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SHARED SETS AND NORMAL FAMILIES
OF MEROMORPHIC FUNCTIONS

JUN-FAN CHEN

ABSTRACT. Let F be a family of meromorphic functions
in a domain D, and let a1, a2 and a3 be three nonzero distinct
finite complex numbers and the set S = {a1,a2,as}. If, for
every f € F, f(z) € S = f'(z) € S, then F is normal in D.

1. Introduction and main results. Let D be a domain in C, and
let F be a family of meromorphic functions defined in D. The family
F is said to be normal in D, in the sense of Montel, if each sequence
{fn} C F contains a subsequence {f,,} that converges, spherically
locally uniformly in D, to a meromorphic function or co (see Hayman
[3], Schiff [7], Yang [9]).

Let f and g be two functions meromorphic on D in C, let a € CU{oco},
and let S be a set of complex numbers. If g(z) € S whenever f(z) € S,
then we write f(z) € S = g(z) € S. If f(2) € S = g(z) € S and
g(z) € S = f(z) € S, then we write f(2) € S = g(z) € §. If
f(z) € S & g(z) € S, then we say that f and g share the set S in D.
In particular, if f(z) € S < g(z) € S and S = {a}, then we say that f
and g share the value a in D.

Now let F be a family of meromorphic functions on D. Schwick
proved in [8] that if there exist three distinct finite values a1, a2,a3 € C
such that f and f’ share a;, j = 1,2,3, for each f € F, then F is
normal in D. The corresponding statement in which f and f’ share
two distinct finite values a3, as € C remains valid, as is shown by Pang
and Zalcman [5].

On the other hand, Fang [1], Liu and Pang [4] extended Schwick’s
result in view of shared sets. Actually, they proved the following
theorem.
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Theorem A. Let F be a family of meromorphic functions in a
domain D, and let ay, as and as be three distinct finite complex
numbers. If, for every f € F, f and f' share the set S = {a1,as2,a3},
then F s normal in D.

In this paper, we continue the investigations and prove the following
results.

Theorem 1. Let F be a family of meromorphic functions in a domain
D, and let a1, as and az be three nonzero distinct finite complex numbers
and the set S = {a1,a2,a3}. If, forevery f € F, f(z) € S = f'(z) € S,
then F s normal in D.

Theorem 2. Let F be a family of meromorphic functions in a
domain D, all of whose poles are of multiplicity at least 3, let a1, as and
as be three distinct finite complex numbers and the set S = {a1, a2, a3},
and let M be a positive number. If, for every f € F, |f'(z)] < M
whenever f(z) € S, then F is normal in D.

Example 1 [2]. Let S = {1,—1}. Set F = {fn(2) : n =2,3,4,...},
where

1 -1
nt en® 4 L ens D={z:|z| <1}

fn(z) = 2n 2n ’
Then, for any f, € F, we have n?[f2(z) — 1] = [f},(2)]?> — 1. Thus f,
and f/ share the set S = {1,—1}, but F is not normal in D. This
shows that the condition in Theorem 1 and Theorem 2 that the set S
with three elements is the best possible.

Theorem 3. Let F be a family of meromorphic functions in a
domain D, all of whose zeros are multiple. Let ay and as be two nonzero
distinct finite complex numbers and the set S = {a1,a2}. If, for every
feF, f(z) e S= f'(z) €S, then F is normal in D.

2. A main lemma.

Lemma 1 ([10], cf. [6]). Let F be a family of functions meromorphic
on the unit disc. Then, if F is not normal, there exist
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(a) a number 0 <r < 1,

(b) points zy, |z,| <7,

(¢) functions f, € F, and
(d) positive numbers p, — 0

such that
gn(g) = fn(zn + pnf) — 9(5)

locally uniformly with respect to the spherical metric, where g is a
nonconstant meromorphic function on C.

3. Proofs of Theorems 1, 2, and 3.

3.1. Proof of Theorem 1. We may assume that D = A, the unit
disc. Suppose that F is not normal on A. Then by Lemma 1 we can
find f, € F, 2z, € A, and p,, — 0T such that

9n (&) = ful2n + pu) — g(€)

locally uniformly with respect to the spherical metric, where g is a
nonconstant meromorphic function on C.

We claim that

(i) g(§) # a1 on C,

(ii) g(&) # ag on C, and
(iii) g(&) # a3z on C.

Suppose now that g(&y) = ay. Clearly, g(§) # a1. Then by Hurwitz’s
theorem there exist &,, &, — &o, such that, for n sufficiently large,

a1 = g(&o) = gn(€n) = fu(zn + pnén)-

Thus there exists a positive number M = max{]|a1|, |az|, |as|} such that
|f} (zn, + pnén)| < M because f, € S = f] € S. It now follows that

This implies that &j is a multiple zero of g —a;. Further, we can assume
that & is a zero of g — a; of multiplicity k > 2. Because g\*)(&) # 0,
there exists a positive number § such that, for n sufficiently large,

(1) 9 #ar,  gE#0, gP©#0
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in 0 < |£—&)| < . Note that & is a zero of g — a; of multiplicity
k > 2. Then by Rouché’s theorem we know that for n sufficiently
large ¢,,(§) — a1 has k zeros E,(Ll), ,(?),... , *) in |€ — &| < 6/2 and so
gn( 7(lj)) = fn(zn—l—pnf,gj)) =ayforj=1,2,... ,k Since f, € S= f] €
S, it follows that there exists a subsequence of {f,}, which we again
denote by {f,}, such that gg(g,(j)) = pnfl(2n + anT(Lj)) = pna; # 0 for
j=1,2,...,k for some [ = 1,2,3. Therefore, all k zeros of g,(£) — a1
are simple, so that §£f) + §,(lj) asi # jfori,7 =1,2,... k. Now (1)
and the fact that
. ’ i . ’ )
lim g, (67) = lim pufy(zn + pugf) = 0
yield
lim £9) =¢, j=1,2,... k
n—r o0
Since g),(£)— pra; has k zeros §£Ll), 57(12), e ,fﬁbk) in [£€—¢&p| < /2 for some
1 =1,2,3, & is a zero of ¢'(¢) of multiplicity k. Hence g(*¥)(&) = 0,
contradicting (1). This proves (i). Likewise, we can prove (ii) and (iii).
Now by (i)—(iii) and Picard’s theorem we see that g is reduced to a
constant, which contradicts that g is nonconstant.

This completes the proof of Theorem 1. ]

3.2. Proof of Theorem 2. We may assume that D = A, the unit
disc. Suppose that F is not normal on A. Then by Lemma 1 we can
find f, € F, 2, € A and p,, — 07 such that

9n (&) = ful2n + pu) — g(€)

locally uniformly with respect to the spherical metric, where g is a
nonconstant meromorphic function on C, all of whose poles are of
multiplicity at least 3.

We claim that
(i) all zeros of g(&§) — a; are multiple,
(ii) all zeros of g(&) — ay are multiple, and

(iii) all zeros of g(£) — a3 are multiple.
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Suppose now that g(&y) = ay. Clearly, g(§) # a1. Then by Hurwitz’s
theorem there exist &,,&, — &, such that, for n sufficiently large,

a1 = g(&o) = gn(&n) = fn(2n + pnén)-

Thus |f},(zn + pnén)| < M because |f,(z)| < M whenever f,(z) € S.
It now follows that

I T ’ BT i _
g'(&) = lim g, (£n) = m ppf;(2n + pnén) = 0.

This implies that &, is a multiple zero of g — a1, completing the proof
of (i). Likewise, we can prove (ii) and (iii).

Now let us use (i), (ii) and (iii) to derive a contradiction. By
Nevanlinna’s second fundamental theorem, we have

_ — 1 — 1
2T(r,g) < N(r,9) —|—N<r, > +N(r, >
g— a1 g— a2

+N<r, —> +S(r,9).

g—as

From this, (i), (ii), (iii) and the fact that all poles of g have multiplicity
at least 3, it follows that

1 1 1 1 1
2T(r,g) < =N °N N
(r,g) < gN(r9)+ 5 <r,ga1>+2 <r,ga2>

1 1
+ §N<T7 m) + S(Ta g)a

so that
1 3
2T(r7 g) < gT(Ta g) + §T(Ta g) + S(Ta g)a
i.e,
1
ET(Tag) < S(Tag)'
This implies that g is a constant, a contradiction.

This completes the proof of Theorem 2. ]
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3.3. Proof of Theorem 3. We may assume that D = A, the unit
disc. Suppose that F is not normal on A. Then by Lemma 1 we can
find f, € F, 2, € A and p,, — 07 such that

9n(&) = fu(zn + pn€) — g(§)

locally uniformly with respect to the spherical metric, where g is
a nonconstant meromorphic function on C, all of whose zeros are
multiple.

We claim that
(i) (&) # a1 on C, and
(ii) g(&) # a2 on C.

Using reasoning similar to that in Theorem 1, we can prove (i) and
(ii).
Now let us use (i) and (ii) to derive a contradiction. Note that a; and

ag are two nonzero distinct finite complex numbers. By Nevanlinna’s
second fundamental theorem, we have

1 — 1
>—|—N<r, >+S(r,g).
g— a1 g—a2

From this, (i), (ii) and the fact that all zeros of g are multiple ,it follows
that

T(r,g) < N(r, }}) +N<r,

1 1 1
T(r9) < 38 (71 ) + 5(,9) < 4 T(0) + 5(r.0)

i.e,
1
ET(ra g) < S(Ta g)

This implies that g is a constant, a contradiction.

This completes the proof of Theorem 3. ]
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