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QUASIANALYTIC GELFAND-SHILOV SPACES
WITH APPLICATION TO LOCALIZATION OPERATORS

ELENA CORDERO, STEVAN PILIPOVIC,
LUIGI RODINO AND NENAD TEOFANOV

ABSTRACT. We study localization operators with symbols
in spaces of quasi-analytic distributions. More precisely, it is
shown that certain quasianalytic distributions, considered as
symbols, give rise to trace-class localization operators. We
give a new structure theorem for quasianalytic distributions
which combines its local and global properties. In the proof
we use the heat kernel and parametrix techniques, while in
the study of localization operators we use the techniques of
time-frequency analysis.

1. Introduction. Localization operators (anti-wick operators,
Toeplitz operators, Gabor multipliers) are pseudo-differential opera-
tors A?1%2 where a is the symbol of the operator and ¢, p2 are the
analysis and synthesis windows, respectively (see below for an explicit
expression). With respect to the classical pseudodifferential calculus,
one may consider singular symbols for localization operators and never-
theless obtain good properties, in particular L2-boundedness, see [6-8,
25, 26]. As an example, it was observed in [8] that certain compactly
supported ultra-distributions give rise to trace-class operators. In this
paper we study localization operators in the framework of quasianalytic
distributions.

The support of a quasianalytic distributions cannot be defined.
Therefore, in order to give a reasonable generalization of the results
from [6, 8, 26], we present a technique which may, in a certain sense,
describe the local behavior of a quasianalytic distribution. More pre-
cisely, we give a new representation theorem for the class of quasi-
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analytic distributions, Theorem 3.1. A related result, under different
assumptions, can be found in [4]. Another type of representation the-
orems, based on Hermite functions, was recently obtained in [18, 19],
see also [21]. Note that we could not use these results since they give a
global characterization, while we need information on the local behavior
as well.

The paper is organized as follows. We define Gelfand-Shilov spaces
and list their basic properties in Section 2. Representation theorem 3.1
for quasianalytic distributions is given in Section 3. In Section 4 we
study time-frequency representations on Gelfand-Shilov spaces, The-
orem 4.1. Then we introduce modulation spaces with weights of ex-
ponential growth and show that the Gelfand-Shilov spaces are actu-
ally projective and inductive limits of the modulation spaces, Proposi-
tion 4.5. In the last subsection, we prove Theorem 4.6 which describes
the growth of the short-time Fourier transform of quasianalytic distri-
butions and, finally, prove that the corresponding localization operators
are trace-class.

1.1. Notation. We put zy = z -y, the scalar product on R¢. Given
a vector ¢ = (z1,...,24) € R¢, the partial derivative with respect to
x; is denoted by 9; = 0/0x;. Given a multi-index p = (p1,... ,pq) > 0,
ie., p € N¢ and p; > 0, we write 9P = 07" - -- §*; moreover, we write
aP = (z1,... ,24) P Pa) = H?Zl z¥". We shall denote the Euclidean
norm by ||z||. We write h - |z|'/* = Z?Zl hi|z;|*/*. Moreover, for
p € Ng and a € R, we set (p)* = (pi!)**---(pg!)*?, while as
standard p! = pi!---pg4!. In the sequel, a real number » € Ry may
play the role of the vector with constant components r; = r, so for
a € R‘i, by writing oo > r we mean o; > r for all j =1,... ,d.

Q denotes an open set in R and K CC Q means that K is a compact
subset in Q.

For A = (4,,...,44) and B = (By,...,Bg4), A > 0and B > 0
means Ay,...,Aq, By,... ,Bg > 0.
For a multi-index o € N¢ we have |a| = a3 + -+ + a4. For given

h > 0 and multi-index o € N¢ we will (sometimes) use the notation
he := hlol.

The Schwartz class is denoted by S(R?), the space of tempered distri-
butions by S’(R%). We use the brackets (f, g) to denote the extension
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of the inner product (f,g) = [ f(t)g(t)dt on L*(R%) to any pair of
dual spaces. The space of smooth functions with compact support on
R is denoted by D(R?). The Fourier transform is normalized to be
flw) =Fflw) = [ f(t)e >m*dt.

Throughout the paper, we shall use the notation A < B to indicate
A < ¢B for a suitable constant ¢ > 0, whereas A < B means that
¢ 'A < B < cA for some ¢ > 1. The symbol B; <+ B, denotes the
continuous and dense embedding of the topological vector space B;
into Bz.

2. Gelfand-Shilov type spaces. Let (M,),en, be a sequence of
positive numbers increasing to infinity which satisfies:

(M.1) My < My 1Mpi1,p €N;
. ere exist positive constants A, H such that
M.2) Th i iti A H h th

M, < AHP min M,_M,, p,q€ Ny,
0<q<p

or, equivalently, there exist positive constants A, H such that

Mpiq < AHp+quMq, p,q € Np.

We assume My = 1, and that M;/ P is bounded below by a positive
constant. Put m, = M,/M,_1, p € N. The following condition is used
in [4]:

2
(C) lim inf <%> >k, forallkeN.

p—oo \ My
The so-called associated function of (M) is defined by

PP Mo

M(p) = sup In , 0<p<oo.
PEN) Mp
We will also use the function
1 0P M
M*(p) = sup hlp?% 0 0<p< oo

peNp 4
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Another way to describe (M.1) and (M.2) is the following. Let (sp)peny,
(rp)penN, and (Ip)pen, be increasing to infinity sequences so that for
every p,q € Ny there exist A, H > 0 such that

(2.1) Spr1 Sprq < AHPsy sy,

and the same holds for (r,)pen, and (I,)pen,. With this, (Sp)peny,
(Rp)pen, and (Lp)pen, where S, = si---sp, R, = r1---7p, and
L,=1--l,,pe N (Sy =1, Ry =1, Ly = 1) satisfy conditions
(M.1) and (M.2). Conversely, if (S,)pen, where S, = s1 - - - sp, satisfies
(M.1), then (sp)penN, increases to infinity, and if it satisfies (M.2) then
(2.1) holds.

We are interested in the case when s, = p'/? so S, = p!*/? and
(rp)pen, and (I)pen, satisfy: For every a € (0, 1] and every k > 1 so
that kp € N, p € N,

2 2
l
(2.2) max { (Tﬂ> , <ﬁ> } <k*, peN.
Tp lp
With this we have that
max{Rp, Ly} < p*/?, peN

for every a € (0,1]. Also one can show that the sequences p!*/2r, and
p!'/21, satisfy condition (C):

11/2 2 11/2 2
lim inf { <(kp) Tkp) , <(kp) lkp) } >k, forall ke N.

p—00 p!t/2r, p! /21,

Definition 2.1. Let there be given sequences of positive numbers
(Mp)pen, and (Ny)qen, which satisfy (M.1) and (M.2). The Gelfand-

Shilov space SAJ\/]IZ’i(Rd) is defined by

Saa®?) = {f € C*®) | 20" ||~

< CA*M;oB* Ny, for all o, € Ng},
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for some positive constant C', where A = (Ay,...,A4), B = (Bi,. .., Ba),
A, B > 0. Their projective and inductive limits are denoted by

N, A N,,B N . . N,,B
Yo i=proj lim S, 4; Sy i=ind lim §,,",.
P A>0 P A>0 TP

B>0 B>0

For M, = p!", p € Ng and N, = ¢!*, ¢ € Ny, we use the notation
Syt =83 and B = 3.

Let (Mp)pen, and (Ny)qen, be sequences which satisfy (M.1). We
write M, C Ny ((M,) < (Ng), respectively) if there are constants
H,C > 0 (for any H > 0 there is a constant C' > 0, respectively) such
that M, < CHPN,, p € Ny. Also, (M,)pen, and (Ny)qen, are said to
be equivalent if M, C N, and N, C M, hold.

Theorem 2.2. Let there be given sequences of positive numbers
(Mp)pen, and (Ng)gen, which satisfy (M.1) and (M.2) and p! C
M,N, (p! < M,N,, respectively). Then the following conditions are
equivalent:

a) f e SAJYIZ (f € E]\AZ, respectively).

b) There exist constants A, B € R%, A, B > 0 (for every A,B € R?,
A, B > 0, respectively) and there exist C > 0 such that

2P || < CAPM | and ||w?f||p= < CBINy,, for all p,q € N{.
c) There exist constants A,B € R%, A,B > 0 (for every A, B € R4,

A, B > 0, respectively) and there exist C > 0 such that

2P fllzee < CAPMp  and ||0?f||L= < CBINyg, for all p,q € N
d) There exist constants A, B € R%, A, B > 0 (for every A, B € R?,

A, B > 0, respectively) such that

If (z) exp(M (|Az]))l|z= < oo and ||f(w) exp(N(|Bw]))||z~ < oo,
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where M(-) and N(-) are the associated functions for the sequences
(Mp)pen, and (Ng)gen,, respectively.

Proof. The proof for the inductive limit case, S]\AZ, can be found in

[3] and the proof for the projective limit case, E]\AZ is analogous. ]

By the above characterization .7-'81\]\/;‘; = SJI\\,/[:. Observe that 311 //22 is
the smallest nonempty Gelfand-Shilov space invariant under the Fourier
transform. Theorem 2.2 implies that f € 811//22(Rd) if and only if
f € C>°(R%) and constants h > 0 and k > 0 exist such that

(23)  [If exp(h|- [V*)|[ze < oo and ||fexp(k|- /%) < 0.
1/2

1/2
s > 1/2. We are interested here in “fine tuning,” that is, in spaces Eﬁ‘l

such that Z};;

use sequences (Mp)pen, and (Ny)qen, given by

Note that ¥/, = 0 and X7 is dense in the Schwartz space whenever

C EAN/I‘; C X%, s > 1/2. From now on, we will exclusively

p
My, = p!"? ]l = p!"/*Ly, p € N,

(2.4) k=0

q
Ny = Q1/? H TR = q!1/2Rq, g €Ny
k=0

where the sequences (7p)pen, and (Ip)pen, satisfy (2.2). Then we have
my = pl/Zdlp, p € No, ng = ql/zrq, g € Ng and p! < M,N,. For
p,q,k € N§ we have L, = Hlklﬁlp\ lig) and Ry = HIkISIqI Tlq|-

3. Representations via ultra-differential operators. In this
section we give a new representation of quasianalytic ultradistributions.
We use the notation and assumptions from the previous section. In
particular, we assume that sequences (M,,)pen, and (Ny)qen, are given
such that (2.2) and (2.4) hold. Recall that the corresponding associated
functions are

0<p<oo,
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We put

_ P _ 4
M(t) = sup In—; N(t) = sup In —;

0<p<oo.
pEN( LQ, geNo R2’

These are the M* and N* functions for sequences (M?)pen, and
(Nz?)quo :
Furthermore, in the upcoming Theorem 3.1 we use spaces of ultra-

distributions of Beurling and Roumieu type, the strong duals of spaces
of ultradifferentiable functions.

Let a sequence (Ng)qen, be given which satisfies (M.1) and (M.2).
The function ¢ € C*(Q) is called an ultradifferentiable function of
Beurling class (IN,) (respectively of Roumieu class {N,}) if, for any
K CC Q and for any h > 0 (respectively for some h > 0),

0%¢(x)|
h1* Nia)

ol Ny, 5, = sUD < 0.
zeK

aENg

We say that ¢ € ENoKn(Q) if ||¢||w, k1 < oo for given K and h > 0.
The following spaces of ultradifferentiable test functions will be used
E(NQ)(Q) 1= proj lim proj }llim ENa KR (),

{N}(Q) .= Ng,K,h
& (Q2) := proj KhHCIQ ind hlggo & (Q).

Let u € (EN" ) (R?) (u (SAJ\/[[Z) (R9), respectively). Then we say
)

that u can be extended on ENa)(Q) (on EINa}(Q), respectively) if
u € (EWNDY(Q) (u € (EINa})(Q), respectively) and

(ZJ\N/Iq ) (R4) <ua ¢>Efn‘f[q (Rd) —(EWa)r(Q) <u7 ¢‘Q>5(Nq)(g)
((Sﬁ‘;)’(Rd)<u’ ¢>$11\V/12(Rd) =(EtNaly(Q) <u, ¢‘Q>€{Nq}(ﬂ)7 reSPECtiveIY)'
Note that if (¢,)nen is a sequence in E (Rd) (in SAA/;‘; (RY), respec-

tively) and if ¢, — ¢ in 2 (Rd) (in SMP( ), respectively) then
¢"|Q - ¢|Q in £M4)(Q) (in S{N a}(Q), respectively).



1130 CORDERO, PILIPOVIC, RODINO AND TEOFANOV

Let there be given a sequence of positive numbers (Ng)qen,. The
operator P(9) = ZTZIZO aq,0% is called an ultra-differential operator
of Roumieu class {N;} (of Beurling class (IN,), respectively) if for all
L > 0 there exists a C' > 0 (there exists an L > 0 and there exists a
C > 0), respectively, such that

Llal
Niq|

lae| < C , for all o € N{.

In the proof of the following Theorem we will use the d-dimensional
heat kernel

(4mt)~ 42 exp(—|z|?/4t) t >0, z € RY,
0 t<0,z€RL

E(z,t) = {
It is an entire function for every t > 0, [ E(z,t)dz =1,t > 0, and

|02 E(x,t)] < Clelg=(d+1aD/2|g)11/2 exp[—al|az|? /4t],
t>0, zcR? acNg

where a can be chosen as close as desired to 1 and 0 < a < 1 [4, 20].

The following theorem can be compared to [4, Theorem 2.5]. In [4]
it is assumed that a given sequence (Mp)pcn, satisfies the condition

(M.0) : for all A > 0, exists C' > 0 such that p! < CAPM,,, p e Ny.

This condition does not hold for M,, = p!® if s < 1 and it holds for s > 1.
However, if s > 1, then condition (C) holds not only for mg,/m; but
for myp,/m, as well. Since we are interested in the case 1 > s > 1/2,
we essentially use sequences which satisfy (2.2) and (2.4). Since this
implies (C), our Theorem 3.1 is less restrictive than [4, Theorem 2.5]
in that sense.

The following condition, which is satisfied by M), = |p[!®, fors > 1/2,
is used in [18]: there exists an A > 0 such that, for any C' > 0 there is
a B > 0 (there are C' > 0 and B > 0, respectively) such that

|p‘lpl/2M‘q‘ < BC‘p|A‘p‘+‘q‘M|p|+|q|, p,q € Ng,
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However, representation theorems from [18, 19] cannot be used for our
purposes where behavior on open subsets of R? is essential.

Theorem 3.1. Let sequences (M,)pen, and (Ny)qen, be given such
that (2.2) and (2.4) hold. Let u € (SAJZ)’ (u € (Eﬁqp)', respectively)
such that it can be extended continuously to £Na}(Q) (EWa)(Q),
respectively) for some open set @ C R%. Then there exists P(0), ultra-
differential operator of Roumieu class {Ngy} (of Beurling class (Ny),

respectively) and there exist bounded continuous functions g and h on
R? such that u = P(d)g + h, i.e.,

<u7 ¢> = <gv P(_a)¢> + <ha ¢>
= [ swpopwa [ nooa,

¢ € 51\]\/2 (¢ € Z%, respectively).

Proof. We give the proof for the Roumieu case. The Beurling case
can be proved analogously. Let u € (Sﬁi)’ . Define

Ulz,t) = (u(y), Bz - y,1)) = (u(y), E(z —y,1)|o), «eR% >0
This is an entire function for every ¢t > 0, and

(3.1) %U(m,t) — AU(z,t) =0in R? x R,

Let us show that

lim U(z,t)p(x) dz = (u, $),for all ¢ € S]\A/;‘;

t—0t R4

By the assumption, u € (£{Na})(Q), so there exists a K CC Q such
that for every k > 0 there exists a C' > 0 such that

(u,9) < Clidlln, xk, ¢ € ENIQ).
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Let K5 be a delta neighborhood of K, K5 = {# € R"; d(z,K) < ¢}
such that K5 € Q. Since u € (£1V}(Q))’, for every h > 0 there exists
a Cp > 0 such that

(0%/0y*)E(x — y, 1)
t) <
U(z,1)] < Co oo | Helat2R, |
aeNg

zeR? >0,

where Cy and h do not depend on z and t¢.
Note that R
Tof+d <CH"H  forallae Ng.

lex|

By the estimates for (0%/0y*)E(z — y,t), we have (with a € (0, 1))

Olal g—(d+]al) /2 (ala—y[?) /4t
|U(z,t)| < Coy sup €

veKs hlel Ry
a€ENZ

—1/2\d+|« —172\d
< (Cp sup (CeZ )TN (CT R)? Rl sup e~ (ale—y|?)/4t
aeNd hd+|o‘|R|a|+d Rio) yeks

—1/2\d+|a
< Oy sup HO V2 e sy (a/an)
aenad  hHTIR )4

22\ dt|of 1/2
< Cg< sup <¥> %) o d(,K5)% (a/4t)
aeng \ N7t Ry 44

and with e = (H2C?)/h* we have that for every ¢ > 0 there exists a
C. > 0 such that

(3.2)  |U(x,t)| < CoeV/DIN(E/D=d@Ks)*(a/at) - 2 c R ¢ > 0,
where N is the associated function for the sequence (N, qZ)quO. Clearly,

. 1— € 2 Q

Thus, U is a bounded function on R? x [0, %] for every ¢ > 0 (we put
U(z,0) =0, z € RY).
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We will use the fact that, for any ¢ € S]\A/;‘; (R%), and
¢r(z) = | E(z—y,t)¢(y)dy, t>0, z R,
Rd

we have lim, 0 ¢ = ¢ in Sy’ (RY). If ¢ € Spy (R?), then

<U($,t), ¢7($)> = <<u(y),E(x - y7t)|Q>7 ¢7($)>
On the other hand,

(u(y), (B(z —y,t)6(2))) = (u(y), (E(x — y,t)(x)) ), t>0.
Since (E(z — -, t)é(z)) € SAA,;‘;(Rd), t>0,and (E(x —-,t)¢(z)) = ¢ in
Syt (RY) (thus (E(z — -, t)p(x))], = |, in £V (1)), we have

lim U(z,t)p(z)de = lim (U(z,t)p(z)) = (u, d).

t—0t+ JRd t—0t+

By the parametrix method we have that there exists an ultra-differential
operator of Roumieu class { N7 }qen,:

~/(d _ de
(33) P<a> = Z aq%,
g€Ny

such that
LY

27
q'R?

for every L > 0 and for some C' > 0, and v,w € C§°(R), with the
properties

|5q| SC qENo,

(3.4) suppv C [0,2], suppw C [1,2];

(for all L > 0)(exists Cr, > 0)
(3.5) ()| < CLe™ NN >0,
and

(3.6) ﬁ(%)wo =6(t) +w(t), teR.
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We refer to [17, Lemma 11.4] for this version of the parametrix. As in
[4], we put

Ulz,t) = /000 Uz, t+ s)v(s)ds.

By (3.2) one can show that U(z, t) is uniformly bounded in R x [0, c0)
and thus continuous on R x [0,00). It follows that g(z) := U(x,0),
r € R is a bounded continuous function. Let

H(z,t):=— /000 U(z,t+ s)w(s) ds.

Clearly, H is analytic in {(z,t) € R%™!; z € R%, ¢t > —1} and satisfies
the same growth condition as U on R? x [0,t] for every ¢t > 0 (see
(3.2)). Now, by (3.1) and (3.3) we have

B(—0)0(z,1) = ﬁ( - %) /Ooo U, + s)o(s) ds

_ /000 U(m,t+s)ﬁ<%>v(s)ds
_ /0 T Uyt + 5)(8(s) + w(s) ds

=Ul(z,t) + /00 U(z,t+ s)w(s)ds,

that is,

P(=A)U(x,t) = U(x,t) — H(z, t).
Thus, by letting ¢ — 0T, in SAJY[‘; (R9),
u=P(—A)g+h,

where g = U(-,0) and h = H(-,0) are continuous bounded functions on
R. Since, for ¢ € Nj and 3 € Ng,

— _yhd-l 261 §2Pa
s (1)) (S oo
Bzzq <,31 B2 Ba e
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o= -2 - S v, 3 (2)(,)

g€Ny 1Bl=q

q- dil Br\ 92 9284
(E
where [a,] < C(L?/q!R?), for every L > 0 and some C' > 0.
Put P(9) = Y.7%_0a,(07/027) := P(~A). We see that a, = 0 if

v # 28, B € Nd. Furthermore, for a given 8 = (B1,... ,84) € Nd and
for v = 28, the following estimate holds:

() (75 2) - (91 gz_i S

LIBl 4181
<G aldP < o=Z———
= |a\5\‘ = |/6|!R\25\’

for every L > 0 and for some C' > 0. Condition (M.2) implies Ry 5 <

la,| =

AH2|5|R‘23‘ for some A, H > 0. This, together with [23|! < 2281|3|!2,
gives
218
<\/2ALdH) Bh
ay| < C =C
las] < |2B1/2 R, Y12 Ry,

for every h > 0 and some C > 0, that is, P(9) is an ultradifferential
operator of Roumieu class {N,} as claimed. Thus, we obtained the
desired representation u = P(0)g + h. o

4. Time-frequency analysis and localization operators.
Translation and modulation operators are defined by

(4.1) T.f(t)=f(t —=) and M,f(t) = ™" f(t).

For a fixed nonzero g € 311 //22 (R%), the short-time Fourier transform

(STFT) of f € 811//22 (R%) with respect to the window g is given by
Vol (@,w) = (f, MuTog) = /R FOFE= e,

z,w e RY

(4.2)
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and can be extended to f € (811//22)’(Rd) by duality. For a fixed

g€ 811;22 (R%), the following characterization of Sll//; holds [15]:

[ €8))3(RY) =V, f € /5 (R

Another time-frequency representation we shall use in the sequel is the
cross- Wigner distribution W (f, g), defined by

43) W(rew) = [ 1(o+§)o(o-§ )t ewere

Since '
W(f,9)(z,w) = 2%V, f(2z,2w), =z,w € R?
we conclude that, for a fixed g € Sll//; (RY),

W (f,9) € S1)3(R¥) <= f € 8}/ (RY).

In what follows, we need the fact that also Gelfand-Shilov type spaces
Szj\\rr;l (R*?) and E%Z (R?) enjoy properties as above.

For the sake of simplicity, let us observe only the inductive limit case
and note that the same conclusion holds in the projective limit case.

Theorem 4.1. Let the sequence (Ny)qen, be given such that (2.2)
and (2.4) hold.

i) Let f,g € Sﬁ;’ (R?). Then W(f,g)(z,€) € Sg: (R%) and extends
to a map from (SII\\,IZ)'(Rd) X (Sﬁ;’)'(Rd) into (Sﬁ:)'(RQd). The same
1s true for the short-time Fourier transform.

ii) Conversely, if W(f,g) (or V,f) belongs to qu (R*), then f,g €

Ng d !
Sy (RY).

Proof. The proof in the Schwartz space can be found in [10, 12].

i) Let another sequence (Mp),en, be given such that (2.2) and (2.4)
hold. Obviously, f,g € SA]\/;‘;(Rd) implies that f(x)g(t) € Sﬁ‘;(Rd X
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R?), and also by the measure preserving change of variables (z,t) +
(x+(t/2),z— (t/2)) one can conclude that o(z,t) := f(z+(¢/2))g(z —
(t/2)) belongs to SAJYIZ (R? x RY).

Now we have to restrict our attention to the case when (M,)pen, =

(Ng)geN,- Let ¢ € 811\\[[: (R%*). By a straightforward calculation it
follows that the partial Fourier transform of ¢ with respect to the
second variable is continuous bijection on Sg;’ (R2?), that is,

O(z,w) = /efz"it“ga(:v,t) dt € ng (R% x R%)
if and only if ¢ € Sy (R? x RY).

Thus, i) is proved in a general case for transforms of the type
[e 2 p(x,t)dt with ¢ € SII\\,]Z (R%9). In particular, the assertion
holds for the cross Wigner distribution and the short-time Fourier
transform. The extensions to a map from (S]]\Y:)’(Rd) X (SII\\,IZ)'(Rd)
into (S]]\\,r:)’(RQd) are obtained by duality.

ii) Denote by Fa¢ the partial Fourier transform of ¢ with respect
to the second variable and bijections 7(z,t) = (z + (¢/2),z — (t/2))
and 0(z,t) = (¢,t — x). Then F» and the pullback operators U — 7*U

and U — 6*U are continuous bijections on Sﬁ: (R?*d). Furthermore,

W(f,9) = (F2o7)(f ®g) and, similarly, Vy(f) = (F2 0 6")(f @ 7).
Consequently,

Vy(f) € St (R*) <= W ({,g) € Sy’ (R*)
— f@7c Sy (R*)

@f,geSﬁj(Rd). O

Remark 4.2. Alternatively, Theorem 4.1 can be proved following
the proof of [23, Theorems 3.8, 3.9], for example. Results similar to
Theorem 4.1 can be found in [2, 16] where the case f = g, i.e., the
Wigner distribution W (f, f) is observed. More precisely, it is proved
that f € Sﬁ‘;(Rd) if and only if |W(f, f)(z,w)| < Cexp{—M(a|z|) —
N(blw|)}, for some positive constants C,a and b. It is assumed that
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(Mp)pen, and (Ng)qen, satisfy (M.1), (M.2) and (C), and that M and
N are the corresponding associated functions, see [2].

4.1. Modulation spaces. The modulation space norm MP;4(R?)
of a function f on R? is given by the LF;?(R??) norm of its STFT V, f,
defined on the time-frequency space R??, with respect to a suitable
window function ¢ on R?%. Depending on the growth of the weight
function m, different Gelfand-Shilov classes may be chosen as fitting
test function spaces for modulation spaces, see [8, 23]. The widest class
of weights allowing to define modulation spaces is the weight class N.
A weight function m on R?? belongs to N if it is a continuous, positive
function such that

(4.4) m(z) = 0(6622), for |z| — oo, for all ¢ > 0,

with z € R?4, For instance, every function m(z) = s’ with s > 0
and 0 < b < 2, is in N. Thus, the weight m may grow faster than
exponentially at infinity. We notice that there is a limit in enlarging
the weight class for modulation spaces, imposed by Hardy’s theorem:
if m(z) > Ce®®, for some ¢ > /2, then the corresponding modulation
spaces are trivial [14].

Modulation spaces having weights with at most sub-exponential
growth were first introduced by Feichtinger in [9]. We define them
using the Gelfand-Shilov class Sll //22 as test function spaces hereafter in
a similar way as [5].

Definition 4.3. Let m € NV, and let g be a nonzero window function
in 811//22(Rd). For 1 < p,g < oo and f € (S;//QQ)’(Rd), we define the

modulation space norm (on Sll//ZQ(Rd)) by

a/p 1/q
I lasze =Sz = ( [ ([ Wot@pmieopaz) " as)

(with obvious changes if either p = 0o or ¢ = ). If p,q < oo, the
modulation space MPE¢ is the norm completion of 811//22 in the MP:9-

norm. If p = oo or ¢ = oo, then MP? is the completion of 811//22 in the
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weak* topology. If p = q, MP := MPP, and, if m =1, then MP9 and
MP stand for MP¢ and MPE:P, respectively.

Notice that: (i) If f,g € 311//22(Rd), the above integral is convergent
thanks to (4.4) and (2.3). Namely, if m € N we choose c=h—¢ > 0in

(4.4), for a suitable € > 0, with h being such that ||ngeh"|2 Lo < 0.
Hence,

a/p
L ([ wropmopas) a
Rd Rd
2 5 Q/P
<Ol s [ ([ imaare e de) o < oo
R \ JR4

(ii) By definition, MP:? are Banach spaces.

(iii) It was shown in [5] that the Gelfand-Shilov class Sll //22 is densely
embedded in M}, with m € N.

(iv) Of course, the definition of MP:? may depend on the choice of
the window function g. So, we choose the Gaussian window ¢(z) =
e ¢ Sl1 //22 (R?) once and for all to define modulation spaces, and we

shall always work with it in the sequel.

It is straightforward to check that [6, Proposition 2.4] can be
rephrased in our context as follows.

Proposition 4.4. Let v € N(R?) be a weight function only in the
frequency variables v(z,w) = v(w) and 1 < p,q,7,8,t < c0. If

11 1 1 1
4 1== d ~+>-=1
D + q A + v ’
then
(4.5) MIg (RY) « M, (RT) — M™*(RY)

with norm inequality || f = h||pre S HfHM{),st h||
v

mest -
1@v—1

Gelfand-Shilov type spaces can be characterized by modulation spaces
in the following way:



1140 CORDERO, PILIPOVIC, RODINO AND TEOFANOV

Proposition 4.5. Let there be given a sequence (Ng)qen, Such that
(2.2) and (2.4) hold. Let 1 <p, ¢< o0, p' =(p/p—1), ¢ =(q/q-1).
We have N

ZNZ(Rd) = proj Slggo M1 (RY),
N, . . ,
Sn, (R?) = ind 51320 M (R7)
and, by duality,
(231 (RY) = ind lim MPE D(Rd),

N, ..
(Sn)/(R) = proj lim M., (RY),
in the set theoretical sense.

Proof. The proof is similar to the proof of the non-quasianalytic case
given in [24, Theorem 5.1]. Let us show E%Z(Rd) = proj lim,_,
M:;V""(S‘_D (R%). We first show that proj lim_, M.y = projlim, o
MPd..), 1 < p, g < oo. Forafixed g € SJI\\,[: and any weight m € N,
we have

1£llaaze = Vo llaaze < Ve feN D e flem NV ppa,

and therefore proj lim, oo MR (.., C projlim, . M2, ). In order

to prove the opposite inclusion we use

z 3 82
V, (€)Ml @D /700 /700 8t—&7(ng(t,77)eN(S‘(t’")D)dtd??y
which implies

\V f(z,€)e N (s|(z,w)]) | < H Vf(t n) - NGl Em])

0ton

Ll

4 HV I3 N(S\(tm)\)‘

'’

6t8

Now, the estimates similar to the ones given in the proof of [24
Theorem 5.1] give
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Vo f (@, )N NED < O(If a1 llazg A+ 1 llaeeg

eN(s1l-D eN(s21-D eN(szl-])

)

for certain s, s2, 83 > s.
Now, E%Z (R?Y) = proj lim, o MR, follows from Theorem 4.1

together with [FV, f(-)| < Ce=N(I') which holds true since E%Z (R2)
is invariant under the action of the Fourier transform. 0

4.2. Localization operators. Formally, the time-frequency local-
ization operator A¥1¥2 with symbol a and windows ¢1, 2 is defined
to be

(4.6) ALvP2 f(t) = / a(z,w)Vy, f(z,w) M, Ty e (t) de dw,
RZd

or, in a weak sense,

(47) <Aglv<\02f’g> = <a’V4P1fa V<P29> = <a7mv‘{’2g>’

where the brackets express a suitable duality between a pair of dual
spaces. Indeed, if a € (SII\\,,:)’(RM) and ¢1,p2 € SJJ\Y: (R%), then the
weak definition (4.7) shows that A%1:¥2 is a well-defined continuous

operator from SJJ\\,{: to (31]\\;;)’

Theorem 4.6. Let sequence (Ng)qen, be given such that (2.2) and
(2.4) holds. Let u € (Sg;’)' (u € (Z%Z)', respectively) such that it
can be extended continuously to E1Na}(Q) (€W (Q), respectively) for
some open bounded set Q € R, If ¢ € S%:(Rd) (if ¢ € Z%Z(Rd),
respectively) then

(4.8) Vpu(w,w)| S e Vel NGD,

for some a,a > 0 (respectively for every a,a > 0).

Proof. Let us prove the case u € (SS;’, ) (R%). By Theorem 3.1 we

have
[Vou(z,w)| = [V (P(9)g + h)(z,w)|

< Vo (P(9)g)(z,w)| + [V (h) (2, )],
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where g and h are bounded continuous functions on R¢ and P(9) is the
corresponding ultradifferentiable operator. We begin by studying the
first term on the righthand side. Note that, for every ¢ € 81]\\,{: (R%), we
have

0* (M, Top)(t) = > <O‘> (2miw)? M, T, 02 P (1),

BLa

and for any given v € Ny there exist positive constants a and b such
that

b7 (x) (Nale))

4.9 sup < 0.
(49) verd | Y12 Ry,
We have
Vo (P(D)g)(z,w)| < Y laall(0%g, MuTepl,,)|
aENg
= Z |aa||<gaaa(MmeS@)‘Q>|
aENg
(07 .
< X laal X (§) 10270
(410) aeNg Bl

x / (M T,00 P 0)(8)] a(t)| dt

<Yl (g) (2m)/81 ]9

aeNg Bla

x / (02 P o) (t — )| g(#)] dt.

By Theorem 3.1,
hlel

|aa‘ S 07|a|‘1/2R|a|

for any h > 0. Using (n — m)!m! < n! and R,—mRm < R,, m < n,
m,n € N, together with Zﬂ<a (g) =2/l we obtain
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Ve (P(0)g) (2, w)]

oy <§>|a 5

aeNE BLla
(3h)‘a76| a—p
X 0, "o)(t—=
/Q|a—ﬁ!1/2Ram'“ )t — )
(3h)lf3|
x (2m) Pl w|IPlAe—— |g(t)] dt
|BIIY/2R, g,
2 |a\
ey (3) %
aENg BLla
(3h) P a—p N(alt—al)
X 0, ")t —x)et®
/Wﬁ!wa_mut )(t — )
3h)|6|
« o= NlalaD) Nalth) (90181 181 _BGR
(2m) "l w] B, lg(t)]

Now, by (4.9) with h := b/3 and since [, eN(@I*D |g()| dt < C < oo, for
some C' > 0, the last term is less than or equal to

Cle—Nalz)) Z <§>|a| Z 2m)1fl (27 4+ 1)b)/P] w8

B<a (2’/T + l)lﬂl ‘,8|'1/2R‘m

aeNg

la| 18]
- 2 (27)
N(alz|) < N((2m+1)b|w]) _\er)y
< Ce Z (3) € Z (271'—}—1)‘3"

a€NY Be
Putting @ := (27 4+ 1)b we obtain
Ve (P(0)g) ()| < CeNeleheNaled,
For the term V,,h, we use (4.9) to obtain
Voh(z,w)| = |(h, M, To )|
< [ mewino)
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</e*NW\t*wDeN(alt*zl)|nga(t)||h(t)|dt
Q

gCewazn/ Nl (1) d
Q
< Cpepe-Naleh,

and the theorem is proved. a

Let L, be the Weyl pseudodifferential operator with symbol o €
S'(R2?), defined weakly by

(411) <L0fag> = <U7W(gaf)>7 g€ S(Rd)7

where W (g2, ¢1) is the cross-Wigner distribution. Then we have the
operator equality A¥1¥2 = L, provided that [1, 10, 22]:

(4.12) o=axW(p2,p1).

We shall focus now on a trace-class result for localization operators.
First, let us recall that the singular values {si(L)}72, of a compact
operator L € B(L%*(R%)) are the eigenvalues of the positive self-adjoint
operator v/ L* L. For p = 1, the trace class S is the space of all compact
operators whose singular values enjoy > ;- ; |sx(L)| < co. To prove the
main result of this section, we shall use a trace-class result for the Weyl
calculus in terms of modulation spaces. For the proof we refer to [13].

Theorem 4.7. Ifoc € M'(R?), then L, € S1 and ||L,||s: < ||o||arr -
Our result reads as follows.

Theorem 4.8. Let the sequence (Ny)qen, be given such that (2.2)
and (2.4) hold. Let a € (Sg:)’(RM) (a € (Exz)'(RQd), respectively)
such that it can be extended continuously to £Na}(Q) (EWa)(Q),
respectively) for some open bounded set  C R2?. Furthermore, let
V1,p2 € S]I\\,r;’ (R) (respectively o1, p2 € E%Z (R%)). Then A£v%2 is a
trace-class operator.
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Proof. Assume that a € (S]]\Y:)’(RM). The other case can be treated
in an analogous way. As already mentioned, in the definition of mod-
ulation spaces, we fix Gaussian window g(z) = e=™ € 81/2(Rd) C

1/2
Z%Z (R%), see [8, Lemma 2.3]. By Theorem 4.6, we have
[Vya(z,w)| < Ce™ NPlzh Nkl

for arbitrary h,k > 0. Then, for a given b > 0, we choose k < b to
obtain

sup/ Vya(x,w)|e VWD gy
weR? /R4

< Sup/ ¢~ N(hla) Nkl o~ NOIwD) g < oo,
weR? JRA

Therefore, a € Mllé;:_m,,‘_‘) (R?4), where b > 0 can be chosen arbitrary.

If p1,02 € 811\\[[: (R%), the characterization in Theorem 4.1 i) gives
W (p2,01) € Sﬁq(RZ‘i), and therefore, by Proposition 4.5, h,k > 0

exist such that

W (2, p1) € MelN<h|z|>®eN<k\w\>(R2d) C M11®6N<k\w\)(R2d)-

Now, we choose b = k and use the convolution relations of Proposi-
tion 4.4 to obtain

1,00 2d 1
M1®e*N(k\-\)(R ) * M ge-nein

(R2) M (R¥);
hence, o = a * W(p2,¢1) € M*(R?4). Theorem 4.7 yields the desired
result. o

For example, our result holds for f = "\ a,6(™, where |a,| <
(Cph™/nl®), for every h > 0 and corresponding Cp > 0 and s > 1/2.
Actually, one can show that f € (£7"")'(R??) for any s > 0. (Note that
f = e belongs to 7' (R2?) for any s > 0.)
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