE
PROJECTIVE UNITARY GROUP OF THE
MULTIPLIER ALGEBRA OF A
SIMPLE STABLE NUCLEAR C*-ALGEBRA

P.W. NG AND EFREN RUIZ

ABSTRACT. If A is a unital simple separable nuclear C*-
algebra with real rank zero, then U(M(A® K))/T, given the
quotient topology induced by the strict topology on U (M(A®
K)), is a simple topological group. (Here, U(M(A®K)) is the
unitary group of the multiplier algebra of the stabilization of
A. T is the subgroup of scalar unitaries.)

If A is a unital simple separable C*-algebra, then U(A)/T,
given the quotient topology induced by the relative weak
topology on U(A), is a simple topological group.

1. Introduction. A topological group G is simple if it has no
proper nontrivial closed normal subgroups. Simple topological groups
play a fundamental role in many places. (Some examples are the
connected simple Lie groups with trivial center, for which there is a
complete classification. See, for example, [5].) In this paper, we study
the simplicity of certain topological groups associated with simple C*-
algebras. Consider the case of the full matrix algebras M,,(C). In this
case, the unitary group U(M,(C)), given the norm topology, is not
simple. However, when we take the quotient by the scalar unitaries,
i.e., the center, we get the projective unitary group U(M,(C))/T
which if given the quotient topology induced by the norm topology of
U(M,(C)) is a simple topological group. We are interested in infinite
dimensional generalizations of this result, which will necessarily involve
interesting nonlocally compact topological groups.

The first infinite dimensional generalizations were due to Kadison
who studied the case of von Neumann factors. In [6], Kadison showed
that if M is a type II; factor or a type III factor then U(M)/T,
given the quotient topology induced by the norm topology on U (M),
is a simple topological group. However, if M is a type I factor or a
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type Il factor then U(M)/T, given the same topology as before, has
a unique proper nontrivial closed normal subgroup.

We note that the above results all involve the (quotient topology
induced by the) norm topology on a von Neumann algebra. If we were
to use one of the weaker von Neumann algebra topologies, then the
picture becomes simpler. (We note that for a von Neumann algebra,
the weak, weak*, strong, o-strong, strong*, and o-strong* topologies
all coincide on the unitary group. See [9].) In particular, the following
theorem follows immediately from the work of Kadison in [6]:

Theorem 1.1. If M is a von Neumann factor, then U(M)/T,
given the quotient topology induced by the weak*-topology on U(M), is
a simple topological group.

Our first goal is to study multiplier algebra versions of the above
result. The multiplier algebra M(B) of a C*-algebra B is the largest
unital C*-algebra containing B as an essential ideal. M(B) encodes the
extension theory of B and is an important object in K-theory as well
as classification theory [1, 8].

M(B) sits in between B and its second dual von Neumann algebra
B**, and (like a von Neumann algebra), M(B) has more than one
interesting natural topology. In particular, M(B) has another natural
topology (other than the norm topology) called the “strict topology.”
The strict topology on M(B) is the topology on M|(B) induced by the
family of semi-norms {||.||s }scs, Where for all b € B and m € M(B),
lm|ls =as ||mb|| + ||bm||. The strict topology on M(B) plays a role
similar to the weak* topology on the von Neumann algebra B**. For
example, just as B** is the weak™* topology closure of B, M(B) is the
strict topology closure of B. (See [1, 8, 11].)

Our first result is the following:

Theorem 1.2. Let A be a unital separable simple nuclear C*-algebra
with real rank zero. Let UM(A ® K)) be the unitary group of the
multiplier algebra of the stabilization of A, given the strict topology.
Then U(M(ARK))/T, given the quotient topology induced by the strict
topology on UM (A ® K)), is a simple topological group.
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We note that the above theorem would not be true if we had used the
norm topology instead of the strict topology. For example, there exists
a unital simple AF-algebra A such that U(M(A ® K))/T, with the
quotient topology induced by the norm topology on U(M(A®K)), has
(uncountably) infinitely many distinct proper closed normal subgroups.

In another direction, de la Harpe and Skandalis, and Elliott and
Rordam, proved the following [2, 4]:

Theorem 1.3. Let A be a simple unital separable C*-algebra.
Suppose that either

i) A has real rank zero, stable rank one and weak unperforation, or
ii) A is purely infinite.

Then U(A)o/T, given the quotient topology induced by the norm topol-
ogy on U(A)g, is a simple topological group. (Here, U(A)o is the group
of unitaries in A that are in the connected component of the identity.)

A natural question is whether or not the above theorem is true for
arbitrary simple unital separable C*-algebra 4. Thomsen showed that
this is not the case. Specifically, Thomsen gave an example of a unital
simple AI-algebra A with real rank one such that U(A)y/T, with the
quotient topology induced by the norm topology on U(A)g, is not a
simple topological group [4, 10].

We show, however, that by modifying the topology, U(A)/T becomes
a simple topological group. In particular, we will replace the norm
topology by the relative weak topology on U(.A). For a unital C*-algebra
A, the relative weak topology on A is the weak topology given by all
the linear functionals in A*. Our second result is the following:

Theorem 1.4. Let A be a unital separable simple C*-algebra.
Then U(A)/T, given the quotient topology induced by the relative weak
topology on U(A), is a simple topological group.

We end this introduction with a question:

Question 1.5. Let A be a unital separable simple nuclear C*-algebra.
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Then is it the case that UM(A® K))/T, given the quotient topology
induced by the strict topology on U(M(A® K)), is a simple topological
group?

2. The projective unitary group of the multiplier algebra of a
nuclear C*-algebra. Towards our goal, we first need some definitions
and results from the theory of absorbing extensions.

Definition 2.1. Let C be a unital separable C*-algebra and let A
be a unital simple separable C*-algebra. Let 7w : C — B(H) be a unital
essential x-representation. Then a Kasparov extension of A® KC by C is
a unital #-homomorphism ¢ : C - M(A®K) given by ¢ : ¢ — 1 4@ (c)
for every c € C.

Definition 2.2. Let A and B be C*-algebras and ¢,¢ : A — B
be x-homomorphisms. ¢ and 1 are said to be approximately unitarily
equivalent if there exists a sequence of unitaries {u,}32 ; in M(B) such
that

lim_{|lu,@(a)uy, —¢(a)l| =0

n— oo

for all a € A.

For our purposes, we need only the following result. See [3] for a
proof of the result.

Theorem 2.1. Let C be a unital separable C*-algebra, and let A be
a unital simple separable nuclear C*-algebra. Let ¢ : C — M(ARK) be
a Kasparov eztension of AQK by C, and let v : C — M(ARK) be any
unital *-homomorphism. Let S1,S2 € M(A® K) be isometries such
that S1(S1)* + S2(S2)* = 1pm(uaek)- (In other words, Sy, Sa generate a
unital copy of the Cuntz algebra Oz in M(A®K).) Consider the unital
«-homomorphism ¥ : C — M(A® K) that is given by

P(c) =ar S19(c)(S1)" + S29(c)(52)"

for all ¢ € C. (In the terminology of extension theory, ® is the BDF -
sum of ¢ and ¢.) Then ® and ¢ are approzimately unitarily equivalent.
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Lemma 2.2. Let A be a unital separable simple nuclear C*-algebra.
Then the set of all unitaries, with finite spectrum and with nonzero
spectral projections all Murray-von Neumann equivalent to 1 agk),

is strictly dense in UM(A® K)).

Proof. Let T be the unit circle, i.e., T = S!, and let 7 : C(T) —
B(#) be a unital essential *-homomorphism. Let ¢ : C(T) - M(A®
K) be the unital *-homomorphism that is given by ¢ = 1® 7. In other
words, ¢ is a Kasparov extension of A® K by C(T).

Let U be an element of U(M(A®K)). It suffices to show that U can
be approximated in the strict topology by unitaries (in M(A®K)) with
finite spectrum and with nonzero spectral projections all Murray—von
Neumann equivalent to 1aq(4gk)- So let € > 0 be given, and let F
be a finite subset of A ® K. Contracting ¢ > 0 if necessary, we may
assume that the elements of F all have norm less than or equal to
one. Let {e; j}1<ij<oo be a system of matrix units for K. Therefore,
{370 (14 ®e;i)}52, is an approximate unit for A ® K, consisting of
projections. Hence, there exists an N > 1 such that

i) Forallbe Fand foralln > N, (-0 14®e;i)b(> i 1a®eis),
(>l 1a®e)b, (D, 14 ®e;;) and b are all within €/100 of each
other.

Choose M > N such that
ii) forallm > M and foralln < N, (3°1"; 14®e;:)U (X 1a®e; )
is within €/100 of U(}."_; 14 ® €;;); and

iii) forallm > M and foralln < N, (-0, 14®e; ) )U (X2, 1a®e; ;)
is within £/100 of (31, 14 ®€;;)U.

We collectively denote the above statements by “(x).”

Let S € 14 ® B(H) be an isometry with range projection Zfiwl 14®
ii + X5 a1 La ® ezigi such that S(E20 La®eiy) = (D72 1a ®
€ii)S = fol 1y®e; ;- Let T € 1, ®B(H) be an isometry with range
pI'OjP,CtiOIl Z;ZM ]._A X €2i41,23+1- Then SS* + TTr™* = 1M(A®’C)' (In
other words, S, T generate a unital copy of Oz in M(AQ K).)

Let 7 : C(T) — B(#) be a unital essential *-representation. Let
¢ : C(T) - M(A® K) be the unital injective *-homomorphism given
by ¢ = 14 ® w. Then ¢ is a Kasparov extension. Let id : T — T
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be the identity map id () = «. (So id is the generator of C(T).)
Let ¢ : C(T) - M(A® K) be the unique unital *-homomorphism
given by ¢(id) = U. Let ® : C(T) — M(A ® K) be the unital
injective *-homomorphism given by ®(f) =g S¢(f)S* + To(f)T* for
all f € C(T). Then by Theorem 2.1, there exists a sequence of unitaries
{Un}521 in M(A® K) such that

Und(f)(Un)* — @(f)

in norm for all f € C(T).
Choose L > 1 such that

[(UL)"¢(id)UL — @(id)|| < &/2.

Hence,

[(UL)*¢(id)Ur — (SUS™ + Tp(id)T™)|| < £/20.
By the definition of T, we have that
N N
T*Z]-A@)ei,i = (ZlA®€i,i>T: 0.
i=1 i=1

Hence, we must have that

N
I(UL)*¢(1) U, — SUS*) Y 14 @ eiil < &/20.

i=1

We denote the above inequality by “(skx).”
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From the definition of S and from (x), we see that

|sus-0)3 1ae

:HSU(il‘A(@ei’i) U(ilfl@ez,z)“
i;l ]Mi:l N

< HSU(Z 1A®€i,i> <21A®€i,i> U(Z 1la®ei)
i=1 i=1 =1

i=1

N

= (5*5 S*<21A®e” >U<Zl,4®ei,i>H+s/20
i=1
N
= <1M.A®IC) (ZIA®6H>>U 1A®ei,i>“+5/20
i=1

< e/20 +¢/20 = ¢/10.

From this and (x), we have that

1(UL)*¢(id)UL —U) > 1a® el < £/20 +£/10 = 3/20.

i=1

We denote the above statement by “(x * %).”
By (*), we have that, for all b € F,

[(Srwoeo-s] <o

From this and (x* ) (and since the elements of F all have norm less
than or equal to one), we get the following for all b € F:
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1((UL)*¢(id)Ur, — U)b||

< H((UL)*¢(id)UL -U) <b - (ilf‘ © e)b> H
(o)

< &/10 + 36/20 = 5¢/20 = /4.

By a similar argument,
16((UL)"¢(id)UL - U)|| < /4
for all b € F. Hence,
I(UL)* ¢(d)UL — Ulls < /2

for all b € F. We denote this inequality by “(* * #x).”

Now any unitary in 14 ® B(H) can be approximated “arbitrarily
close” in the strict topology by unitaries in 1 4 ® B(#) with finite spec-
trum and with nonzero spectral projections all Murray—von Neumann
equivalent to 1aqagk). Hence, let {V,}72; be a sequence of finite
spectrum unitaries in 14 ® B(#), with nonzero spectral projections all
Murray—von Neumann equivalent to 1x4(4gk), such that V,, — ¢(id)
in the strict topology on M(A ® K). (Note that A is assumed to be
separable.) Hence, (UL)*V,Ur — (UL)*¢(id)UL in the strict topology
on M(A® K). Choose N’ > 1 such that for all n > N’, for all b € F,

[(UL)*VaUr — (UL)*¢(id)Urlly < £/2.
From this and (x * %), we have that for all b € F,
|(UL)* VUL = Ullp < e.

Since e, F were arbitrary, U can be approximated “arbitrarily close”
in the strict topology by unitaries in M(A ® K) with finite spectrum
and nonzero spectral projections all Murray—von Neumann equivalent

to 1M(A®IC)- m}
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Lemma 2.3. For every e > 0, there exists a 6 > 0 such that, for any
unital C*-algebra A, if

i) p1,D2,--. ,Pn are pairwise orthogonal projections in A,
ii) q1,42,-- - ,qn are pairwise orthogonal projections in A,
iil) a1, ag,... ,an are scalars (complex numbers) with norm one,

)
iv) |o — o] > € fori # j, and

v) |[(a1p1 + agpz + - -+ + anpn) — (@1q1 + @2g2 + - -+ + angn)|| <6,

then p; is Murray—von Neumann equivalent to q; in A for 1 < i < m;
moreover,

lpi — aill <€

for all i.

Theorem 2.4. Let A be a unital simple separable nuclear C*-algebra
with real rank zero. Let U(M(A ® K)) be the unitary group of the
multiplier algebra of the stabilization of A, given the strict topology.
Then UM(A® K))/T is a simple topological group.

Proof. Let G C UM(A ® K)) be a strictly closed normal sub-
group such that G properly contains all the scalar unitaries (i.e., G
contains all scalar unitaries, and G also contains a nonscalar unitary.)
By Lemma 2.2, it suffices to show that G contains all unitaries (in
UM(A®K))) with finite spectrum and nonzero spectral projections
all Murray—von Neumann equivalent to 1x¢agk)-

Let u be a unitary in G such that u is not a scalar unitary. Since G
contains the scalar unitaries, we may assume that 1 is a point in the
spectrum of wu.

Case 1. Suppose that the spectrum of u contains a point o #
~1,1,4, —i.

Claim 1. For every e > 0, there exist pairwise orthogonal projections
p,q € A— {0}, which are Murray—von Neumann equivalent in A such
that the following hold: There is a unitary w” € G with

() w"1-(p+q)=0-(@+gw"=1-(p+q).
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(i) w'"p = pw" = pw''p is within ¢ of o’p.

(iii) w"q = qu" = qu''q is within ¢ of a’q.

Towards proving Claim 1, let £ > 0 be given. For simplicity, we may
assume that ¢ < 1/2. Plug min{|1 — «|/2,|1 — @|/2, | — @|/2,¢/100}
into Lemma 2.3 to get a positive real number § > 0. (¢’ is the
“6” in Lemma 2.3.) Let 6 =4 min{e/1000,4’/1000, |1 — a|/1000, |1 —
@|/1000, |« —@|/1000}. Contracting § > 0 if necessary, we may assume
that for all v1,72 € T, if |y1 — 72| < 1005 then |(y1)? — (72)?| < £/100.

By [12 Theorem 1.1], M(A ® K) has the (SP) property (i.e., every
nonzero hereditary subalgebra of M(A ® K) contains a nonzero pro-
jection). Hence, let O, O’ be nonempty open neighborhoods (in the
complex numbers) of 1, a respectively, let f, g be nonnegative contin-
uous functions from T to [0, 1], and let P, @ be nonzero projections in

M(A® K) such that
(a) ONO" =g,
b) O and O’ both have diameter strictly less than §/2.
c) the support of f is contained in O.

e) P is contained in Her (f(u)) (the hereditary subalgebra of M(A®
enerated by f(u)), and

g
(f) @ is contained in Her (g(u)).
We collectively denote the above statements by “(x)

Since A® K has real rank zero, the hereditary subalgebra P(AQ KC)P
(of A® K) has an approximate unit consisting of projections. Similar
for Q(A ® K)Q. From this and [12, Lemma 1.2], there exist nonzero
projections p,q € A ® K such that p < P, ¢ < @, and p and ¢ are
Murray—von Neumann equivalent in A® K. From this and (*), we must
have that pu, up, pup and p are all within §/2 of each other. Similarly,
qu, ug, quq and aq are all within 6/2 of each other. Moreover, p and ¢
must be orthogonal. We denote the above statements by “(sx).”

(
(
(d) the support of g is contained in O'.
(
K)

”

Since p,q € A® K, 1pagk) — (p + ¢) is Murray-von Neumann
equivalent (in M(A®K)) to 1r(agx)- Hence, there exists a unitary v
in M(A® K) such that vpv* = v*pv = ¢ and v(1 k) — (P+ ) =
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(Imuasx) — @+9))v = (Lymagk) — (P+q)). Let w =g u*v*uv. Since
u € G and since G is a normal subgroup of U(M(A ® K)), we must
have that w € G. Using the relations in (%) and (**), one can check
that the following inequalities hold:

(i) [lwp — apl| < 29,

(i) lwg — agl| < 29,

(ili) lw(Ipmeagre) — P+ a)) — (Lymask) — (P + )] < 40.
We collectively denote the above inequalities by “( * x).”

From (x x x), we get that

|w — (ap +ag + (Lpaex) — (2 + )l < 86.

We denote the above inequality by “(s s sx).”

Recall that if a,b € M(A® K) such that a is invertible in M(A® K)
and |la — b|| < 1/[|Ja™|, then b is also invertible in M(A ® K). From
this, (# %) and the definition of ¢, it follows that the spectrum of w is
contained in three pairwise disjoint open balls with centers 1, a and @.
Since the spectrum is a compact set, we may assume that the closures
of the three open balls are also pairwise disjoint. In particular, we can
take the open balls to all have radius 85. Hence, there exist pairwise
disjoint self-adjoint partial isometries z,y,z € M(A ® K), and there
exist pairwise disjoint projections d,e, f € M(A ® K) such that the
following hold:

Hw=z+y+z,

(i) z,y,z “live in” open balls about «, @, 1 (respectively), all with
radius 89. (Of course, we are really applying the continuous functional
calculus to w.)

(iii) z*x = zz* = d,

(iv) y'y =yy* =e,

(v) z*z = zz* = f,

(Vi) d+6+f = lM(A@IC)-

We collectively denote the above statements by “(+).

”

From (+), we have that

|lw— (ad + @e + f)| < 86.
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From the above equation, (% * xx), the definition of § and Lemma
2.3, we have that d,e, f are Murray—von Neumann equivalent (in
M(A®K)) to p,q, 1 pmaek) — (P + q) respectively. Hence, there exists
a unitary w’ in M(A ® K) such that w'd(w’)* = p, w'e(w')* = ¢ and
w' f(w')* = Lypeagk) — (P + q). Hence, w'z(w')*, w'y(w')*, w'z(w')*
are within 8§ of ap,@q, 1ypuek) — (P + q), respectively. Therefore,
w'w(w')* is an element of G such that

|w'w(w')* = (ap 4+ ag + (Lamasx — (P + @) < 89.

Let us denote the statements in this paragraph by “(++).” Now, define
a unitary w” in G by

’U)” =af (w/w(w/)*)v(wlw(w/)*)*v*‘

Recall that vpv* = v*pv = q and v(1paex) — (P +9)) = (Lmask) —
(p+q))v = (Imeagk) — (p+q)) (i-e., v flips p and ¢). From this, (+)
and (++), we must have that w' satisfies the statement of Claim 1.
We have thus completed the proof of Claim 1.

Claim 2. Let R be a projection in M(A ® K) such that both R and
Lpmagk) — R are Murray-von Neumann equivalent (in M(A® K)) to
]-M(A®IC)' Then o?R + 52(1M(A®IC) — R) eG.

We will show that o®R + @?(1rqagx) — R) can be approximated
“arbitrarily close” in the strict topology by unitaries in G.

Let € > 0 be given, and let S C A® K be a finite subset. We will be
approximating with respect to the strict topology semi-norms coming
from elements of S (i.e., we will be approximating with respect to the
semi-norms ||m|y = ||mb|| + ||bm|| for b € S). Contracting ¢ > 0 if
necessary, we may assume that the elements of S all have norm less
than or equal to one. Plug €/100 into Claim 1. (¢/100 will now replace
the € in Claim 1.) Let p,q € A® K — {0} be orthogonal projections
such that p and g are Murray—von Neumann equivalent in A ® C, and
such that there exists a unitary w” € G which satisfies the statement of
Claim 1 (with £/100 replacing ¢). Since R and 1r¢4gx) — R are both
Murray—von Neumann equivalent to the unit of M(A®K), let {rr} ;
and {sx}3>; be sequences of pairwise orthogonal projections in A ® K
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such that, for all k, 7, and s are Murray—von Neumann equivalent (in
A ® K) to p (and hence q), and such that

o)
R= E Tk,
k=1

and
MAsk) — R = ZSk,

where the sums converge in the strict topology on M(A® K).
Now choose K > 1 such that for all k’ > K and for all b € §,
(Zk 1 k)b is within €/100 of Rb; bzk 1Tk 18 Wlthln €/100 of bR;

(Zk 1 Sk)bis within £/100 of (1 r¢(agx)—R)b; and b(zk 1 Sk) is within
/100 of b(1rq(agk) — R). Hence, we must have that, for every element

c of norm less than or equal to one in (1 agk) —Zz;l (re+sg) ) M(A®
K) (I pmeask) — ZZ=1(Tk + sk)), and for every b € S,

K’

Za ri +@°sk) + ¢ — (&®R+ @ (Lpm(ask) — R))
k=

< 6¢/100.
b

We denote the above inequality by “(+ + +).”

Note that 1r¢agx) — (Tx + sk) is Murray—von Neumann equivalent
(in M(A® K)) to 1ragk), for all k. Hence, for every k, there exists
a unitary zj, in M(A® K) such that z}p(z},)* = &, zj,q(r})* = si and
23 (Imask) — (P + @) (2})" = Laqaer) — (Tk + sk). Define a unitary

w"” in G by
w” = [] o’ (2

From (+ + +), the definition of w” and the definition of the x}s, we
have that for all b € S,

[ — (@®R +a*(Laagk) — B))llb < e
Since ¢ > 0, S are arbitrary, and since G is strictly closed in

U(M(A® K)), we have that o’R + @*(1pyagx) — R) € G. This
completes the proof of Claim 2.
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Claim 3. Suppose that R is a projection in M(A®K) such that both
R and 1 pagk) — R are Murray—von Neumann equivalent to 1 agk)
(in M(A®K)). Then for every B,y € T, BR+v(1pmuex) — R) € G.

Let a be as before. Then by Claim 2, o®R + @ (1y(ask) — R) € G.
Let ¥ be a partial isometry in M(A®K) such that the initial projection
of v is R and the range projection is 1,4(4gx) — R. Consider the unital
*-subalgebra C € M(A ® K) that is generated by R, 1r(agx) — R, 7.
Then C 2 M;y(C). Let SU(C) = SU(M3(C)) be the unitaries with
determinant one (i.e., it is a copy of SU(2)). Note that o’R +
@*(1pmagk) — R) € SU(C). Since the only proper normal subgroups
of SU(C) are contained in T, and o?R + @*(1p(ask) — R) is not
a scalar, the closed normal subgroup of SU(C) generated by o?R +
@®(1pm(agk) — R) must be all of SU(C). Hence, SU(C) is contained in
G. Since G contains all scalar unitaries, the unitary group of C (U(C))
is contained in G. Hence, for all 3,7 € T, BR +v(1aruex) — R) € G.
This completes the proof of Claim 3.

We now finish the proof of the theorem for Case 1. Suppose that
Py, Ps,...,P, are pairwise orthogonal projections in M(A ® K) such
that P; is Murray-—von Neumann equivalent to 1qugx) for all i.
Suppose that oy, as, ... ,an, € T. By Claim 2, o; P+ (1ypagx) —Pi) €
G for all i. Multiplying all these unitaries together, we get that
a1Pi+asPy+- - -4a, P, € G. Since this unitary was arbitrary, we have
shown that every unitary with finite spectrum, and with all nonzero
spectral projections Murray—von Neumann equivalent to 1 agk), is
in G. From this and Lemma 2.2, we have that G = U(M(A ® K)).

Case 2. Suppose that the spectrum of u is completely contained in
{1,-1,—i,i} and either —i or 7 is in the spectrum of u. Suppose,
for simplicity, that ¢ is in the spectrum of u. By our hypothesis
at the beginning (before Case 1), 1 is also in the spectrum of u.
Using the argument of Claim 1 (specifically, the construction of w),
we can find nonzero orthogonal projections p,q € A ® K such that
p is Murray—von Neumann equivalent to ¢ in A ® K and such that
ip + —iq + (Lpm(ask) — (p+q)) € G. Then, following the arguments
of Claims 2 and 3 and the rest of the proof of Case 1, we have that
G=UM(ARK)).
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Case 3. Suppose that the spectrum of u is completely contained
in {1,—1}. Since u is nonscalar, both —1 and 1 are in the spectrum
of u. Therefore, since A ® K is simple and has real rank zero, we can
modify the arguments of Case 1, Claim 1, to find nonzero orthogonal
projections p,q in A ® K such that p,q are Murray—von Neumann
equivalent in A ® K, and such that p — ¢+ (1 — (p + q)) € G. Then,
by modifying the arguments of Case 1, Claims 2 and 3, we get that
G=UMA®K)). o

3. The projective unitary group of a unital simple separable
C*-algebra.

Theorem 3.1. Let A be a unital separable simple C*-algebra. Let
U(A) be the unitary group of A, given the relative weak topology (i.e.,
the weak topology induced by the linear functionals in A*). Then
U(A)/T is a simple topological group.

Proof. If A is finite dimensional, then A would be a full matrix
algebra, and the result would be immediate. Hence, we may assume
that A is infinite dimensional.

Suppose that G is a closed normal subgroup of U(A) (given relative
weak topology) such that G properly contains all the scalar unitaries.

Suppose, to the contrary, that G # U(A). Let A** the be second
dual von Neumann algebra, i.e., enveloping von Neumann algebra, of
A. Let G' be the closure of G in U(A**) (with weak*-topology). Note
that the relative weak topology on U(.A) is the restriction of the weak*-
topology from U(A**). Therefore, the closure of G in U(A) with the
relative weak topology is equal to the intersection of G’ and U(A).
Hence, G’ # U(A**) since G # U(A).

Since G properly contains the scalar unitaries, there exists a unitary
w in G which is not a scalar. For simplicity, let us assume that
the spectrum of u contains {1,a}, where @« # —1,1,—i,i. (This
corresponds to Case 1 in the proof of Theorem 2.4.) Now, since A
is a simple infinite dimensional C*-algebra which is weak*-dense in
A**, we can modify the proof of Theorem 2.4, Claim 1 to get the
following: For every € > 0, there exist nonzero orthogonal projections
p,q € A** which are Murray—von Neumann equivalent in A** such that
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the following hold:

i) Both p and ¢ are weak*-full in A**. (An element a € A** is
weak*-full if the smallest weak*-closed C*-algebra ideal generated by a
is all of A**.)

For every pair of projections r,s € A** such that r < p and s < ¢
and r, s Murray—von Neumann equivalent in A**, there exists a unitary
w € G’ such that the following are true:

(@) w(l=(r+s)) =1 - (r+s)w=1-(r+s),
(b) wr = rw = rwr is within € of o?r,
c) ws = sw = sws is within ¢ of &?s.
c

”

We collectively denote the above statements by “(V)

Now, since p is weak*-full in A**, we have that, for every projection
t € A**, there is a net {p)} of pairwise orthogonal projections in A4**
such that

i) for all A\, py is Murray—von Neumann equivalent to a subprojection
of p, and

ii) t = ", px where the sum converges in the weak*-topology of A**.
The same holds for g. We collectively denote the above statements by

“(VV)‘”
Using statements (V) and (VV), we can modify the arguments of
Theorem 2.4, Claims 2 and 3, to show that if p’,q are orthogonal

projections in A** such that p’ is Murray—von Neumann equivalent to
q' in A**, and if 8 € T, then

Bp +Bd +(1—-(@ +d)) e

It follows that, if p},p5,...,p), are pairwise orthogonal, pairwise
Murray—von Neumann equivalent projections in A** and if 31, 82,... ,8n €
T with 5152 .. ,Bn = 1, then

Buph + Baply ++ + B+ (1= Dp}) €6,
j=1

But, since A is unital simple separable and infinite dimensional, the
set of all such unitaries generate U(A**) as a topological group (see [7,
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Lemma 6.3.3 and Lemma 6.5.6]). Hence, G' = U(A**), which gives a
contradiction. o
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