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ASYMPTOTIC BEHAVIOR OF BOUNDED SOLUTIONS
TO SOME SECOND ORDER EVOLUTION SYSTEMS

BEHZAD DJAFARI ROUHANI AND HADI KHATIBZADEH

ABSTRACT. By using previous results of Rouhani [20-23]
for dissipative systems, we study the asymptotic behavior of
solutions to the following system of second order evolution

equation
u''(t) — cu/(t) € Au(t) a.e. t € (0,400)
u(0) = uo, sup;xp |u(t)] < +oo

where A is a maximal monotone operator in a real Hilbert
space H and ¢ > 0. We investigate weak and strong con-
vergence theorems for solutions to this system. Our results
extend and unify previous results by Mitidieri [15] and Mo-
rosanu [17] who studied the case ¢ = 0 by assuming that A
is maximal monotone and A~1(0) # ¢, as well as previous
results by Véron [25] who studied the case ¢ > 0 by assuming
A to be strongly monotone.

1. Introduction. Let H be a real Hilbert space with inner product
(.,.) and norm [.|]. We denote weak convergence in H by w-lim and
strong convergence by lim. u'(t), respectively u”(t), denotes du/dt(t),
respectively d?u/dt?(t). A self-mapping T of a nonempty subset D of
H is called nonexpansive, if: |Ta — Ty| < |z — y| for all z,y € D.
Let A be a nonempty subset of H X H to which we shall refer as a
(nonlinear) possibly multi-valued operator in H. A is called monotone,
respectively strongly monotone, if (y; — y1,22 — 1) > 0, respectively
(y2 — y1,72 — 1) > alr; — x2]? for some a > 0, for all [z;,v;] € A,
i =1,2. A is maximal monotone if A is monotone and R(I + A) = H,
where [ is the identity operator on H.

Nonexpansive mappings as well as maximal monotone operators and
semi-groups generated by them have been extensively studied. We
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refer the reader in particular to the beautiful books by Goebel and
Kirk [11], Goebel and Reich [12], Brézis [4], Barbu [3] and Morosanu
[16], as well as the recent articles by Falset et al. [10] and by Kaczor
et al. [13] for a complete bibliography. The first mean ergodic theorem
for nonexpansive mappings in Hilbert space was proved by Baillon [1].
It was extended to nonlinear contraction semi-groups associated with
the solutions to dissipative evolution systems of the form

u'(t) + Au(t) 30 on (0,+00)
) {oo

u(0) = ug

where A is maximal monotone in H and A~'(0) # ¢ by Baillon and
Brézis [2]. When A = J¢, where ¢ is a proper convex lower semi-
continuous function on H, Bruck [7] proved the weak convergence of
solutions u(t) to (1) as t — +oo and the strong convergence of wu(t)
when ¢ is even. Okochi [18] extended this result with a more general
condition on ¢.

The strong mean ergodic theorem for u(t) was also proved by Brézis
and Browder [5]. The asymptotic behavior of solutions to quasi-
autonomous dissipative systems where A is assumed to be monotone,
was studied in [20-23]. It was shown that conclusions about the asymp-
totic behavior of solutions can be drawn solely from the monotonicity
assumption on A; since the maximal extension of a monotone operator
in a Hilbert space requires the use of Zorn’s lemma, this may be very
useful from a practical and constructive point of view.

Existence, as well as asymptotic behavior of solutions to second order
evolution systems of the form:
@) {u”(t) € Au(t) a.e. on RT
u(0) = uo, Sup; > lu(t)| < o0

were studied by many authors, among others, by Barbu [3], Morosanu
[16, 17] and the references therein, Mitidieri [14, 15] and Poffald and
Reich [19]. For periodic forcing see Bruck [8]. Véron [24] showed
that even for A = Oy, solutions to (2) may not converge strongly as
t — 400, although they always converge weakly.

In this paper, by using previous results of Djafari Rouhani [20-23] for
dissipative systems, we extend those methods to study the asymptotic
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behavior of solutions to the second order evolution system:
5 uw'(t) — cu'(t) € Au(t) a.e. on RT
@) La0 = Supyg u(t)] < +oo
where A is maximal monotone, ¢ > 0, and ug € W We show
among other things that the existence of a solution u to (3) implies
that A=1(0) # ¢, and w — limy_, , o, u(t) = p, where p € A71(0) and p
is the asymptotic center (defined in Definition 2.3) of u. Moreover, we
show the continuous dependence of p to the initial data uy and prove
also strong convergence theorems for u. It was shown by Véron [25,
26] that A='(0) # ¢ implies the existence of a unique solution to (3).
Therefore, by the above result, (3) has a unique solution if and only if
A71(0) # 6.

Our results extend and unify previous results by Mitidieri [15] and
Morosanu [17] who studied the case ¢ = 0 by assuming that A is
maximal monotone and A71(0) # ¢, as well as previous results of
Véron [25, 26] who studied the existence and uniqueness of solutions
to (3) for ¢ > 0, as well as their asymptotic behavior by assuming A
to be strongly monotone. We refer in particular to [3, 4, 16] and the
references therein for examples of applications of these results.

2. Preliminaries. Here we recall and introduce some notations and
definitions we shall use in the sequel.

Definition 2.1. A curve u in H is a function v € C([0, +oo[, H).
We denote o :=1/T fOT u(t) dt for T > 0.

Definition 2.2. The curve u is (weakly) asymptotically regular if

t_lgrnoo(u(t +h)—u(t) =0
(resp. w — lim(u(t 4+ h) — u(t)) = 0) for all A > 0.

Definition 2.3. Given a bounded curve u in H, the asymptotic
center ¢ of u is defined as follows (see [9]): for every ¢ € H, let

©(q) = limy_, 4o sup |u(t) — g/
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Then ¢ is a continuous strictly convex function on H, satisfying
©(q) = 400 as |g| = +o0o. Thus, ¢ achieves its minimum on H at
a unique point ¢, called the asymptotic center of the curve u.

Definition 2.4. The curve u in H is called nonexpansive if

lu(t +h) —u(s+ h)| < |u(t) —u(s)|, forall s,t,h>0.

Definition 2.5. Let A be an operator in H. Then A is said to satisfy
condition (b) if there exists a continuous function ¢ : RT x R* — R*
such that for every [z1,y1] € A, [x2,y2] € A we have (22, y1)+ (21, y2)+
a(lz1|, [z2)){(z1,91) + (22,52)} = 0.

When A is monotone, condition (b) is actually equivalent to the
following stronger condition (a):

|(z2,91) + (21, 92)| < a|aal, [22[){(21,91) + (22,92)},

which was introduced by Bruck [6], and later used also by Mitidieri
[15].

Definition 2.6. By a solution u to (3) we mean a function u €
C([0,T);H) N H.((0,T); H) for every T > 0 that satisfies (3) for
almost every t € RT.

We note that in this case u and u’ are absolutely continuous functions
on each compact subinterval of RT.

Notation 2.7. For a curve v in H, we denote L := {p € H; |u(t) —
plis nonincreasing}.

3. Weak convergence theorems for solutions to (3). In this
section we consider the evolution system (3) for ¢ > 0 and establish the
weak convergence of solutions u(t) to (3) as t — 400, to an element of
A~1(0) which is the asymptotic center of the curve (u(t))¢>o. We shall
refer to (3) for the cases ¢ = 0 and ¢ > 0, respectively as (3.a) and
(3.b).

The main result of this section is the weak convergence Theorem 3.8.
In order to achieve this result, we first prove a weak ergodic theorem
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(Lemma 3.4) for solutions u to (3), by showing that « is a nonexpansive
curve and using our previous results on nonexpansive curves (recalled
in Theorem 3.2). Then, since we do not assume A~'(0) # ¢, a crucial
step in the proof is Lemma 3.5, where we exhibit a point p € H
(actually the asymptotic center of the curve u), that enjoys a similar
property needed from an element of A~1(0). The last step of the
proof is to show that u is asymptotically regular and then use our
previous results on nonexpansive curves (recalled in Theorem 3.3), to
get the weak convergence of u to p. To this aim, and to show also that
p € A71(0), some estimates on u’ and u” are needed, which are proved
in Lemma 3.6, respectively 3.7, for (3.a), respectively (3.b). The last
part of this section describes another method used in [7] for proving
the weak convergence of u for (3.a) (Theorem 3.9), where somehow for
(3.b), i.e., the general case ¢ > 0, it is shown in Theorem 3.11 that it
can be applied to the case A = J¢, but its applicability is not known
in general (Problem 3.1).

First we recall without proof the following classical lemma whose
proof can be found in any textbook on elementary differential equations.

Lemma 3.1. Assume the function f : RT — R is bounded above
on [g,+00) for some ¢ > 0, absolutely continuous on every compact
subinterval of R, and satisfies f'(t) > cf(t) for almost every t € RT,
for some ¢ > 0. Then we have f(t) <0, for all t € [e,+00).

Now we recall without proof the following nonlinear ergodic theorem
and weak convergence theorem for nonexpansive curves in H, which are
special cases of [21, Theorems 3.8 and 3.10], and extensions of previous
results in [1, 2]; see also [22, Corollaries 3.7 and 3.10], as well as [20].

Theorem 3.2. Let (u(t))i>0 be a nonexpansive curve in H, and let
or:=1/T fOT u(t)dt. Then the following are equivalent:
(i) L # ¢,
(i) iminfr_, 4 o |oT| < 400,
(iii) o7 converges weakly to some p € H as T — +00.

Moreover, under these conditions, p is the asymptotic center of the
curve (u(t))¢>o.



1294 B.D. ROUHANI AND H. KHATIBZADEH

Theorem 3.3. Let (u(t))i>o be a weakly asymptotically regular
nonexpansive curve in H. Then the following are equivalent:

(i) L # ¢,

(iii) u(t) converges weakly to the asymptotic center of u, as t — +o0.

By using the above results, we are also able to establish a nonlinear
ergodic theorem for solutions to (3), stated in the following lemma.
This lemma will subsequently be used in the proof of Lemma 3.5 leading
to the weak convergence of solutions to (3) in Theorem 3.8.

Lemma 3.4. Assume u is a solution to (3). Then or :=
1/T fOTu(t) dt converges weakly as T — +oo to some p € L, which
is also the asymptotic center of the curve (u(t))¢>o.

Proof. In order to apply Theorem 3.2, we show that the curve u is
nonexpansive. Let s > 0 be fixed. By the monotonicity of A, we get
from (3) that

2u 2'U/
(%(t ) THD),ult+5) - u(t)>

for almost every t > 0.
This implies that:
2
dt?

for almost every ¢ > 0.

(3.1) \u(t—i—s)—u(t)\2—c%|u(t+s)—u(t)|2 > 2/ (t45)—u'(t)|? > 0

If ¢ = 0, since u and u’ are absolutely continuous on every compact
subinterval of R, we deduce from (3.1) that for each s > 0 the function
t = |u(t+s)—u(t)|* from R to R is convex; since it is also bounded,
we conclude that it is nonincreasing, implying that u is nonexpansive.

If ¢ > 0, then for each s > 0 let f(t) := d/dt|u(t + s) — u(t)|* and
g(t) == |u(t—i—s)—u(t)|2—cf(;5 |u(0+5) —u(6)[*d6 and M = sup,~ |u(t)].
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Then (3.1) implies that g is convex; since it is also bounded above,
it follows that g is nonincreasing; thus, ¢'(t) < 0, and therefore
f(t) < clu(t+s)—u(t)]® < 4eM?, for all t € [e, +00), for every € > 0. On
the other hand, (3.1) implies that f'(t) > cf(¢) for almost every ¢ > 0.
Hence, f satisfies the hypothesis of Lemma 3.1. Therefore, we deduce
that f(t) <0, for all ¢ € [g,+00); since € > 0 is arbitrary, this implies
again that the function ¢ — |u(t+s)—wu(t)|? is nonincreasing, and hence
u is nonexpansive. The conclusion follows now from Theorem 3.2. a

Now we proceed to prove the weak convergence of u. We shall need
some lemmas.

Lemma 3.5. Assume that u is a solution to (3.a) or (3.b), and let
p be the asymptotic center of u. Then we have:

d*u du
. — () —c— — > .e. +.
(3.2) <dt2 (t)—c 7 (t),u(t) p> >0, forae. t€R

Proof. Let 0 < & < T, let u be a solution to (3.a) or (3.b), and let
t € RT be fixed so that u(t) satisfies (3). Then, by the monotonicity
of A, we have:

(S0 - R - - [ wioras)

= [ (G0 - e+ o0 )
b [ (e 00 - ule)) as

> i [ (G0 u0 —u0) e e ute))  as

= [ () o) +

> (G0 - um)
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(gan-w)
+ ShuT) w0 - Shu(e) - u(oP].

Since we showed in Lemma 3.4 that u is nonexpansive, we deduce that
|dw/dt(t)| is nonincreasing, and therefore bounded. Now the conclusion
follows from Lemma 3.4 by letting 7" — +00 in the above inequalities. O

Remark 3.1. If u is a solution to (3.a) and p is the asymptotic center
of u, in addition to the fact that p € L, we can show that the function
t — |u(t) — p| from RT to R" is convex. Indeed, we have

2

>0, for a.e. t € Rt

3 galu(®) o2 = (GEO.u0) - p) + |50

by (3.2). Since u and v’ are absolutely continuous functions on each
compact subinterval of R*, it follows that the function ¢ — g(t) :=
1/2|u(t)—p|? from Rt to R is convex. But, from the above inequality,
we have g’ (t) > |u/(t)|* for almost every t € R", and therefore:

(g'(1))% = [(w'(8), u(t) — p))* < [/ (&)[P|u(t) — p|* < 29" ()g(t)
for a.e. t € RT.

This implies that the function /g is convex and gives the desired result.

The estimates in our next lemma are similar to [3, Lemma 2.3,
Chapter 5, page 322]; however, in [3] these are obtained by using the
assumption A71(0) # ¢ in the proof, which we don’t have here in our
setting, and we use (3.2) instead.

Lemma 3.6. Assume that u is a solution to (3.a), and let p be the
asymptotic center of u. Then the following estimates hold:

(i) S t]du/dt(t)|2dt < 1/2]u(e) — p|* — (u/(e), u(e) — p) < +oo,

(i) sup,». t|du/dt(t)] < (Ju(e)—pl>—2¢(u'(e), u(e) —p)+e|u'(e) |*) /2
< +o0,

(ii)) [ ¢3|d2u/dt?(t)]2dt < 3/2lu(e) — p|* — 3e(u'(e),u(e) — p) —
3 (u"(e),u'(e)) + 3/2¢?[u' () |* < +oo

for all e > 0.
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Proof. Multiplying (3.2) by ¢ we have:

t @(t) u(t)—p) >0 forae teRT
7z () p|> €. .

Now the rest of the proof is exactly the same as in [3, Lemma 2.3,
Chapter 5, page 322]. O

Remark 3.2. Bruck [7, Theorem 6] showed that (i) implies

8 t 1/2
tlu' ()] < <—/ s|u'(s)|2ds> —0 ast— +oo.
3 Ji)2

In our next lemma we obtain similar estimates for solutions to (3.b).

Lemma 3.7. Assume that u is a solution to (3.b), and let p be the
asymptotic center of u. Then we have:

(i) sup,>. t|du/dt(t)|> < oo for all € > 0.
(i) f;oo |d?u/dt?(t)|2dt < c/2|du/dt(e)]? — (d*u/dt? (), du/dt(e)) <
400 for all € > 0.

Proof. Let 0 < ¢ < T. Multiplying (3.2) by ¢, we get:

t(%‘(t),u(t) —p> _ ct<(fl—?(t),u(t) —p> >0 forae teR*

2

d [ du du
— ot (E@),u(t) —p) L
c, d 9
—_ = —pl2>
) - p 20
d [ du c. d 9 1d 9
:»dt(t " ), utt p) “ 0 ()~ o — 5 Lju(t)
du 2

— ()
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— [ 4G OPa < (@) - p) - Genue - )
= 1T =5+ Slu@) —o = § [ e hule) —
< ghu(e) =l = ¢ (G0 ute) — p) = £TIu(T) — 5

T
C c
+gelu(e) = p+ 5 [ u(t) - pPat
2 2 /.

(since |u(t) — p| is nonincreasing, and therefore

Now since u is nonexpansive and thus |du/dt(t)| is nonincreasing, we
deduce that:

du 2

(T? — )| du
dt

%)

Since sup, s |u(t)| < +oo, we conclude that supy, T|du/dt(T)|* <
+00, proving (i).
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Now, to prove (ii), let v(¢t) = wu(t + h) — u(t). Then, by the
monotonicity of A, we get:

(Sr0.00) - Soi00) 20

Wi <t R - £
T 2
= [ %ol as (La,m) - (Le.0)

S + SR < Sl - (56.0e)

since u is nonexpansive and therefore |v(t)| is nonincreasing, implying

that p | d
(Gem.0(m)) = 3 7@ <0

Now, dividing both sides of the above inequality by A2, and letting
h — 0 and T — +o00, we get:

oo d2y, cldu, |? d’u du
/ @(t) <35 %(E)‘ — <W(E)’$(E))’ for all € > 0,
proving (ii). The proof is now complete. o

Now we state the main result of this section, showing the weak
convergence of solutions to (3.a) or (3.b).

Theorem 3.8. Let u be a solution to (3.a) or (3.b). Then A~1(0) #
¢, and w —lim;_, o, u(t) = p, where p is the asymptotic center of u, as
well as an element of A=1(0). Moreover, if v is a solution to (3.a) or
(3.b) with the initial condition v(0) = vo, and if w —lim;_, o v(t) = g,
then we have: |p — q| < |ug — vo].

Proof. First we show that w is asymptotically regular. Since, by
Lemma 3.4, u is nonexpansive, |du/dt(t)| is nonincreasing. Therefore,

for h > 0 fixed, we get:
du t+h

t+h m
ma+m—uuns[ d

= <
o (s)|ds <

du
E(t)‘ —0
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as t — +oo by Lemma 3.6 (ii) for (3.a), and by Lemma 3.7 (i) for (3.b).
Now the weak convergence of u(t), as ¢ — 400, to the asymptotic
center p of u follows from Theorem 3.3. By Lemma 3.6 (iii) for (3.a),
and by Lemma 3.7 (ii) for (3.b), there exists a sequence t, — +00,
as n — 400, such that |d?u/dt?(t,)| — 0, as n — +oo. Then, since
A is maximal monotone, hence demi-closed, it follows from Lemma
3.6 (ii) for (3.a), and Lemma 3.7 (i) for (3.b), that p € A 1(0),
which is therefore nonempty. Finally, a similar computation as in
Lemma 3.4 shows that |u(t) — v(t)| is nonincreasing, and therefore
Ip — q| < limyyqoo|u(t) —v(t)| < |Jup — vol, completing the proof of
the theorem. O

The conclusion of Theorem 3.8 for (3.a) follows also from Lemma 3.4
and the following result of Bruck [7, Theorem 6.

Theorem 3.9. Let u be a solution to (3.a). Then we have:

1 T
li T)— = ‘: .
pm u(T) T/o u(t)dt| =0

Problem 3.1. However, for solutions to (3.b) it remains an open
question whether the conclusion of Theorem 3.9 remains true.

An affirmative answer to Problem 3.1 is provided when A = Oy,
where ¢ is a proper, convex and lower semi-continuous function on H.
We shall need the following lemma.

Lemma 3.10. Let u be a solution to (3.b) with A = dp, where ¢ is
a proper, conver and lower semi-continuous function on H. Then we
have:

+oo
/ tlu'(t)[2dt < 4+o00, for all e > 0.
€

Proof. From Lemma (3.7) (ii), it follows that there exists a sequence
tn, — oo such that lim, ;. v”(t,) = 0. From Lemma (3.7) (i),
we know that we also have lim,,_, ., v/(¢,) = 0. Since A is maximal
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monotone, therefore demi-closed, and since [u(ty, ), " (t,)—cu/(t,)] € A,
and w — lim;_, y o, u(t) = p by Theorem 3.8, it follows that [p,0] € A,
ie, pe A7Y0).

Replacing ¢ by ¢(z) := ¢(z) — ¢(p), we may assume without loss of
generality that ¢(z) > ¢(p) =0, for all x € H.

Multiplying both sides of (3.b) by u/(t), and using [16, Lemma 2.2,
page 57], we get:

(" (t), /() — clu' (1)]* = (Dp(u(t)), w'()) = %SD(U(t)),

where by 0¢(u(t)) we mean any element belonging to this set. Since
u is nonexpansive and therefore |u’(t)| is nonincreasing, it follows from
the above equality that:

d
clu' () < ——

< —opelult).

Multiplying both sides of the above inequality by ¢ and integrating on
the interval [e, T, we get:

T
c/ ol (4)2dt

+/6 %(u’(t),u(t) B e g%m(t) —pl2) dt

(u(e)) + (& (T),u(T) — p) — (/(e),ule) — p)

IN
m
—
~—
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Letting 7" — +o00, we get:
—+oo
c/ t (4)Pdt < M(e) < +00, for all £ > 0,
as required. ]

Theorem 3.11. Let u be a solution to (3.b) with A = dyp, where ¢
s a proper, convex and lower semi-continuous function on H. Then

: e
Jdim[u(T) - /0 u(t) de| = 0.

Proof. Let € > 0 be given. By Lemma 3.10 we know that
f:—oo t|u/ (t)|?dt < +oc. Since |u/(t)| is nonincreasing, we have:

T T 3
/ ol (4)|2dt > |u’(T)\2/ Ldt = T2 (T)|2.
T/2 T/2 8
This implies that:

8 [T 1/2
Tl (1)) < —/ o/ (D2dt) — 0 as T — +oo.
3 Jr)2

Hence:

< %/Oeu(t)dt‘+ u(T)—%/ETu(t)dt
- %/Osu(t)dt‘
+ (1) - %(Tu(T) ~ cufe) - / ey dt

< %/Osu(t)dt‘—i-%m(sﬂ

l T
+?/ thu'(t)|dt — 0 as T — +oo. O
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4. Strong convergence theorems for solutions to (3). In
this section, we show that with additional assumptions on A, we can
get the strong convergence of solutions u to (3). These conditions
include the cases where (I + A)~! is compact (Theorem 4.1), A is
strongly monotone (Theorem 4.2), as well as A satisfying condition (b)
and a positivity condition (Theorem 4.3). The main results of this
section are Theorem 4.3, and its corollaries 4.4 and 4.5, where the
strong convergence of u is proved under more general conditions than
previously known, even for the more general case of ¢ > 0.

Our first strong convergence theorem is simple and extends [16,
Theorem 2.2, p.111], where it is assumed that A~1(0) # ¢.

Theorem 4.1. Assume that the operator A in (3) is mazimal
monotone and (I + A)~1 is compact, and let u be a solution to (3.a) or
(3.b). Then lim;_, 1o u(t) = p, where p is the asymptotic center of u,
as well as an element of A~1(0).

Proof. Tt follows from Lemma 3.6 (ii) and (iii) and Lemma 3.7 (i) and
(ii), that in either case for (3.a) or (3.b), there exists a sequence t,, —
+00 as n — 4o such that lim,_, - v'(¢,) = 0 and limy, 4 u" (t,) =
0. Now since {u(t,)+u" (tn) —cu'(t,)} is bounded, by the compactness
of (I + A)~!, there exists a subsequence of {t,} which we denote
again by {t¢,} for simplicity, such that lim, , u(t,) = p, where by
Theorem 3.8 p is the asymptotic center of u and p € A~1(0). Since we
know by Lemma 3.4 that p € L, it follows that lim;, cu(t) = p. O

In our next theorem, we prove the strong convergence of u by
assuming A to be strongly monotone. To the best of our knowledge,
this result is new even with the additional assumption A=*(0) # ¢.

Theorem 4.2. Assume that the operator A in (3) is strongly
monotone, and let u be a solution to (3.a) or (3.b). Then u(t) converges
strongly as t — +o0 to the asymptotic center p of u, and p € A~1(0).

Proof. Assume (y2 —y1, T2 — 1) > a|ry —21|?, for all [z;,y;] € A,i =
1,2 and for some o > 0. Then by using the strong monotonicity of A,
the same proof as in Lemma 3.5 gives the following inequality:
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(%(t) - c%(t),u(t) -7 l_ . /ET u(s) d8>

T

1
>~ | alu(t) - u(s)*d
Sy |u(t) — u(s)|” ds

S ——
- (2_1:(5), u(t) - u(s)) + S u(T) = u(®) - fue) - “(t)|2]

Letting T" — 400 in the above inequality, we get:

<d2u ; du

W( ) — ca(t),u(t) p) > [liminf

T—+oco T — €

T
/ [u(t) — u(s)[*ds
> almafult) - u(o)P

> Oé|u(t) - p|2a

by Theorem 3.8.
Now integrating both sides of the above inequality on [9,T], we get:

T
a/ lu(t) — p|2dt
€
d_u

< [ (G(F0u0-r) - |50
< (1), u(T) — p) — (u/(c),ue) — p)

Cc Cc
— Su(T) — ol + Slu(e) - pl?

c
<~ (W(e),ule) — p) + lule) — pl®
This implies that

“+o0
/ lu(t) — p|2dt < 400;

hence, liminf;_, ; o |u(¢) — p| = 0. Since |u(t) — p| is nonincreasing, we
conclude that lim;, ;o |u(t) — p| = 0 as desired. O
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Now we prove the strong convergence of solutions to (3.a) or (3.b)
without even the monotonicity assumption on A, but assuming A to
satisfy only condition (b) and some positivity condition.

Theorem 4.3. Assume that the (not necessarily monotone) operator
A in (3) satisfies (y,x) > 0, for all [z,y] € A, as well as condition (b),
and let u be a solution to (3.a) or (3.b). Then u(t) converges strongly
as t — 400 to the asymptotic center p of u.

Proof. For h > 0, let M := max{1,sup;>qa(|u(t)|,|u(t + h)|)} and

£ = Lo + Lue + w2 + (o), ue +w).

Then, by the assumption on A, we have:

(j—;F(t) _ M(%(t)’u(t)> +M<%(t+h),u(t+h)>

du
E(t)

2

2
d
+M +Md—1:(t+h)

+ Cp—g(t),u(t—kh) + u(t),d2—g(t+h)
dt dt

2(2—1:(1:),2—1:(1:%))
S e UR0)

d?u du
M| —(t+h)—c—(t+h t+h
ar (Gt n) - G m.ul )

4 <u(t), %(t +h) - c%(t + h)>
4 <%(t) - cZ—?(t),u(t-}- h)) 4 Mc<z—1:(t),u(t)>

+ Mc@—’:(t +h), ult + h)> + c<u(t), %(t + h))

+C<Z—?(t),u(t+h)>
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> c% (% u(t)]* + %m(t + )2+ (u(t), u(t + h))>

Hence we proved: d?/dt*F(t) > c(d/dt)F(t) for almost every t € R™T.

If ¢ = 0, then F is convex, and since it is also bounded, it follows
that F is nonincreasing. If ¢ > 0, let g(t) = F(t) — cf(;5 F(s)ds and
K = sup,~g |u(t)|. Then g is convex. Since M > 1, we have: F(t) >
1/2[u(t)|? +1/2|u(t+ k)2 + (u(t), u(t+ h)) = 1/2|u(t) +u(t+h)|> > 0.
Hence, g(t) < F(t) < (M + 1)K2%. Therefore, g is also bounded
above; hence, g is nonincreasing. Therefore, ¢'(t) < 0, and thus
F'(t) < cF(t) < ¢(M + 1)K?, for all t € [¢,+00), for every € > 0.
On the other hand, we have F"(t) > cF'(t) for almost every ¢ > 0.
Therefore, F' satisfies the hypothesis of Lemma 3.1, and thus F”(¢t) < 0,
for all ¢ € [e,+00), for every € > 0. Hence, again F' is nonincreasing
on [g,+00). Therefore, in both cases we have F(t) < F(s), for all
t > s > ¢, which implies that:

(4.1)

(u(t), u(t + h)) < (u(s), u(s + h))

M
2

+ 5 [lus)” = [u®)* + [uls + h)[* = Ju(t + h)|?]

forallt > s> e.

Now let’s show that |u(t)| is nonincreasing; hence, lim; o |u(t)]
exists. Indeed, we have:

du, |?

53 OF = (G 0,00 +| G0

cd 5 |du
§£|U(t)\ + a(t)
cd
S ca 2
> 22 ju(o)

by the positivity assumption on A, which implies by a similar argument
as above, and then by Lemma 3.1, that |u(¢)|? is nonincreasing.
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Then (4.1) and this fact imply that u satisfies the assumptions (2.0)
and (2.1) in [23]. Hence by [23, Theorem 4.2 and Lemma 4.3 (ii)],
it already follows that or converges strongly as 7' — +oo to the
asymptotic center p of u. To prove the strong convergence of u, we
show first that u is asymptotically regular. In fact by the positivity
assumption on A, we have:

S0 < 5 (G0u0) - S50

Integrating both sides of this inequality on [, T], we get:

[ ] zﬁg(%amwﬂ)

Q)

— @ + S lue)?

<—(5©u6)) + SR <+

since |u(t)|? is nonincreasing. Therefore, for h > 0 fixed, we have:
t+h d
ut+h) -ue) < [ |G| ds
¢ ds
t+h du 2 1/2
§\/ﬁ</ d—(s) ds) — 0 as t — +o0.
‘ s

Hence, we showed that u is asymptotically regular. Now, using the
polarization identity, and rearranging the terms, it follows from (4.1)
that:

lu(s 4+ h) —u(s)|? < Ju(t +h) —u(t)]® + (M +1)
x [lu(s)]* = [u(t)* + Ju(s + h)[* = |u(t + h)|?]
forallt > s > ¢, for all h > 0.
For n > 0 arbitrary, let’s choose ty > € so that:

(M + 1) [[u(s)]* — [u(®)]* + |u(s + h)|* — |u(t + B)[] <n,
for all t > s > tg, for all h > 0.
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Then we get:
|u(s+h)—u(s)* < |u(t+h)—u(t)|*+n, for all h >0, for all t > s > to;

letting ¢ — 400 in the above inequality and using the asymptotic
regularity of u we get:

lu(s 4+ h) —u(s)|* <n, for all h >0, for all s > t,.

Hence, {u(t);t > 0} is a Cauchy net in H, and therefore strongly
convergent as t — +00, to the asymptotic center p of u. u]

Our next corollary gives a partial affirmative answer to problem 3.1.

Corollary 4.4. Assume that the operator A in (3) is mazimal
monotone and satisfies condition (b). If u is a solution to (3.a) or
(3.b), then u(t) converges strongly as t — +oo to the asymptotic center
p of u, and p € A=1(0).

Proof. In fact, it is easy to see that if A is monotone and satisfies
condition (b), then it also satisfies condition (a), from which, by taking
x2 = x1 and yo = y1, it follows that (y;,21) > 0, for all [z1,y;] € A.
Therefore, in both cases of (3.a) and (3.b), we deduce from Theorem 4.3
that lim;—, o u(t) = p. O

Remark 4.1. Corollary 4.4 extends [15, Theorem 2.1], for solutions
to (3.a), where A is assumed to be maximal monotone. In the proof of
Theorem 4.3, we noticed the strong convergence of o as T — 400, by
using our strong nonlinear ergodic theorem [23, Theorem 4.2], which
is more general than [5, Theorem 2], used in the proof of [15, Theorem
2.1], but it is not applicable in our case. Moreover, the proof of
Theorem 4.3 shows that the strong convergence of v may be proven
without using this strong nonlinear ergodic theorem.

Corollary 4.5. Let u be a solution to (3.a) or (3.b) with A = 0y,
where ¢ is a proper, conver and lower semi-continuous function on
H satisfying the following condition (a1). D(¢) = —D(p) and p(z) —
©(0) > a(]z])(p(—z)—¢(0)) for all x € D(p), wherea : RT — (0, +00)
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is a continuous function. Then u(t) converges strongly as t — +oo to
the asymptotic center p of u, and p € A=1(0).

Proof. In fact, it is easy to show that if ¢ satisfies the Condition
(a1), then A = Oy satisfies condition (a), which implies condition (b).
Hence, by Corollary 4.4, we know that lim;_, ;o u(t) = p. o

Remark 4.2. Condition (a;) for ¢ was first introduced by Okochi
[18], to study the strong convergence of solutions to monotone type
first-order evolution equations.

Remark 4.3. In the proofs of all the theorems in the paper, the
maximality of A was only used to show that p € A~1(0), and hence

A7H(0) # 6.

5. Example. Let H = L?(Q) where Q C R" is a bounded domain
with smooth boundary I'. Let j : R — (—o00,+00] be a proper,
convex and lower semi-continuous function, and 8 = 9j. We assume
for simplicity that 0 € 3(0). Define

" 9%y
AUZ_AUZ_Zzla—mf
with
—0u
_ 2
D(4) = {u e BX(Q), S-() € Blu(x)), ae. on rl,

where (0u/0n(x)) is the outward normal derivative toI" at z € I It is

known that A = 8¢, where ¢ : L?(2) — (—00, +00], is the functional:
1/2 [, |Vul*dx

B(u) = + [p B(u(z))do  if u e H'(Q) and B(u) € L'(T)
—+o00 otherwise.
Consider the following equation
0%u /0t (t, x) — cOu/0t(t,z)
+ >, 0%u/0z2(t,z) =0 ae.on RT x Q

—0u/0on(t,z) € Pu(t, x) a.e. on RT x I
u(0,z) = up(z) a.e. on )
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where ¢ > 0. Then Theorem 3.8 implies the weak convergence of u(t,.)
to a minimizer of ¢.
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