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EXPLICIT ESTIMATE ON PRIMES
BETWEEN CONSECUTIVE CUBES

YUAN-YOU FU-RUI CHENG

ABSTRACT. We give an explicit form of Ingham’s theorem
on primes in the short intervals and show that there is at least
one prime between every two consecutive cubes z2 and (z+1)3
if loglogx > 15.

1. Introduction. Studies about certain problems in number theory
are often connected to those about the distribution of prime numbers;
problems about the distribution of primes are among the central ones
in number theory. One problem concerning the distribution of primes is
the distribution of primes in certain intervals. For example, Bertrand’s
postulate asserts that there is a number B such that, for every =z > 1,
there is at least one prime number between x and Bz. If the interval
[z, Bz] is replaced by a “short interval” [z, z + ], then the problem
is more difficult.

In 1930, Hoheisel showed that there is at least one prime in the above
mentioned “short interval” with § = 1—(1/33,000) for sufficiently large
x’s, see [13]. Ingham [15], in 1941, proved that there is at least one
prime in [z, x4/ 5+¢] where ¢ is an arbitrary positive number tending
to zero whenever z is tending to infinity, for “sufficiently large” z’s.
This implies that there is at least one prime between two consecutive
cubes if the numbers involved are “large enough.” One of the better
results in this direction, conjectured by using the Riemann hypothesis,
is that there is at least one prime between [z, z+az/ 2+e] for “sufficiently
large” x’s. The latter has not been proved or disproved, though better
results than Hoheisel’s and Ingham’s are available. For example, one
may see [2, 3, 12, 15, 17, 18, 19, 26, 28].

These kinds of results would have many useful applications if they
were “explicit” (with all constants being determined explicitly). For
references in other directions with explicit results, one can see [4,
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8, 22-25]. To figure out the “sufficiently large” z’s related to 6 as
mentioned above, one needs to investigate the proof in a “slightly
different” way. As a starting step in this direction, we study the
distribution of primes between consecutive cubes. In this article, we
give an explicit form of Ingham’s theorem; specifically, we show that
there is at least one prime between consecutive cubes if the numbers
involved are larger than the cubes of z¢ where z¢ = exp(exp(15)), and
we also set T = exp(exp(18)) throughout this paper accordingly.

Our main task is to prove the density theorem or to estimate the
number of zeros in the strip o > 1/2 for the Riemann zeta function,
see the following Theorem 1. We let 8 = R(p) and Ig(u) be the unit
step function at the point u = f3; that is, Ig(u) =1 for 0 < u < 3 and
Ig(u) =0 for B < u < 1. One defines N(u,T') := 3 y<q(,)<7 Ip(u) and
N(T) := N(0,T).

Theorem 1. Let 5/8 <o <1 and T > Ty. One has

N(o,T) < CpT®A=oD/310g° T,

where Cp := 453472.54.

Theorem 2. Let x > xzg, h > 322/3 and Cp be defined as in
Theorem 1. Then

Y(@+h) —¢(x) = (h/logz)(1—e(x)),

where

e(z)| == 3192.34 ! gz )%
)| = . € — .
© *P A 7 273.79 \loglog «

Theorem 3. Let x > exp(exp(45)) and h > 3z%/3. Then

1 1 1/3
m(z + h) — m(z) > h<1—3192.34exp<— 570 (1ogoigx> )>
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Corollary. Let x > exp(exp(15)). Then there is at least one prime
between each pair of consecutive cubes x> and (z + 1)3.

The proof of Theorem 1 is delayed until Section 5. We shall prove
Theorems 2 and 3 in Section 2. The proof of Theorem 2 is based on
Theorem 1 and Laudau’s approximate formula, which is in Section 6.
Then, it is not difficult to prove Theorem 3 from Theorem 2, as shown
in Section 2.

2. Proof of Theorems 2 and 3. From [25], one has

TlogT T 7
<82 = & +0.137log T + 0.443 log log T + 4.350,
™

N(T) < 2w 2

for T' > 2. The following proposition follows in a straightforward
manner.

Proposition 2.1. For T > 6, one has N(T') < (T'log T)/(2).

Proposition 2.2. Let Cp be defined as in Theorem 1. Assume that
the Riemann zeta-function does not vanish for o > 1 — z(t). Suppose
that Ty < T < x3/8. For any h > 0, one has

20 pT®/3)2(1) Jog g log5 T

(x4 h)P —zf
Z ~ z*(®(log = — (8/3)log T')

p

IS(p)I<T

Proof. Note that

(x + h)P — zf
p

< hafl,

x+h
= / wldu
xr

where 8 = R(p) is the real part of p;

B
xﬁzl—i—logx/ " du;
0
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and

8 1
/ z*du = / z*I5(u) du,
0 0

where Ig(w) is the unit step function or Ig(u) =1 for 0 < v < 8 and
Ig(u) = 0 for 8 < w < 1. After interchanging the summation and
integration, one has

P _ P
ey | (@+h)P—af) b e
X
[S(pI<T p IS(p)|<T
h 1
< = 1+1 “ I du |.
=7 Z + ogac/o T Z g(u) U
[S(p)I<T IS (p)|<T

If the Riemann zeta-function does not vanish in the region o >
1 — 2(t), then the expression in the outmost parenthesis in (2.1) is
bounded by
(2.2)

5/8 1-=2(¢)
2N(0,T)+2N(0,T) logm/ z*du + 210gw/ z“N(u, T)du.
0 5/8

Since T' > 6, one can apply Proposition 2.1. The sum of the first two
terms in (2.2) is
5/8 5/8T1 T
(2.3) 2<1+log:v/ " du) N(0,T) = 22>/3N(0,T) < =28~
0 ™
From Theorem 1, one sees that the last term in (2.2) is bounded by

1—2(t)
2.4) 2Cplog zlog’ T T ®/3)0=7) qy
( g =log

5/8

1—2(t) z w
=20pT%/3 logazlog5 T/ <—> du
5/8 T8/3

_ 20pT®/3 logaclog5T(< z )12“) ~ <i>5/8)
log z — (8/3)log T \ \ T%/3 T8/3

2CpxT /W logxlog® T 2Cpa®/ 3T log xlog® T

2 (log z — (8/3)log T)  log z — (8/3)log T
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One sees that the sum of the upper bound in (2.3) and the second
term on the right side in (2.4) is negative. Finally, one combines (2.1)
and the first term in the last expression in (2.4) to finish the proof of
Lemma 2.1. m|

Proof of Theorem 2. From Lemma 9.1 and Proposition 2.2, one sees
that
Y(z +h) —¢(x) = h + he(z),

with
1 (z+ h)P — zP
(@) < & ( > EE )+ |E(m)|>
[S(P)I< T
(2.5) < 2CpT®/3*1) Jog 2 log® T 410,52 (z 4 h)log®(z + h)
— 2*W(log z — (8/3)log T) ' hT
(x+h)log®T  log’T
66.976 .
+ hT logx hx

Let 3z2/3 < h. Also, let

1/3 1 log x 13
T =T(z) :=a* exp <256.59 <loglog :c> )’

with some undetermined constant u > 1. Then,

log T = ~log &+ — log @ 1/3<0341
0 =-logx .34log x,
&L T3 T T 05659 \loglog 2 ) &

loglog T < loglog z,

T8/3 _ 48/9 exp 8 log = 1/3
3 x 256.59 \ loglog x '

From [10], it is known that the Riemann zeta function does not vanish
for T > 1 — 2(T) with

and

1
~ 58.5110g%3 T(loglog T)1/3’

2(T)
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Let Z(z) := 2(T(z)). Then

1
Z(x) > 573 ,
28.511og*/® z(log log x)?/3

z \*D £1/9 Z(=)
—— >
<T8/3> ~ \ exp((8/3 x 256.59)(log z)/(loglog x))!/3
e 1 log z 1/
- P 256.59 \ loglog =

8
3 x 256.59 x 28.51log"/® z(loglog z)( °r 2)/3>'

It follows that for z > exp(exp(45)), the right side in (2.5) is bounded
from above by

3192.34 = log 2 )"
ORexp 273.79 \ loglog =
1 log x 1/3
1.76 - —
+ P ( 256.6 <log log :v)

1 log = 1/3
2. — | —
+2.59exp ( 256.6 <log log :v)

N 0.24log? +4.65 log = + 260.48
- .

We conclude that Theorem 2 has been proved. O
Proof of Theorem 3. By the definition of 7(x) and ¢(z), one has

m(x+ h)—7(z) = Z 1> Z logp

logz
z<p<z+h z<p<z+h
Y(x+h)—y) _ h
= > 1 - .
log x ~ logx (1=e(=))

This finishes the proof of Theorem 3. o

Proof of Corollary. Let X = x® and h = (z + 1)3 — 23, Then
h > 3z2 = 3X?/3. By Theorem 3,
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3z

3log x

m((z+1)%) — 7 (2) > (1—e(2%) > 1.

This proves the corollary. u]

3. Three auxiliary functions. Three auxiliary functions Uy, V4
and Wy are introduced in this section. For references, one may see [4,
17, 26).

Definitions of three auxiliary functions. Let A be a positive
integer. Define

& uln)
UA(S)—Z =

n

Here p is the Mobius p-function. Then,

Va(s) = ((5)Ua(s) — 1, Wa(s) =1 Vi(s).

Lemma 3.1. Let v(n) = },,< g.m|n #(m). Then |v(n)| < d(n) and

v(n)
Vals) = S 2
as) =D, 7
n>A
Every nontrivial zero of ((s) is a zero of Wa(s).
Lemma 3.2. One has

. 7.9
Va2+it)? < .

If A > 8, then both R(W4(2 + it)) and Wa(2 + it) do not vanish; if
A > 16, then |Va(2 +it)|? < 1/2 and [Wa(2 +it)| > 1/2.

Lemma 3.3. Let by = 5.134. For o > 1/4 and t > 3.297, one has

[Va(s)] < t3/2,
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and

Wals)] < <§A3/4t3/2 +171143/4251/2> (§A3/4t3/2 b AP/ 2>‘

Proof of Lemma 3.1. Easy. O

Proof of Lemma 3.2. We may assume A > 5. Observe

SWoy Ly L oy L

n>A m>A m<A n> A/m)
1

A
2 1 1
<Pt T amat Y

m<(A/2)+1 (A/2)+1<m<A
¢(2) 1 4 log(A—1) 1
< —
ST4 taoi Tz A 4
_28
A

for A > 5. a
One needs the following proposition.

Proposition 3.1. Let 0 > 1/4 and t > 3.297. Then
[£%] 1
= —+ B
C(s) =D — +Bls),

n=1

where | B(s)| < byt'/? with by := 5.134.

Proof. Note that in [4, 17, 26],

1 ©u — [u] 1
= —_— d ].-
¢(s) s/N =) u+(s—1)N$*1’ o>0, s#
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From this, we have

-

n<N

Nt 1 1t
< S+ 3~ 0>0 1.

Using this identity, Proposition 3.1 follows. o

Proof of Lemma 3.3. Using its definition, one sees that

A

Ua) <Y

n=1

If 0 < o < 1, one gets

A l1-0o
1 A
IUA(S)IS/ — du = ;
0

u® 1—0

if o > 1, one has

A
1
U < — <logA+1.
ZOE SEEE
For o > 1/4, one obtains
4 1374 4 34
(3.2) |Ua(s)|] < max §A Jog A+1p < §A .

Similarly, one gets
L]
Z 1 < ét?’/ 2.
n° — 3

n=1
Combining this with the result in Proposition 3.2, one has

4
(3-3) [C(s)] < §t3/2 +0ut!?,

for 0 >1/4 and t > 3.297.
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Recalling the definition of V4(s), one has
Va(s)| < 1C(s)[|Ua(s)] + 1;
from (3.1), one gets
(Wa(s)| < [C(8)[[Ua(s)1(2+ [¢(s)[Ua(s)])-

Combining these results with (3.2) and (3.3), Lemma 3.3 is proved. O
4. Representing the number of zeros by an integral.

Notation Ng(o,T). Let F(s) be a complex function and 7' > 0. The
notation Ng(c,T) expresses the number of zeros in the form S + iy for
F(s) witho <fand 0 <~ <T.

It is well known that ((s) does not vanish for ¢ > 1; so we may
restrict our discussion to o < 1.

Lemma 4.1. Let Ty = 14 and A > 16. Then for o9 < 0 < 1 and
T > Ty, one has

1 1 [T 2 (594)16T
. < - At
Nelo3T) < O'—O'0<27T /T1 Va (oo +it)"di+ 2w A Fltea(D)),

_ log (((16)/9)A%/*(T + (7/4))*/* + b A¥(T + (7/4))"/?)
B log(7/6)
L los (((16)/9)A*(T + (7/4))%
log(7/6)
N +b AT + (7/4))/? + 2) log 2
log(7/6)

CA(T) :

Corollary. Let A < (595)/(594)T and T > exp(exp(18)). Then

ca(T) < 29.1931og T + 11.978.
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Notation Ng(o;7T,T1). Let F(s), o and T be as in the last
definition. The notation Ng(o;T,T1) expresses the number of zeros
in the form 8 + iy for F(s) witho < fand T3 <y < T.

Be definition, one sees that Ng(o;T,11) = Np(0,T) — Np(o,T7) for
any complex function F. Note here, see [9, 17], that there is no zero
for the Riemann zeta function (o + it) for 0 < ¢t < 14. If one takes
Ty = 14, then N¢(0;T,T1) = N¢(o, T).

For an analytic function, a zero is isolated, and the number of zeros
in any compact region is finite. Fix ¢ and T. Let 1, £9, and €3 be
sufficiently small positive numbers and A = 0 — ¢y and Ty, = T + &5.
One may assume that A is not the real part and 7% is not the imaginary
part of any zeros for the function W4 (s). Recalling the second part of
Lemma 3.1, one gets the following proposition.

Proposition 4.1. Let Ty = 14 and €1 and e be small positive
numbers such that A = o — &1 s not the real part and To =T + 2 is
not the imaginary part of any zero for the function Wa(s). Then

N¢(o,T) < Nw, (A5 To, Th).

Let o9 < A. Since Ny, (A; T2, T1) is a nonincreasing function of A, by
the definition one sees that

1
)\—0'0

A
Nw, (N T2, Th) < / Nw, (p; Ty, T1) dp.
oo

Noting that

A 2
/NWA(p;TQ,Tl)dps/ Nuwa (9 T2, Ty) do,
oo oo

one has the next proposition.
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Proposition 4.2, Let 09 < A < 1 and T» (> T1). Assume that A
18 not the real part and T is not the imaginary part of any zero for
Wa(s). Then

1
)\70'0

2
Nw, (A T2, Th) < / Ny, (p; T, Ty) dp.
oo

Using the arguments in [26, pages 213, 220], one gets the following
result.

Proposition 4.3. Let (1/2) < 09 < 2. Assume that Ty is not the
imaginary part of any zero for Wa(s). Also, let Ny be the number of
zeros for R(Wa(s)) on the segment between o + it and 2 + it on the
linet =Ty for k =1 and 2, respectively. Then

2 T .
1 2 |WA(0'0+’Lt)|
N, (0T, T dp < — [ log [ 2AT0 T 4,
/ao WA(:O 2 1) 1Y 2>t T Og< ‘WA(2+Zt)‘
N+ Ny
+—

2

(4.5)
+ 1.

The following result can be found in [4].

Proposition 4.4. Suppose that sg is a fized complex number and f
is a complex function nonvanishing at s and regular for |s — so| < R
for a positive number R. Let 0 <r < R and My = max;_,,—r |f(s)|-
Then the number of zeros of f in |s — so| < r, denoted by Ny, multiple
zeros being counted according to their order of multiplicity satisfies the
following inequality.

A, < lomM; — log| £ (s0)|
f= log R —logr

Proof of Lemma 4.1. From Propositions 4.1, 4.2 and 4.3, one has
(4.6)

N(o,T) <

— dt
A—o0p \ 27 +

T> .
1 < 1 / log‘WA(O'o +'Zt)| N1+ N2 +1>,
T |WA(2 + it)] 2

where A = 0 — &1 as To =T + €5 as in Proposition 4.1.
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Clearly, we have
. 1 . .
R(Walo +it) = 5 (WA(O' Fit) + Wa(o — zt)).

The number of zeros of R(Wa(s)) on Sy are the same for the following
regular functions

W (s) = (WA(s +iTy) + Wa(s — iTy,))

on the real axis between oy and 2.

First, one applies Proposition 4.4 to estimate the number A}, of zeros
for Wo(k)(s) in |s — 2| < (3/2). It is obvious that N} < Nj. One takes
so = 2, R = (7/4), r = (3/2). Recalling (4.7) and Lemma 3.3, one
acquires

(k) ‘ 1( :
max W™ (s)| < max Wal(s + ¢T3
ls—2|=(3/2) ‘ 0 (5) 2\ |s—2|=(3/2) IWal el

+ max |Wa(s iTk,)|>
ls—2[=(3/2)

< max |Wa(s+iTy)]
[s—2[=(3/2)

7
<W(1)( k-{-Z)

7
S W,Ell) (TZ + Z)a

where WS) (t) is the upper bound of [W4(s)| in Lemma 3.3. Letting
€, tend to zero, one sees that

By <w® (e’
ax WO < W (174 7).

|s— 2| (3

Also, recall that |Wy(2 + it)| > (1/2) from Lemma 3.2. This implies

log W4 (T + (7/4)) — log(1/2)
log(7/6) ’

Nk: < CA(T) :
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for kK =1 and 2. Hence,

N1+ N2 <

(4.8) 5 <

CA(T).

Now, transform the integral in (4.6) into one involving the function
Va(s) instead of W4(s).
Recalling the definition of W4 (s), using the triangular inequality in

the form |z — y| < |z| + |y| and noting that log(1l + z) < z for > 0,
one has

log |[Wa (oo + it)| = log |1 — VZ(og + it)|

(4.9) -\ 2 - 2
<log(1+ |Va(oo + it)|?) < |Va(oo + it)|*.

Also, by the triangular inequality in the form |z — y| > |z| — |y],
one gets |1 — V(1 +it)] > 1 — |Va(1l + it)|>. Using the increasing
property of the logarithmic function, one sees that log |1 —V32(2+it)| >
log(1 — |Va(2 +it)|?). It follows that

—log|Wa(2+it)] = —log|l — V3(2+it)| < —log(l — |Va(2 + it)|?).

From the last part of Lemma 3.2, one sees that |V4(2 + it)|? < (1/2)
since A > 16. Applying —log(l — z) < 2z for 0 < = < (1/2), one
acquires

(4.10) “log|[Wa(2 +it)] < 2[Va(2+ it)? < %.

Combining (4.9) and (4.10), one obtains

7.9
> < |V (o0 +it))? + ——.

‘WA(UO + lt)|
1 LR A
0 ( B

[Wa(2 +it)]

Letting €2 tend to zeros in (4.6), one gets

1 1 [T 9 7.97
< Sl ' it ,
N(o,T) < A_(TO(% /T Vi (00 + )| dt+27TA+1+cA(T)>
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Finally, letting €; tend to zero, one obtains

1 1 [T . 7.97
Ne(o,T) < (-/ Va (00 + it) > dt+—+l+cA(T)>.
o—o00\27 Jp, 2m A

This proves Lemma 4.1. u]

5. The proof of Theorem 2. To estimate the integral in
Lemma 4.1, we study the following functions.

Definition of V,(t). Let t > 0. Define
t
Vo) = [ Valo+iv) P dy.
0

One needs an explicit upper bound for the Riemann zeta function on
the line o = 1/2, for which we summarize the Corollary and Theorems
1, 2 and 3 from [6] into the following lemma.

Lemma 5.1. One has
1
((5 +it) < Ct*log’(t+e)+ D
for any t >0, where C =3, «a =1/6, 8 =1 and D = 2.657.

For 0 = 1/2 and 1+ § with the value of § > 0 being determined later,
one has Lemmas 5.2 and 5.3.

Lemma 5.2. Let C, a and 8 be as defined in Lemma 5.1, A > 16
and 0 <t < oco. Then,

V1/2(t) < Dit** 1 log?® (t + €) + Dat** log? (t + €) + D3t + Da,
where Dy := 4C%(logA + 1), Dy = 16C?A(logA + 4), D3 :=
4D*(log A+ 1) and Dy := 16D?A(log A + 4).

Lemma 5.3. Let 0 < § <1, A>16 and 0 <t < co. Then

Vi46(t) < Dst + De,
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where
log® A +3log? A+ 6log A+ 6

Dy := 0.206 TEeT ,

and

Dg:

5 52 T T T

_O.264(1+6)(log3A 3log?A  6logA 6>
= 3 i

4.012 <log2 A 2logd 1 >
+ + =
A28 52 53 54
N 16.020(1 +0) [log® A 2log A L2
Ad B 52 83 )

The proofs of Lemma 5.2 and 5.3 will be given in Section 8. One
needs another auxiliary function H(s).

Definition of H(s). Let ¢ > 1/2 and ¢t > 0. Denote

(5.1) H(s) = Hu,(s) == S;I)VA(S),

$COoS (%

where V4(s) is defined in Section 3 and 7 is a parameter with positive
value.

The function H(s) has a close relation to the function V'(s), as shown
in Lemma 5.4.

Lemma 5.4. Let (1/2) <o <2 and 7 > e. Then, fort >0,

[H(s)| <2/ CD|Va(s);

200 ;/(2r
Va@) < |/ g7 €/ IH ().

One then uses Lemmas 5.2 and 5.3 to give estimates as in Lemma 5.5
on H(o) defined as follows.

fort > 14,
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Definition of # (o). Let o > 1/2. Define

(5.2) H(o) = / T H(s)Pat.

— 00

Lemma 5.5. For T > Ty, one has

1
H<§> < AT 31083 T,

and
7—[(1 n é) < Ay loghT,
where
A; = 685.026 k*/ + 2061.486x"/ + 0.000001x + 0.001,
and

Ap

_144.001 n3 " 3 6n> 613
T 2w w w? w3 w?

4.689x  8.001 n2+2n 2
m2e2w m2ev \ w  w? w3 )’

with n = 1.000001.

One obtains the following Corollary by taking w = 1.598 and x =
1.501. The justification of these choices of constants will be given in
the proof of Theorem 1.

Corollary. Let T > Ty. Then

1 1.
H(=Z) < ATY?10g®T and H 1+ﬁ < Ay logT,
2 log T

with A; = 3537.613 and Ay = 78.383.
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One may transform the estimates on H (o) for 0 =1/2 and 1+ 4 to
any o between by the following lemma, which is due to Hardy, Ingham
and Pdlya, see [4].

Lemma 5.6. If H(s) is regular and bounded for o1 < o < 02, and
the integral

H(o) = /jo |H (o +it)|*dt

exists and converges uniformly for o1 < o < 02, and

lim |H(s)|=0

|t]—o0
uniformly for o1 < o < g9; then for any positive number T,

'H(U) < {’}-[(0.1)}(0270)/(02701) {H(O,Z)}(afal)/(nggl) '

The proofs of Lemma 5.5 are given in Section 9.

Proof of Theorem 1. Applying Lemma 5.6 to the function H(s) with
o1 =1/2 and o9 =1+ § with any positive §, one obtains

H(O’) < A?(1+5*U)/(1 + 25)A§2"*1)/(1 + 25)T(8(1+6—U))/(3(1+25))
x TogPH(2e=D/(420) 1 < 4 4, 7B(1+5-0)) /31004 7

Now, from Lemma 5.4, one gets |V4(s)|? < (200/197)e!/7|H(s)|?, or,
with 7 = kT, for & > (e/Tp),
200

2
<

e!/"|H (s)[.

r 200 T
/ﬂwwﬁmeg—%W/|m%+WM¢
7 197 T

200 ),
197°¢

100 4,
== @e H(O’O)

%61/NA1A2T(8(1+5—00))/3 log* T

< / |H (0o +it)|* dt
0

IN
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Recalling Lemma 4.1, one sees that

100e!/*
N¢(o,T) < 00e Ay A7 B0+=00)/3 100t T

~ 394w (0 — o9)

1 16T
— +1 T)).
o —0p (271'A+ +eal )>

Note that A < (1 + (1/75))T and 6 = w/(logT) as in the proof of
Lemma 5.5. Also, let 0y = 0 — (v/(log T)) for another positive constant
v. It follows that

100e(1/m)+(8(w+1))/3)

Ne(o,T) < A A,TEO=)/3) 1665 T
C(J’ )< 394ny 152 08
n 16logT n logT n ca(T)log T
2my v 1%

S CDT(S(].fG')/:i) 10g5 T,

with
o 100e(1/8)+((5w)/3)+((8v)/3) N 1 16 N 1
b 394mv MR gty \2m T w
ca(T)/logT
viog® Ty

The first term in Cp is the major one; one may sub-optimize it in order
to sub-optimize C'p. Note that

100e(1/%)+((5)/3)+((8v)/3)
Cp ~ —% (685.0265*/% + 2061.486"/%)
394y

(L3 o)
m2e? \w  w? W wt
4 1 2 1
+62_""<E+F+F>>'

To optimize the factor ((exp(8v)/3))/(v), one takes v = (3/8), to sub-
optimize the factor

e'/*(200.593x%/3 + 603.656x/°)
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in Cp, one let kK = 1.501, and to sub-optimize the factor

65“’/3 ﬁ l+i+£+£ _’_i i+i+i
m2ev \w  w?  wd  wt e2w \w?2 w3 wt))’

one chooses w = 1.598. With these choices of constants, one gets the
corollary of Lemma 5.5. From the corollary, one justifies the choice of
Ty- With computation, the proof of Theorem 1 is finished.

6. Estimates involving the divisor function.

Lemma 6.1. Let 6 > 0 and loglog N > 18. Then

d*(n) _ 0206 , 4 ,
Z n2+2s < N1+20 (log> N + 3log” N +6log N +6) .
N<n

Lemma 6.2. Let 6 > 0 and loglog N > 18. Then

d(n) _ 1.003 log? N 2logN 1
Z Z (mn) 1+5 S N 2 e TsE)
N<n N<m<n

Lemma 6.3. Let 6 > 0 and loglog N > 18. Then

G 2, () log(m/n)
1+6(log? N  3log? N 6logN 6
< —
0.066 < 5 + 52 + 53 + 5
1+6(log? N 2logN 2
4. —= |-
+ 4.005 G < 5 52 +63
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Proof of Lemma 6.1. Using the partial summation formula, one gets

Z ZEST;();:/NOO 2426 < Z d*(n >

N<n<oo N<n<y

(7, 2,0,

+(2+25)/ ( 3 d2(n)>y3—125dy

N N<n<ly

:(2+25/ < d d(n > 3+26dy

N<n<y

oo

By the corollary of Lemma 4.2 in [5], one has

Z d*(x) < 0.102z log® z + 1.676z log? x + 8.564x log & + 23.652x

nlx
+ 1.334y/z log® z — 2.845\/z log® & — 4.280\/z log =
— 8.501v/x + 1.334log® z — 0.845log”
+2.874logz — 0.111
< 0.103z log® .

It follows that

d*(n) > log’y
(6.1) D e <0103(2+ 25)/ o -
N<n<oo N
From this, Lemma 6.1 follows. |

Proof of Lemma 6.2. We note that

>y i) (x )

N<n N<m<n N<n

and, by Lemma 5.1 in [5],
Y d(n) < zlogz +0.155z + 4v/z < 1.001z log 2.

n<x

Using these, as before, we similarly prove Lemma 6.2. ]
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Proposition 6.1. For loglogx > 18, one has

(n) < 0.066z log® = + 4.005z log? .

Z Z (mn) 1/210g (m/n) —

m<znm

Proof. Note that —log(1 — ) > x for 0 < & < 1. Thus, for n < m,

(- (1-757))

log(m/n)

_ -1 1/2
<(m n) =1+ <1+(mn) .
m m-—n m-—-n

It follows that

(n)

(6.5) n;“;n (mn) 1/210g (m/n)
n)
I mnl/g ZZ—-
m<zxnm m<zxnm

For the first sum in (6.5), one sees

ZZ mn1/2 :mZQC

m<zn<m

YA (za)

n<x

Recalling the corollary of Lemma 5.2 in [5], one has

d

% < 2y/zlogx — 1.691y/z + 2log x + 5.846 < 2.001y/z log z.
n<x
For the second sum in (6.5), one recalls the corollary of the main

theorem in [5]. Since log log:c > 18 one has

ZZ p——— <0066mlog x.

m<znm

This concludes the proof of Proposition 6.1. a
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Proof of Lemma 6.3. Using the partial summation formula for the
sum over n, one gets

1 d(m)d(n)
Z mlte Z (mn)1/210g(m/n)

N<m N<n<

:/N ) ( Z Z mn 1/210g(m/n)>

N<m<y N<n<m

m [
:(H(; Z Z mnl/zlog(m/n)>‘N

N<m<y N<n<m
d(m)d(n) dy
(mn)t/21log(m/n) y>*9

+(1+4+9)

N N<m<y N<n<m

d(n)
= i
Ty gl te y1+5 > Z (mn) 1/210g(m/n)

N<m<y N<n<m
d(m)d(n) dy

d) )
1+ (mn)t/2log(m/n) y?>+9

N N<m<y N<n<m

Recalling Proposition 6.1, one sees the first term in the last expression
is zero; and applying (6.4) and (6.3), one obtains

1 d(m)d(n)
Z mlto Z (mn)t/2log(m/n)

N<m N<n<m
< 0.066(1 + 6) /Noo 1y1g+§/ dy + 4.005(1 + 6) /N tif dy
< 0.066 1;56 <10g;N 3105g22 N N 61(;§N n %)
+40051+5<10g;N N 2lc;g2N . %>
This proves Lemma 6.3. u]

7. Proofs for Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. Recall the definition of V4 (s) from Section 3.
Using (x + y)? < 2(z% + y?) for real numbers x and y, one gets

(7.1) Va(s)l* < 2(I¢(s)P|UA(s)]* + 1).
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Recalling the definition of V,(t) from Section 5, applying Lemma 5.1,
and using the same inequality for any = and y again, one acquires
(7.2)

t
Vip(t) < (4022 1og™ (t + ) + 4D?) / UA(0.5 + i7) 2 dr + 2t.
0
The integral in the last expression is
t t
/ |UA(0.5 +ir)]?dr = / Ua(0.5+47)U4(0.5 +i7)dT
0 0
A A iT
— Z Z p(m)p(n) [* m d
= T.
—~ = mi/2p1/2 [ \ n

Thus, using the inequality

[(2)

we immediately get
(7.3)

t 1 1
. 2 _
/0 UaO5+infdr<tY S 44 3 S log(m/n)’

n<A m< An<m

2

< =
= log(mm)’ 7™

The first term in (7.3) is bounded by t(log A+1). For the second term
on the right side of the last expression, we note that zlogz —x+1 >0
for z > 1. This implies that

1 < T 14 1 <l+x1/2
logez -1 z—1 z—1

We use this for © = m/n, getting

1 nl/2m1/2
1+

log(m/n) m-—n

m
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It follows that

1
Z Z m1/2n1/2log(m/n)

m<An<m
1 1
<L gt 2 2 a,

m<An<m m<An<m
1 2
< (Z W) + > (1+log(m—1))
n<A 1<n<A

<4A+ Alog A < A(log A + 4).

Thus,
t
(7.4) / |UA(0.5+i7)]2dr < t(log A+ 1) +4A(log A + 4).
0
We conclude that, from (7.2) and (7.4), this proves Lemma 5.2. O

Proof of Lemma 5.3. To estimate V4(t), one recalls Lemma 3.1. Tt

follows that
t T
/ <m> dr.
0 n

! v(n)
Viys(t) :/ Z pitotir

0 Tacn
Similarly to the argument for obtaining (8.3), one deduces

20, m)d(n
(7.5)  Vigs(t) <t Z Z?-(‘r?()s +4 Z Z m1+5i(1+‘5)d( :

A<n A<m A<n<m log(m/n)

2
v(m) -~ v(n)
dr=3% mi+e > nit+s
A<n

A<m

For the second sum in the last expression, we observe that the
function f(z) =logz + /2 —1 > 0 for z > 1. Tt follows that

1 1

— — forz>1.
log x z1/2logx ore

With = m/n, one sees that

1 nUZ

log(m/n) <1t m'/2log(m/n)’
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The second term in (7.5) is less than

d(m)d(n)
Z Z mitinltilog(m/n)

A<m A<n<m

d(m)d(n d(m)d(n
<Y Y A Y Y g

A<m A<n<m A<m A<n<m
d(m)d(n) 1 d(m)d(n)
DD et 2 > :
- +opl+s 1+6 1/2,1/2
A<m A<n<m m n A<m m A<n<m m n log(m/n)

Applying Lemma 6.1 for the first term in (7.5) and Lemma 6.2 for the
first term and Lemma 6.3 for the second term in the last expression,
Lemma 5.2 is proved. O

8. Proofs for Lemmas 5.4 and 5.5.

Proof of Lemma 5.4. By the definition of the cosine function in the
complex variable s = o + it, one sees that

cos ( s > 1 (760D 4 etiorven)

2r) 2
1 ) .

_ - (t/21)—i(o/2T) —(t/27)+i(o/27T)
2 (e te )

1 . )
— Zp(t/2m)—i(o/2T) —(t/7)+i(o/T)
26 (1 +e ) .

Since 1/2 < 0 < 2, one has 0 < (o/7) < (7w/4) for 7 > e. It
follows that e?(?/7) is in the first half of the first quadrant so that
1< 1+ e WnHle/T)| = /1 +et/T + 2e=t/T cos(o/7) < 2. Thus,

one sees that
s t
cos | — || < e'/2T.

For t > 0, it is easy to see that

s—1 20—1
=4/1 - —=<1.
s V o2 4+12 —

For 1/2 < o <2 and t > 14,

let/27'

<
2
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s—1 \/1 201>\/1 201 _ (197
s | o2+ t2 o2 4+142 — V 200°

This concludes the proof of Lemma 5.4. O

Proof of Lemma 5.5. One may first note that H is an analytic function
so that

H(o) = 2/000 |H(s)|? dt.

From this equation and the first inequality in Lemma 5.4, one sees
H(o) < 8/ e 7V (s)[2 dt.
0

One then uses integration by parts, getting

o0 o ¢
/ e*t/T\VA(0+it)|2dt:/ et/fd</ IVA(0+iy)I2dy>
0

0 0
o0

= / e AV, (t) = eV, (t)

0

0

1 o)
+—/ eV, (t) dt.
0

T

Note that V,(0) = 0 by definition. From Lemma 3.3, it is easy to see
that V,(t) < t*; hence, the first term in the last expression is zero.
Thus,

H(o) < 8 /Oo e TV, (t) dt.

T Jo

One then substitutes the variable ¢ by 7y with the variable y and the
parameter 7, obtaining

(8.1) H(o) < 8/0oo e "V, (Ty) dy.

To estimate #(1/2) and H(1+¢), one uses Lemmas 5.2 and 5.3. One
needs to calculate the integrals in the forms of

T(a,b) = / ¢ vy log(y + ¢) dy,
0
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for the ordered sets {a,b} = {0,0}, {1,0}, {(1/3),0t}, {(4/3),0},
{(1/3),2}, and {(4/3),2}.

For the first two sets of values for a and b, it is easy to see

j(0,0):/ e ¥dy=1, and j(l,O):/ e Yydy =1,
0 0

using the partial integral formula for the second one. One then uses a
computation package to obtain

1 o 4

J(—,O) :/ e Yy dy = r(-) < 0.893,
3 0 3
4 o0

J(—,O) :/ e Yyt dy = r<z> < 1.191,
3 0 3

1 o0
j<§,2> = / e Yy/3log?(y + €) dy < 1.220,
0

and

4 o0
j<§’2> = / e Yyt/3 log?(y + €) dy < 1.881.
0

Note that 7y + e < 7(y + ¢) since 7 > ¢, so that log(ry + ¢) <
log 7 + log(y + €). One then has

log®(ty + €) < 2 (log?(7) +log*(y +¢)),

since (z + y)? < 2(2? + y?) is valid for any real numbers = and y.
Recalling Lemma 5.2, one obtains that

oo 4
/ e~V jo(1y) dy < 2D 743 log? j<§, 0>
0
4/3 4
+ 2D1T ‘_7 §,2
1/37..2 1
+ 2D2T IOg T ._7 g, 0

1
+ 2D271/3J<§,2>

+ D37J(1,0) + D4J(0,0).
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Then, recalling (8.1), one acquires
1
(8.2) H <§> < qpr/3 log2 T+agrP4azr!/? log2 T+a471/3+a57—|—a6,

with A
ay = 16D1j<§,0> S 14288D1,

4

as = 16D1j<§,2> < 19.056D;,
1

az = 16D2J<§,0> < 19.520D,,

1
ay = 16D2J<§,2> < 30.096Ds,

as = 8D3‘_7 (].,0) = 8D3,
ag = 8D4j (0,0) = 8D4

Similarly, but recalling Lemma 5.3 and equation (8.1), one has
(83) H(l + (5) < b7 + b,

with b1 = 8D5J(1, 0) = 8D5 and b2 = 8D6j(1, 0) = 8D6

Actually, the “constants” a; for j =1,...,6 and b; for j = 1, 2, are
not absolute; they depend on the choice of A subject to A > 16 as well
as our choice of the parameter 7. The kink is that we are going to
choose suitable A and 7.

Note that (1+(1/1y))T —T = (17'/To) > 1. One may choose A to be
an integer in 7' < A < (14 (1/Tp))T. Let s be a constant such that
k > (e/Tp) and 7 = KT. Then 7 > e. Also, let w > 0 and § = (w/T).

For brevity, denote A(T) = logT + log(l + (1/1p)). We have
A(T) + Z < 1.000,000,001 log T for any Z =1 or 4. Also, we assume
that k is not so large so that log7T + x < 1.000,001logT. It is now
straightforward to conclude Lemma 5.5. O

9. Landau’s approximate formula. In this section, we give an
explicit form of Landau’s approximate formula as stated in Lemma 9.1.

Let T > 0 and u > 0. Suppose there are n zeros (31 + izq,
B2+ iza, ... ,Bn + iz, of {(s) in T —u < ¥(s) < T + u such that



146 YUAN-YOU FU-RUI CHENG

2p=T—-u<zn<z2<...<z2, <T+u=2,41. Let 1 <7< n+1be
such that z; —z;_1 > 2; —2;_1 for every other 1 <i < n+1. There may
be more than one such a j. Fix one such j, and let T,, = (21 + 2;)/2.
For convenience, T, is called the associate of T" with respect to u.

Lemma 9.1. Let x > zg and T > exp(exp(18)). Suppose that T, is
the associate of T with respect to u = 1.155. Then,

s =c— Y ZiE@),

(o<t P
where

zlog? z

log?T  _log?T
x log +30g .

E < 5.26
(@)l < Tlogzx T

+ 33.488

Proposition 9.1. Lett > 0 and B, + iy,, n = 1,2,... be all
nontrivial zeros of the Riemann zeta-function. Then

> 1 1 )

Proof. Recall the following formula, see [8]. That is,

() 1 = 1 1)« 11
(9-1) C(s) sl+n¥1<spn+pn>+n¥1<s+2n 2n>+B0’

where {p, : n =1,2,...} is the set of all nontrivial zeros of the Riemann
zeta-function and By = log(27) —1. Using this equation with s = 2+t
Proposition 9.1 follows. a

Proposition 9.2. Let v, be defined as in Lemma 9.1. Fort > 0 and
0 < u, one has
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(a) The number of zeros of ((s) such that |t — v,| < u is less than

1
(44 u?) <Z log (t* +4) + l.483>;

)3 ﬁ < <1+ %) <ilog (£ +4) +1.483>.

[t—vn|>u

Proof. Note that

4+ u?
1< —"T% iyl < w
ST T

therefore,

> 1§(4+u2);ﬁ

_ 2°
[t—vn|<u ,}/n)

Applying Proposition 9.1, one proves (a) in Proposition 9.2. One shows
(b) in the proposition similarly, but note that

1+ 1 ! if |t | >
U2 4+ (t_wn)zﬂ 1 7n U’?

==

so that

[t—yn|>u

Proposition 9.3. Let -1 <0 <2,t>0, andu > 0. Then

(o +it) 11
C(Uiit)gt_%§u<2+it—pn s—pn>

3 4\ /1
S+ ) (= (t2 4) 1.483
+2< +u2><4 og + + )

3
+ 2z + 1.284.
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Proof. From (9.1), we have the following equation.
' 1 1 - 1 1
SENCH/ . ———— S
¢(s)  2+it—-1 s—1 “=\s—p, 2+it—p,

o0 1 1 ¢'(2+it)
+Z<5+2n_2+it+2n> S (2t

n=1

Using this equation and Proposition 9.2 (b), Proposition 9.3 follows. O

Proposition 9.4. Let —1 < 0 < 2 and T > exp(exp(18)). Suppose
T, is the associate of T' with respect to uw = 1.155. Then

(a)
¢'(o £1iTy)

< 6.159log? T + 2.999 log T' + 1.285;
CloxiTy) | = og” 1"+ ogl' +

(b) For 12 <t < T,

¢'(—1+it)
C(—1+it)

‘ < 2.999logt + 10.241;

and
(c) For 0 <t <12

¢'(—1+ it)
C(—1+ it)

< 19.172.

Proof. Note that

(o~ it) ‘
C(o —it)

(o + it)‘
Clo+it) |

One only needs to consider the case with the plus sign for each case.



PRIMES BETWEEN CONSECUTIVE CUBES 149

Recalling Proposition 9.3, we only need to estimate the sum

(9.2) > <5_1pn_2+itl—pn>'

[t—Tn|<u

Note that

(9.3)
1 1 1 1

= A — S .
s — pal 0 = Bn +i(t — 7n)| \/(U—ﬂn)2+(t—’)’n)2 |t — Yn|
Similarly,

1 1

(9.4) - < .

‘2+lt_pn| ‘t_7n|
Thus,

1 1 1
9.5 - <2 .
(55) _Z (0+it—pn 2+it—pn>‘_ _Z |t — Tl

[t—vn|<u [t—vn|<u

Recalling (a) in Proposition 9.2, one sees that there are at most
(44 u?)(log(t* +4)/4 + 1.483)
terms in (9.5). By the setting of T}, one has
2u
4+ u?)(log(T?+4)/4+1483) +1
for every v,, n =1,2,... (it is T instead of T}, on the right side of the

last expression). Or, each summand in the last expression in (9.5) is
less than

|Tu_7n| Z (

(4 + u?)(log(T? +4)/4 + 1.483) + 1
2u '

It follows that

> —

‘Tu77n‘fu
log (T2 + 4)
<204 +u?)| = 1
<24+ )< 4+ 1.483
y (4 + u?)(log(T? +4)/4 +1.483) + 1
2u
log((T +u)? +4)
< (44 u?
s(+u )< 4+ 1.483
y (4 + u?)(log(T? +4)/4 + 1.483) + 1
- :
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To sub-optimize the factor (4 + u?)?/u, we let u = 1.155. Also, we
remark that

log(T? + 4) = 2log T + log (1 + 4e€’36) < 2.0000001 log T,
and

log((T +u)? +4) = 21og T + log ((1 +1.155e2 %)% + 466‘36)
< 2.0000001 log .
Summarizing with the result in Proposition 9.3, (a) is proved.
We prove (b) and (c) similarly. For (b), replacing (9.3) and (9.4) by

1 1 1
- < <1, and - <
| =1+t — pnl | =1 Bnl |2+ it — pnl 12 — Bnl

<1

I

and noting that
log(t? 4+ 4) = 2logt + log(1 + 4/12%) < 2log ¢ + 0.028.

For (c), we replace the upper bound in (9.8) by 3/2, recalling (13) from
[7]. Also, note that the terms of the sum in (9.2) are zero and

log(t? +4) <log(12% +4) <4.998. O

We also need Landau’s approximate formula in the following form,
see [7, Lemma 4].

Proposition 9.5. Let z > 2981 and T > exp(exp(18)). Suppose
that T, is the associate of T with respect to u = 1.155. Then

14+(1/log z)+iT, / s
W (z) i/l ¢ <_C(8)>%ds+E0(w),

- 2mi +(1/logz)—iT,, C(S)

where

zlog? z zlogx

|Eo(z)| < 5.25 +12.64 + log .
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Especially, if © > eels, then

1 2
|Eo(z)] < 5.26 28 %

— log(2wx).

Proof of Lemma 9.1. We apply the Cauchy residue theorem on the
function —(’(s)/¢(s)(z*/s). Utilizing (9.1), we see that the residue of
—('(s)/¢(s)(x*/s) at s =1 is z, those at s = p,,’s are —x”/p’s and that
at s =01is —¢'(s)/¢(0). Welet r =14 1/logz < 1.01 as in [7, Section
4] and I = —1 and apply Cauchy’s residue theorem on the rectangle
bounded by s =1, s = —iT},, s = r and s = iT},, getting

o0 g [ (~50 )
e X T4 /LZHM, ( C<<(ss>)m?> @

[S(P)<Tu

where L; is the left, L, is the top and L; is the bottom side of the
rectangle. For the third term on the right side of (9.6), we have

= By + 1 = log(27).

For the integral along with L;, we use | — 1+ it| > 1 for |¢t| < 12 and
| — 14 it| > t; otherwise, we get

! S
L)
L C(s) s
</Tu C(~1+it)\ z !
~Jor, C(—1+3t) J -1+t
2 (Tw2.9991ogt +10.241 38.344 [12
t / gt + dt + / dt
T J12 t X 0
_ 2.999log® T, +20.482 log T, +460.128—2.999 log” 12—20.482 log 12

2.999 logz(T+1.155)+20.482log(T+1.155)+390.715 < 3log2T
T z

dt¢

IN

IA
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For the integral along with L, and L;, we have

L) [ (o)

1+(1/log ) (o +iT,)\ zotiT
<2 — >
- /4 < C(0+iTu)>U+iTu

do

159 log? T+2 log T+1.2 1+(1/log z)
S26. 59 log +.T999 og T+1. 85/ 2% do

u

-1
(12.318 log? T+5.998 log T+2.570) (ex—1/x)
T, logz
ex(12.318 log? T-+5.998 log T+2.570)
(T'—u)logz

ex(12.319 log? T+5.999 log T+2.571) zlog?T
< Tlogz < 33488755 Togz *

IN

This concludes the proof of Lemma 9.1. O
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