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THE WEYL CORRESPONDENCE
AS A FUNCTIONAL CALCULUS
FOR NON-COMMUTING OPERATORS

MICHAEL EYDENBERG

ABSTRACT. In this expository paper, we describe the
Weyl calculus for bounded, self-adjoint operators acting on
a Hilbert space as well as the original Weyl correspondence
for the position @ and momentum P operators on S(R"™).
We describe some classes of functions for which the calculus
is well defined and give a representation for the action of the
calculus in these separate cases. In particular, we verify that
the Weyl calculus is well defined for polynomials and give
results consistent with the natural algebraic definition. The
proof of this result for the original Weyl correspondence is
obtained via an analysis of the commutator of P and @ on
S(R?™). We also discuss the connection of the Weyl calculus
with some recent developments in functional calculi.

1. Introduction. The Weyl correspondence was developed in efforts
by Hermann Weyl and other mathematical physicists to better under-
stand the correlation between physical observables in classical mechan-
ics and their quantum-mechanical analogues. In classical mechanics,
one is concerned with the state space (p,q) € R?" that represents the
momentum and position information of an object. The observables
come in the form of real-valued functions f defined on this space, such
as the position operator (p,q) — ¢; and the momentum (p, ¢) — p;. In
the quantum-mechanical view, this state space is replaced by the set
of functions f € L?(R") for which ||f|l2 = 1, i.e., the wavefunctions,
and the observables become self-adjoint linear operators A acting on
this space. The fundamental questions to be answered are: how does
one connect the state space R?" to the set of wavefunctions in L%(R")
and, given this, what is the correlation between the real-valued func-
tions f(p,q) and the self-adjoint linear operators A?

The motivation for the Weyl calculus comes from the interpretation
of the wavefunctions as probability distribution functions for the posi-
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tion of a particle in space. In this view the spatial coordinate projec-
tion (p,q) — ¢; is mapped to the multiplication operator Q;f = z; f,
whereas the momentum projection (p,q) — p; corresponds to the
differential operator P;f = h/(2mi)(0f/0x;). From this, Weyl pro-
posed a calculus based on the following observation: the operator
(p,q) — €*mPP+4Q) exists as a unitary operator on L?(R™) even
though P, Q are themselves unbounded. Then, given a suitable func-
tion f and its Fourier transform f , we consider the formal Bochner
integral:

(1.1) f(P,Q) = F(p,q)e*™PP+19) gy dg
R2n

which makes sense as an “evaluation” of the function f(p,q) on the
pair of operators P,@. In particular, if f is in the Schwarz class
S(R?"), then its Fourier transform f is both Borel-measurable and
integrable, and we can make sense of (1.1) as an operator-valued
tempered distribution.

This formalism motivates a more general method for defining a map

f(z1,. .. ,zn) — f(A1, ..., Ay) from some suitable class of functions on
R" to elements of a Banach algebra B as follows: given {A41,...,4,} C
B, we write the formal expression:

(1.2)

f(Ab s aAn) = f(£17 . 7§n)627ri(§1A1+"'+§"A") dEl e dfn
Rn

Of course, some restrictions must be placed on the A; and the classes
of functions f in order for this correspondence to be well defined. In
particular, the theory is well developed in the case that B is the set
L(X) of bounded, linear operators acting on a Hilbert space X and the
A; are self-adjoint, for then the exponential term in (1.2) makes sense
as a unitary operator on X, and we may again interpret (1.2) as an
operator-valued tempered distribution with values in L(X).

Because of our ability to define the Weyl calculus as a tempered
distribution, it makes sense to consider the support of the calculus for a
given n-tuple of operators A;. In particular, if this support is compact,
then we may extend the Weyl calculus to polynomials f on R™ with
complex coefficients. A critical result concerning the Weyl calculus is
that it gives consistent results with the natural algebraic definition of
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the polynomial f(A1,...,A,). In the case that the A; are bounded and
self-adjoint, this follows as a consequence of the Paley-Wiener theorem
for operator-valued distributions. However, the corresponding result
for the original Weyl correspondence is a bit more elusive, due to the
fact that the exponential > (PP+4Q) must be defined more carefully.
While there are known results establishing the relationship between
the Weyl correspondence for f(P, @) and the results from the spectral
calculus when f satisfies a polynomial bound [6], we give here a simple,
direct proof for the case when f is a polynomial by considering the
commutator of P and @ on S(R>").

The organization of this paper is as follows. In Section 2, we
give a brief background of the von Neumann spectral calculus for
bounded, self-adjoint operators. From this context, we introduce the
one-dimensional Weyl calculus for bounded self-adjoint operators and
illustrate the connection between the two methods. While the cor-
respondence with the spectral calculus serves to give a nice intuitive
“feel” for the nature of the Weyl calculus, we note a key failure of the
spectral calculus methodology in dealing with several noncommuting
operators. This motivates the development of the multi-dimensional
Weyl calculus discussed in Section 3. Section 4 considers the develop-
ment of the original Weyl correspondence for the unbounded P and @
operators on L%(R"). Here, we formally develop the meaning of the op-
erator (1.1), investigate its interpretation for several different types of
function spaces, and in particular calculate its action on polynomials in
4.4. Finally, Section 5 discusses some recent results in the development
of functional calculi and their relation to the Weyl calculus.

2. A single, bounded, self-adjoint operator.

2.1. The spectral calculus on Hilbert space. Let X be a
complex Hilbert space, and let A € L(X) be self adjoint. We wish
to devise a method for mapping a suitable function f : R — C to
an operator f(A) € L(X). Though the question of what constitutes
a “suitable” function is yet to be determined, we’d like for this class
of functions to at least contain the class of polynomials P(R) and be
consistent with the natural definition of p(A) for p € P.
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Perhaps the most straightforward means of accomplishing this is
through the von Neumann spectral calculus for bounded, self-adjoint
operators on a Hilbert space. We give a brief overview of the method
here; relevant details can be found in [3, 7]. To begin, we note that the
self-adjoint operator A can be decomposed as the difference AT — A~
of two positive operators, where A* = (/(A?) + A)/2. Furthermore,
we define m = inf),=1(Az,z) and M = sup,(Az,z). Now, for
each A € R, we define E()\) € L(X) to be the projection onto the null
space of (A — A)T. A study of the family E()) reveals that it is the
resolution of identity associated with the operator A, in particular:

1. E(A1) < E(X2) for A1 < Ao

2. The family E()) is strongly continuous from the right.
3. Each E(\) commutes with A.

4. E(\) =0 for A <m, E(\) =1 for A > M.

Now, choose any = € X, and consider the function (E(A)z,z) : R — R.
We may define the set function m, on the semi-ring R of half-open
intervals of the form (a,b] as m;((a,b]) = ([E(b) — E(a)]z,z). Since
(E(M)z,x) is nondecreasing and continuous from the right, it follows
that m, induces a Lebesgue-Stieltjes measure on R with the property
that m,(R) = m,((a,b]) = ||z||* for every a < m, b > M. Thus, any
polynomial p € P is measurable and integrable with respect to this
measure. Furthermore, we have for all A\; < Ao,

(2.1) M(E(A2) — E(A1)) < A(E(X2) — E(A1)) < A2(E(X2) — E(A1)).

From this, it can be shown that, for all polynomials p:
(22) [ o) dm, = (p(a)2,2).
R

In particular, (Az,z) = [ Adm,. When coupled with the polariza-
tion identity, we find that, for all z,y € X and p € P, (p(A)z,y) =
J p(X\) dmgy, where my,, is the (complex) measure induced by the func-
tion A — (E(\)z,y). However, it can also be shown that the Riemann
partial sums Y, _; p(A,)(E(Ax) — E(Ag—1)) converge to A uniformly as
the partition size maxy (A —A\,_1) approaches 0. Thus, using a suitable
sequence of simple functions to approximate the integral, we may write
p(A) as:

(2.3) p(A) = /R p(N) dE(N),
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where E()) is the projection-valued measure defined on the sets of R
by E(X)(a,b] = E(b) — E(a). Observe that the support of this measure
is contained in [m, M]. With this in mind, we can extend this definition
to a larger class F' of functions as follows: let f : R — R be a Borel
function that is bounded on [m, M]. Then f(A) is measurable with
respect to the operator-valued measure E()), i.e., f(\) is measurable
with respect to the complex measures induced by (E(\)z,y) for every
z,y € X, and we may define:

(2.4) f(4) = [R FN) dBE(N).

Note that this class includes the space of continuous functions C(R).

We observe that there is a natural extension of this correspondence
to functions of several variables. Indeed, if {A;,... ,A,} C L(X) is a
collection of commuting self-adjoint operators, then the corresponding
resolutions of identity E;(\) are themselves commutative. Hence, we
may construct the product measure E; (A1) X- - X E,(\,) on R™. Then,
given a suitably well-behaved function f : R™ — R, we may define:

(2.5)  f(Ay,...,Ap) = " ALy o s AR) dE(A) X -+ - X E(A\p).
However, if the A;, and thus the E;, are noncommutative, then we
cannot define a projection-valued product measure on R™ as was done
in (2.4). It follows that if we wish to define a general correspondence
between functions on R™ and bounded, self-adjoint operators on a
Hilbert space, then we must find some means to address the issue of
noncommutativity.

2.2. The one-dimensional Weyl calculus. Let f be in the
Schwartz space S(R) of smooth, rapidly-decreasing functions with
rapidly-decreasing derivatives. It is well known that the Fourier trans-
form f(€) = [ f(z)e~2"%* dz belongs to S(R) as well. With X defined
as above, let A € L(X) be self-adjoint. Then, the operator-valued func-
tion & — e2™€4 maps ¢ to a unitary operator for every ¢ € R, and it
is analytic in £ (in the sense of the norm topology; cf. Proposition 3.1
below). Let us consider the formal definition [15]:

(2.6) f(4) = /R F(€)exmieA d.
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We note that this definition makes sense as the Bochner integral of the
operator-valued function f (€)e?m€4 | which is strongly measurable due
to the fact that f and the function e?™%4 are both continuous. Since
| £(€)e2 €A || = |f(€)], we find that the operator f(A) is well defined.
How does this definition compare to that given by the spectral calculus
above? To answer this question, we note that the function x —» e>7%%
is continuous (hence measurable) and bounded on the interval [m, M]
defined above, so for each £ we may apply the spectral calculus to write:

(27) e2m’§A :/ 627”'.5)\ dE()\)
R

where the integral is again convergent in the sense of the norm.
Substituting this into (2.6), we obtain the iterated integral:

(2.8) £(4) = / / F(6)e*m dB(N) de.

Observe that |f(£)e?™ €| = |f(€)| for all £,A € R x R. Thus, since
f € L*(R) and the projection-valued measure E()) is finite, we may
apply the Fubini-Tonelli theorem to reverse the order of integration and
obtain:

s = [[ e agap

(2.9)
= [ 1 de)

R
Since f € S(R) clearly satisfies the requirements for [ f(\)dE()) to
be well defined, we see that these two definitions of f(A) coincide.

An immediate advantage of the latter approach is that it allows us
to extend our definition of f(A) to include those f € L'(R) such that
f € L'(R) also, as the norm of the integrand in (2.3) will be bounded by
|£(€)|. What is not clear, however, is what to do if f is a polynomial
p, in which case the Fourier transform p may only make sense as a
tempered distribution. As we discuss below, however, the natural
algebraic correspondence between A and p(A) can still be recovered
when we consider e27%4 as an operator-valued tempered distribution.
This interpretation also allows us to extend (2.6) to the multi-variable
case, even if the operators involved are not commutative.
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3. The multi-variable Weyl correspondence for bounded,
self-adjoint operators.

3.1. The operator e>™¢4, Let X be a Hilbert space, and fix
{A44,...,A,} C L(X) with each A; self-adjoint. For { = (&1,...,&,) €
R", we consider the map & — €244, where we use £A to denote the
sum €A} + -+ -+ &, Ap. Observe that the operator €274 is unitary for
each . Now, let f € S(R"), and consider the formal Bochner integral
[15]:

(3.1) F(A) = [ feeiehde.
-

Were the A; commuting, we could apply the results of subsection 2.1
to obtain f(A) in the sense of spectral calculus. However, since
this was not assumed, we must consider the nature of the operator-
valued tempered distribution 7' defined as (T, f) = [ f(£)e>™*4 d¢
more carefully. To do this, we note that we may extend e*™¢4 to
be defined for all £ € C™. In particular, from the Taylor expansion of
the exponential, we can show that this extension is entire. We shall set
aside a moment to establish this fact, as well as develop a result that
will be quite useful for us later on.

Before we do so, we must first establish some notation. Let a =
(a1,...,an) € N™ be a standard multi-index, and define the mono-
mial p,(€) as pa(§) = €~ = &7 - €2, We note that if the opera-
tors {Aj,---,A,} above are commutative, then this leads to an im-
mediate definition of p,(A) = AJ*--- A%~. To obtain the more gen-
eral definition, we make use of the fact that every monomial p,(¢)
can be expressed as a linear combination of polynomials of the form
p(€) = (a1€1 +- - +an&,)* [12]. For such a polynomial p, we define the
correspondence p(A) = (a14; + -+ - + a, A, )*, which can be calculated
explicitly. From this definition, we find that each p,(A) is uniquely
given by the symmetrized product [6]:

ail--ap!
(3.2) Pal4) = = D Asy - Ao(la)

where the sum is performed over all maps o : {1,... ,|a|} — {1,...n}
that assume the value k exactly oy times. This readily extends to
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a definition of p(A) for all polynomials that is consistent with the
commutative case discussed earlier. Furthermore, to each monomial
£ we define the differential operator:

la| qo [e1

1 o o%n
. Da = R — —_— e ———

(33) (2m‘> e aen

From this, the definition of p(D) for any polynomial p is obtained
naturally.

Proposition 3.1. The mapping e*™%4 for € € C™ is entire.
Furthermore, if p € P is a polynomial, then [p(D)e*™%4]:_, = p(A).

Proof. We will show that ¢ ~ €274 is smooth, and that all of its
derivatives are expressible in terms of a normally convergent Taylor se-
ries. To begin, we note that the Taylor expansion Zkzo(ka/k!)(fA)k
converges in L(X) uniformly for £ € K, where K C C" is any fixed
compact set. To show that this series defines a C*° function, set
E=(&,...,&) and &, = (&1 + h, ..., &), where h € C. Then, using
the Taylor expansion, we may write [e27%r4 — e27€4] /] as:

1 2mik k k
(3.4) =2 o (A +4)" — (€4)].

Now, define N = sup¢ (|| A1]| + 2| Al[). Observe that the series (3.4)
is bounded termwise by >°, <, (2rN)*/k! = €>™V. Thus, we may apply
the Lebesgue dominated convergence theorem for counting measure
on N to conclude that as h — 0, the series (3.4) converges in L(X)
uniformly for £ € K to:

(3'5) Z 2 [Al (fA)kil + (fA)Aﬂ{A)ku + e+ (§A)k71A1],

k!
k>0

Repeated application of the above process reveals that the derivatives
of all orders exist for e2™%4 hence €24 is smooth. In fact, the
dominated convergence theorem assures us that the Taylor series (3.4)
for 9/0z, and all other derivatives converge uniformly on compact
subsets of C. Thus, we conclude that €>"%4 is entire.
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Now, let p, € P be a monomial, and consider [p,(D)e?™*¢4]c_,.
From the analyticity of e?™%4 it follows that we need only consider
the term 27i%' /|| [pa (D) (£A)!*/]¢—o. Indeed, we may readily calculate

this derivative to be:

273

[pa(D) 4]y = = [pa(D)EA®]
il
(3.6) B 2|T\ {p“(D)(Oa 2 A A"('“"] -
ay! !

Lovvag!
=Tl > Aoty Ac(lal

= pa(A).
The result for an arbitrary p € P follows immediately. ]

The next step in establishing the Weyl correspondence requires us
to obtain a stronger estimate for ||e?™¢4|| when ¢ is complex. To do
this, we can apply the Trotter product formula concerning the product
of semi-groups of the form e!4* where the A; may not commute. In
the case that the Ay are bounded, then ||et4*|| < el!ll4#ll and each has
domain Dom (Ay) = X. From this, we find that (411 +4n) defines a
semi-group for ¢ > 0 that satisfies:

(3.7) etAit+4n) — strong lim [etAl/k e etA"/k} * .
k— oo

Now, let A be bounded and self-adjoint, and set &, = x, + iy for each

k. Applying the Trotter product formula to €274, we obtain:
(3.8)
k
24 _ strong lim |:627riz1A1/k6—27ry1A1/k_ B eQwiznAn/ke—wanAn/k} )
k—o0

Thus, since each e2m#@141/k

norm to both sides):

is unitary, we calculate (after applying the

(3.9) e2mi€A|| < e2rlunllidsl g2miunllAnl

Defining |A| = [||[A1]|?+- -+ +|4,]|?]*/? and |y| similarly, we may apply
the Cauchy-Schwartz inequality to obtain the bound:

(3.10) H€27ri§A|| < e2rlyllAl,
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As a final remark, we note that the derivatives of the operator e2™#4

are uniformly bounded for real £. Indeed, since e?"%4 is entire, we may
apply the Cauchy-Riemann formula to obtain [15]:

. | e27riAA
3.11) DoeriAg - Q1 An / d\y -+ d\,
(3.11) @riyntlel o L — &) O — &n)
where the region of integration I' consists of all A = (Aq,...,\,;) with

[Ak —&k| = 1 for each k. Since |Im (A — & )| < 1, it follows from (3.10)
that the integral is bounded uniformly in R™.

3.2. Operator-valued tempered distributions and the Paley-
Wiener theorem. Let T be an operator-valued tempered distribution
acting on S(R™). Then the inverse Fourier transform T is well defined
as a tempered distribution. The Paley-Wiener theorem states that
T has compact support if and only if 7" extends to define an entire
operator-valued tempered distribution on C™ that satisfies the bound:

(3.12) |7 < a(ehet=©

for some polynomial ¢ and constant k. Returning our attention to
formula (3.1) above, we may (formally) propose this integral to be the
evaluation of T on the test function f, in which case T is defined as
(T, f) = [gn €2 €A f(€)dé. However, we have established in (3.10)
that €24 extends to define an entire operator-valued function on C”
that satisfies the bound (3.11). Thus, T is a tempered distribution with
compact support. It follows immediately that (3.1) can be continuously
extended to include all f € C™(R"™) for some positive m < co (where
C™ is equipped with the topology of uniform convergence of f and
its derivatives on compact subsets). Since the polynomials are in this
class, we are finally in a position to show the correspondence between
the Weyl calculus and the natural definition of p(A) given above. The
approach used below is due to Taylor [15]:

Proposition 3.2. Let p € P(R™). Then the operator-valued
distribution T satisfies (T',p) = p(A).

Proof. To begin, let ¢ € C§°(R™) be such that |¢(z)] = 1 in a
neighborhood of the unit ball of R". For a > 1, define ¢, = ¢(z/a).
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Note that ¢ € § = a € S; hence, there exists an M such that
|6(&)| < M|¢|~"L for all |¢] > 1. Tt follows that for all such & and
a, |$a(§)| = a”\@(a{)\ < a"Mla&|™""1 < M|¢|7""1. Now, choose a
large enough so that the support of 7" is contained in that of ¢,. We
then have:

~

(Top)= | lpda] (€)% dg
(313) — [ [t D8] @ ag
= | 6a(6) [p(D)e*™¢4] de

Rn
where the differential operator P(D) is defined as in subsection 3.1.
Note that the uniform bound for p(D)e?™*4 on R™ justifies the deriva-
tive in the last step. The boundedness of p(D)e2”i§A, along with the
bound given above for |$a(§)|, allows us to choose r large enough so
that:

a19) @ - [ Gl b de <

uniformly for a > 1, where € > 0 is arbitrary. We now write the latter
term as the iterated integral:

G15) [ @@ [pD)A] () de s

Again, from the boundedness of p(D)e?™*4 and the fact that ¢, ¢,
have compact support, we may apply the Fubini-Tonelli theorem to re-
verse the order of integration. Writing h(§) = ¢,(£)e™2™%2 [p(D)e?mi€4],
this reads:

(3.16) ba(x)h(z) dz.

R’VL
Note that the operator-valued function h is smooth and of compact
support, hence ||h|| € S(R™). It follows that we may choose a large
enough so that:

ba(z)h(z) dx — h(z) dx

(3.17) H
Rn Rn

< E€.
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Since the latter term is h(0) = [p(D)e*™%4];_y = p(A) by Proposi-
tion 3.1, the result follows. O

Thus, the Weyl correspondence defines a continuous map C™ +—
L(X) that is consistent with the natural algebraic definition on poly-
nomials. It follows that the restriction of the calculus to holomorphic
functions also gives us the results we would expect from the Taylor
expansion coupled with the symmetrized product discussed above. In
essence, the validity of any proposed functional calculus defined for a
collection of noncommutative bounded operators A; is determined by
its action on polynomials. Such a gauge for determining the usefulness
of a functional calculus must be used with care in the case that the
A; are unbounded, since the domain of p(A) generally shrinks as the
degree of the polynomial increases.

As a final note, we observe that the Weyl calculus for bounded, self-
adjoint operators clearly commutes with affine transformations of the
type A} = >, cjkAg + d;I (where all the constants are real). From
this, it is readily verifiable [1] that if f € C°° depends only on zj, then
the multi-variable Weyl calculus gives the same result as the spectral
calculus for f(Ag).

4. The Weyl correspondence for P and Q.

4.1. The operators P and . Recall the discussion of the
state space (p,q) € R?" introduced in Section 1. Our goal here
is to determine the map f(p,q) — f(P,Q) that takes real-valued
functions of the state (p,q) to the corresponding operator on L*(R™)
Here, we adopt the quantum-mechanical interpretation of state space
as the projective Hilbert space consisting of those f € L*(R™) with
unit norm. Note that, for each state f, the Fourier transform f is
well defined and also of unit norm. In the Weyl correspondence, we
interpret f as representing the probability distribution function |f(z)|?
for the position of the particle in space. Furthermore, as the exponential
functions e?™*¢? are eigenfunctions of the momentum operator [6], we
interpret |f(€)|? as the probability distribution corresponding to the
normalized momentum p/h of the particle, where h is Planck’s constant.
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We will now attempt to “build” the operators Q; and P; on L*(R")
corresponding to g; and p; using the spectral calculus. Fix a coordinate
index j. We define a projection-valued measure E;(A) on R as follows:
given a half-open interval of the form (a,b], we define Aj(a,b] =
{r € R" : z; € (a,b]} and set E;(\)(a,b] to be multiplication by
the characteristic function X 4,(q4. Given any such f € L*(R™) (in
particular, one with unit norm), the function A — (E;(\)f,f) =
XA, (~oc,n fII3 is nonnegative, increasing, of bounded variation, and
strongly continuous from the right. Thus, we may extend (E;())f, f)
to be defined as a Lebesgue-Stieltjes measure on R and consider F;(\)
to be a spectral measure similar to the type discussed in subsection 2.1.
The primary difference here is that the measure clearly does not have
compact support, whereas the resolution of identity corresponding to
a bounded operator A had support contained in the interval [m, M].
This has the effect of limiting the domain of the operator [ AdE;())
to those functions f for which the measurable function A is integrable
with respect to (E;(A)f, f).

Proposition 4.1. For f € S(R"™), the integral [g Ad(E;(\)f, f) is
well defined and equals (z;f, f).

Proof. Consider the (possibly infinite) integral [ [A|d(E;(N)f, f).
Let s;(A) = >, cirXB,(\) be a sequence of nonnegative, measurable
simple functions that converge monotonically () to |A| pointwise.
Note that we may choose each By to be a half-open interval of the
form (a,b], so that the sets A;(By) C R™ are well defined. Then the
monotone convergence theorem implies:

| a0 - i | caxs, a1 1)

(4.1)
— i XA ? dz.
lgn;/RnckXAJ(Bk) |f(2)]" dz

Since the simple functions S; = >~ cikXa;(B,) /" |z;| pointwise on R™,
the monotone convergence theorem again yields:

@2 [ NABWL = [ alf@F do= () £.1)
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It follows that [, Ad(E;(A)f, f) is well defined, and considering the
positive and negative parts of the above analysis, we readily obtain

Jr M(E; (N, f) = (z;f,f). o

Recall the polarization identity for a complex Hilbert space:

1

1
w3 (@,y) = ;@ +y,z+y) - 2@ —yx-y)

+ Z(x—i—zy,x—i—zy) - Z(xflyaxfly)'

Using this, we may conclude that for every f,g € S(R"), [z Ad(E;f,g)
= (zjf,g). From the fact that S(R") is dense in L*(R™), it follows
that [ Ad(E;f,g) = (z;f,g) for all f € S(R"),g € L*(R™). Thus,
we are led to define the quantum-mechanical analogue of the position
operator as the multiplication operator Q; : f — x; f, defined on the
set of all f € L*(R") such that z;f € L*(R") as well. Since this
domain contains S(R™), it is dense in L?(R™). However, the operator
is unbounded, since we can demonstrate a sequence {f;} C Dom (Q;)
such that {fi} is Cauchy but the z;f) are not. As an example, for
j =1, we may define Sy, = {z € R" : 21 € [k,k+1],|ziz1| < 1}. Then,
define f, € Dom (Q1) as fi(z) = (1/21)Xs, -

The determination of the operator corresponding to the momentum
in the direction z; proceeds similarly. The primary difference is
that we now define our projections C;(A) to be the multiplication by
characteristic functions in the Fourier domain:

(4.4) Cj(\) = F'E;(\)F

where F' represents the Fourier transform. We see from the above
that, given f € S(R"), the operator [ AdC;()\) maps f — g, where
g € S(R") satisfies §(¢) = &;f. In other words, g = (1/273)(df /dx;) =
D;(f). Furthermore, since the Fourier transform is an isometry from
S(R") to S(R™) (equipped with the L? norm), it follows that this
mapping preserves the interpretation of C;(\)(f,f) = E;(A\)(f, f) as
the probability distribution corresponding to the normalized momen-
tum. Therefore, we are led to define P; f — h[¢é ft] € L?(R™) on the set
of all f € L2(R") such that £f € L(R") as well (where f represents
the inverse Fourier transform). Again, this is an unbounded operator
whose domain contains S(R").
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4.2. The unitary operator e2"i(PP+4Q)  Tet p,g € R", and
define the operator ' = —27i(pP + ¢@Q) on S(R™). Our aim in this
section is to show that we can define a unitary operator e?7*(PF+9@)
on all of L?(R™) even though T itself is unbounded. To do this,
we appeal to the Hille-Yosida theorem [1, 10], which states that a
closed operator A defines a strongly continuous contraction semigroup
et = lim,, oo (1 + (t/n)T)~™ if and only if the resolvent (A + A)~1
exists as a bounded operator with norm < 1/X for all A > 0.

Before attempting to apply this theorem, however, we need to verify
that 7 admits a closure 7. As described in [3], it is sufficient to verify
that if {fx} C S(R™) and {gx} C S(R") both converge (in L*(R"))
to f, and if T'fx — hy while T'gx, — hs, then hy = hs. Note that this
is equivalent to having (hi, @) = (he, ) for all ¢ € S(R™). Now, we
observe from integration by parts that for all ¢, ¢ € S(R™), the identity
(Té, ) = (¢, Ttp) holds, where T* = —2mi(—pP + qQ) on S(R") is
the transpose of T. From this, coupled with Hoélder’s inequality, we
may calculate:

(h1,¢) = lim (T'fk, )
kli{go(fk,Tt(P)
= (f,T"9)
Jin (g, T'¢)
- klin;o(Tgk, ?)
= (h2, 9).

(4.5)

It follows that we may define the closure T of T' with domain Dom (7)
that contains S(R™).

Proposition 4.2. The operator T satisfies the hypotheses of the
Hille-Yosida theorem.

Proof. Choose A > 0. We wish to demonstrate for any v € L?(R"),
there is a unique u € Dom (T) with (A 4+ T)u = v. Indeed, this is clear
in the case that p = 0; in particular, we find that u = (A — 2migz)~'v
satisfies ||ulla < ||v||2/A.
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In the case that p is nonzero, it suffices to search for a solution to the
differential equation:

0
(4.6) Au — hpau — 2miqru = v,

given some v € L*(R"). Let M C R™ be the closed hyperplane
perpendicular to p, and choose g € M. Define u, (t) = u(zo+pt) and
Vg, (t) similarly, so that the above equation reads:

dua: (27T7’q(x0 —|—pt) — A) Vg
4. 0 — oo
(47) it h Yo h

Solving this equation via standard means, we obtain:

(48) Ug, (t) — %/ e(/\(t—s)—27riqzo(t—s)—wip(tz—s2))/hvw0 (8) ds
t

where the integral exists from Holder’s inequality. We claim that
u € L*(R"). Indeed, we may find a measure-preserving change of
coordinates (z1,... ,Zn) = (Y1,-..,Yn) such that y; is colinear with p
and (y2,...,Yn) form an orthonormal basis for M. Then, applying the

Fubini-Tonelli theorem to the integral of |u|?, we calculate:
(4.9)

Il < ( ) [ ( [ oy ds) dys dy
-G L
plP\h) JmJ
[e’e) 2
( / A=) /2H1p] Al =5)/2h1p] | ds) dyy dy
< — ( > / / (/ X(y1—s)/h|p| ds)
> (/ M y1=s)/hlp| |v|2 ds> dyy dy
t
1/1 7 At—s)/hlpl |2
= — | — e s v|® dsdyy d
|p|<Ah>/M/_oo/t ol ds dya dy



FUNCTIONAL CALCULUS WEYL CORRESPONDENCE 1483

where we have used Hélder’s inequality again. Applying the Fubini-
Tonelli theorem once more to the inner integrals, we obtain:

1 1 o t
< () [ [ oo ayasay
(4.10) <)// > dsdy

1

=
Thus, u € L?(R™) and satisfies ||ul2 < ||v|l2/A. Since u is clearly in
Dom (T), it follows that (7 + \) ! defines a bounded linear operator
on L?(R™) with norm < 1/\. Thus, T satisfies the hypotheses of the
Hille-Yosida theorem. O

Thus, we may apply the Hille-Yosida theorem to conclude that for
t > 0, the operator-valued function ¢ — e2™*(PP+9Q) is strongly con-
tinuous, a contraction (||e2"®*(PP+4Q)|| < 1), and is in fact a semi-group
(for s,t > 0, we have e2ms(PP+4Q). e2mit(PP+aQ) _ €2m(5+t)(pp+qQ))
However, it is clear that Proposition 4.2 holds if T is replaced with
—T, so we may consider e?™*®P+4Q) for t € R to be a group of unitary
operators on L?(R™). It now remains to find the action of this operator
when ¢t = 1.

To do this, we appeal to the result [10] that the vector-valued function
t > e2mitPPTaQ)y s differentiable for ¢ > 0 and v € Dom (T), i.e.,
t s 2™ (PP+4Q) i strongly differentiable on Dom (T'), with derivative:

d _ I
(4.11) prc Ty = —Te Tu,
Thus, if we let u € S and define g(z,t) = (e Tu)(z), it follows that g
is a solution to the differential equation:
0 0

(4.12) 3? hp(9 g = 2miqxg.
As before, we fix £y € R™ and treat this as the directional derivative of
g(x,t) in the direction (—hp1,..., —hpn,1). Defining G(t) = g(x(t),t)
as in [6], this reads:

G _ 2migq(xo — hpt)G(t)

(4.13) o
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which has the immediate solution:

(4.14) G(t) = e2riazot—mihart® G((),

Setting G(0) = u(xg) and ¢t = 1, we obtain:

(4.15) (eju) (zo — hp) = e2miamo—mihapy (10
or, in other words:

(4.16) (ezm(ppﬂ@)u) (z) = 62”‘”+”h‘”’u(ac + hp).

The extension of this result to all of L?(R") is clear.

The fact that we have an explicit formulation (4.16) for the action of
2™ (PP+4Q) gives us a certain advantage over the case when we were
dealing with the operators A in the abstract. In particular, when it
comes time to discuss the Weyl calculus based on this formulation, it
allows us to apply standard results concerning integration in L*(R™)
and other function spaces without having to incorporate Bochner
integrals or operator-valued measures as we did in the previous sections.
As we mention below, this adds some deeper insight into the types of
functions to which this calculus can be applied, and how the operators
thus obtained compare to more well-known operator classes (such as
the Hilbert-Schmidt class).

4.3. The Weyl correspondence on L%(R?"). Let f € S(R*") C
L?(R?"), and g € L?(R"™). We formally define the operator f(P,Q) in
the same fashion as (3.1), namely:

@i fPQe= [ fea) (0T g) dp o).

We intend to show that this operator is well defined and to classify it
as a more recognizable operator on L%(R"). For brevity, we will set
h = 1 in the following discussion. To begin, we may use the explicit
form (4.16) for the action of €™ (PP+4Q) to write:

(4.18)  (f(P,Q)g) (x) = o F(p, )*™ 7™ g(z + p) d(p x q).
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We now perform the measure-preserving change of variable (p,q) —
(y — z,q) to obtain:

(419 (PQ9@ = [ fly — 2, @)e™ = Wg(y) d(y x q).

Next, since f € S(R2") implies that f € S(R?"), we see that (4.19) is
well defined and can be written as the iterated integral:

(F(P.Q)g) (x) = / / F(y — z, 9)em 1@ g(y) dy dg

(4.20) .
- // fly— =z, q)e™ "W g(y) dgdy

where we have used the Fubini-Tonelli theorem. Writing K(z,y) =
S fly—z,q)em@+v) dg = (Fyf)(y— =, (y + ©/2)), where F; represents
the Fourier transform in the first n coordinates only, it follows that
f(P,Q) is given as the integral operator [6]:

(4.21) (f(P,Q)g) (z) = - Ky(z,y)g(y) dy

with kernel K¢(z,y) € S(R?"). In particular, we note that the map
f + Ky consists of a measure-preserving change of variable composed
with a Fourier transform, both of which are unitary operators. Using
the fact that S(R?") is dense in L?(R?"), it follows that this map can
be extended to define a unitary map from L?(R*") to the kernels of
the Hilbert-Schmidt operators on L*(R™).

There are several different ways that one can extend this analysis to
include other classes of functions f. For instance, let f be such that
f € L'(R?"). By formally writing the integral (4.18) and introducing
absolute-values, we may apply the Fubini-Tonelli theorems to obtain
the estimate:

(122) J[ w2151 dyda.

We may then use Young’s inequality to verify that formula (4.19) is
well defined for this f and specifies a bounded operator on L*(R™).
Indeed, we may continue through steps (4.20)—(4.21) and conclude that
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f(P,Q) is again given by an integral operator with kernel K(z,y) =
(FLf)(y — =, (y + 2/2)).

Similarly, we may extend this analysis even further to the case
when f(p,q) defines a tempered distribution on S(R?"), cf. (4.24)
below. Since the change of variable and Fourier transform performed
above are well-defined for tempered distributions, it follows that the
integral operator (4.21) defines a map from S(R") — S'(R") via

the correspondence g(z) — (K¢(9))(z) = [z~ Ks(2,y)9(y)dy. In
particular, for h € S(R™), we have:

(4.23) (55(0):h) = [ [ Kslan)g)h(o) dy o

We remark that the map f — K from S’(R?") to the set of continuous
linear maps from S(R") — S’(R™) as prescribed above is in fact a
bijection. Details can be found in [6].

4.4. The Weyl correspondence on polynomials. We now
wish to examine why it is proper to call the Weyl correspondence a
functional calculus. In particular, we wish to prove the analogue of
Proposition 3.2 for the collection of unbounded self-adjoint operators
(P, Q). Again, we must be careful when discussing the domain of the
operator thus defined, since the unitary bound for e?™{(PP+aQ) wi]]
preclude our ability to substitute a polynomial for f. Thus, our testing
ground is the interpretation of f(p,q) as defining an operator-valued
tempered distribution on S(R?"), and of (4.17) representing the action
of f(P,Q) on the function g € S(R").

To begin, we wish to give an alternative form for expressions (4.17)
and (4.21) when f is a tempered distribution. Let f(p,q) € S(R*")
define a tempered distribution via the formula:

(424) (1= [ So.ahq) e a)

Then, for g € S(R™), the integral (4.17) is well defined and given as:

(4.25) (f(P,Q)g)(z) = // f(p, q)e*™ =TT g (1 4 p) dp dy.



FUNCTIONAL CALCULUS WEYL CORRESPONDENCE 1487

Expanding the Fourier transform, we obtain the iterated integral:

(4.26) / / emqmimg(mm( / f(E,n)ez”i(”§+q")d€d77> dp dg.

Switching the order of integration for d¢ and dn (which can be done
via Fubini-Tonelli since S(R?*") C L!(R?")), we obtain the integral:

(4.27) ///(FQf) (€, q)e—ZﬂiPEe2ﬂiq(z+p/2)g(x + p) dé dpdg

where F3 now represents the Fourier transform in the last n variables
only. Since (Faf)(£,q) € S(R?") as well, we may again apply Fubini-
Tonelli to integrate over ¢ and obtain the expression [6]:

(f(P.Q)g) / F(6, 2 +p/2)e 2P g(x + p) dpde
//f 7 +1)/2) 2T E0Eg () dy d

where in the last step we performed the change-of-variable p — y—x on
the inner integral. Note that (4.28) makes sense even if f(p, ¢) is not in
S(R?™), so long as the function f(p,-) defines a tempered distribution
on S(R™) in a manner similar to (4.24) and the action p — (f(p,-),g(-))
is integrable. Thus, for such functions f we may take (4.28) to be the
definition of the operator f(P,Q) on S(R™).

Next, we consider the action of the differential operators aP and b(Q)
on a function g € S(R™). It is not hard to show that the commutator
[aP,bQ)] is simply multiplication by (ab)/2wi, i.e.:

(4.29) aP(Q)g] - bQ(aP)g] = 2y,

From this result, we may establish the following lemma:

(4.28)

Lemma 4.3. For any integer k > 1, the commutator [(aP+bQ)¥, bQ)]
on S(R™) is given as [(aP + bQ)*,bQ] = (k(ab)/27i)(aP + bQ)*k~1

Proof. The proof is by induction. For k£ = 1, we calculate directly
from (4.29):

(aP +bQ)bQ = aPbQ + (bQ)*

= (;b) +bQ(aP + bQ).

= @ + bQaP + (bQ)2
211

(4.30)
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Now, consider (aP + bQ)*bQ = (aP + bQ)(aP + bQ)*'bQ. By
induction, we have that this is equal to (aP+bQ)[((k — 1)ab/2wi)(aP+
bQ)*~2 + bQ(aP + bQ)*~!]. From this, and the k = 1 case above, we
find:

(k —1)(ab)

o (aP +bQ)*~2 + bQ(aP + bQ)*!

(4.31) (aP +bQ)
_ (k= 1)(ah)
27

= %(aP +bQ)* ! + (ab)(aP + bQ)*,

(aP +bQ)* + (;b) (aP +bQ)* 1 + bQ(aP + bQ)*

e

and the lemma is proved. o

Proposition 4.4. Let f(p,q) = (ap+bq)*, where k > 0 is an integer
and a,b € R™. Then the tempered distribution f(P, Q) defined by (4.28)
is the differential operator (aP + bQ)*.

Proof. Again, we consider a proof by induction. The cases & = 0 and
k = 1 are trivial, so fix an integer £ > 2 and assume the result holds
forall j =0,1,... ,k— 1. Fix g € S(R"™). We calculate:

432 [[(a+ b+ ) 2 e g(y) dy
— [[ g+ bla+ /2 e Ve (y) aya
+500) [[ (@€ + b +)/2) (@) eg(y) dy de
45 [[(@€+ 8@+ )2 @ ) gty) dy e,
Using the inductive hypothesis, we see that the second term becomes:
(433) 500) [[ (@€ + b +1)/2)" @)™ Veg(y) dy de

= S0P+ Q) g|(z)
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whereas the third can be written as:
@3) 5 [ [ (@€ blat)/2) @)D b)gty) dy de
= 2 l(aP + 5@ (4Q)g] @)

As for the first term, we may take advantage of the fact that g € S(R"™)
and integrate by parts in y to obtain the expression:

@35) 5o [[ @D, (0t + bla + /2 glw)] dy .

Calculating the derivative explicitly, we have the integrals:

%M // 2@ VE (g + b(x + y) /2)"2g(y) dy de

// 2mieE (ag + bz + ) /2)* 7 (aDy)[9(y)] dy dE.

(4.36)

2m

Applying the inductive hypothesis to each term, this becomes:

1(k ab _
@an) DD p g2 4 (0P 1 00) (aP)g)
Thus, after combining (4.37) with (4.33) and (4.34) above, it follows
that the operator f(P,Q) defined by (4.28) coincides on S(R™) with
the differential operator:

(k

(4.38) #(PMQ)“ + (aP +6Q)* ! (aP)

(aP +0Q)* 1 (bQ).

1
2 )F
1

k—
+ 5(bQ)(aP +b6Q) 1+ +3

Applying Lemma 4.3 to this expression, we obtain the desired result:
(4.39)
F(P,Q) = (aP+bQ)* " (aP) + (aP +bQ)" ' (bQ) = (aP +bQ)*. O

From Proposition 4.4 and the discussion at the beginning of subsec-
tion 3.1, we find that for all polynomials p on R?", the operator p(P, Q)



1490 MICHAEL EYDENBERG

as defined by (4.17) coincides with the natural algebraic definition im-
plied by (3.2). Thus, the analogue of Proposition 3.2 holds for the
original Weyl correspondence when the functions f(p, ¢) are considered
as tempered distributions.

In closing this section, we remark that a much stronger form of
Proposition 4.4 holds. Let ¢ : R — R satisfy the bound |¢(z)| <
(1 + |z))™ for some M, and let f(p,q) = ¢(ap + bg). Then f
defines a tempered distribution on S(R?") and f(P, Q) defines a linear
map S(R") — L*(R"™) that is essentially self-adjoint on S(R™). It
follows that we may interpret the meaning of f(P,Q) in the context
of the spectral calculus. With this in mind, it can be shown from a
consideration of the symplectic group Sp(n) that the definition f(P, Q)
as defined by (4.28) corresponds to that given by the spectral calculus.
In particular, if ¢ = 2* for some integer k > 0, we obtain the result of
Proposition 4.4. The details are beyond the scope of this current work;
we refer the interested reader to [6].

5. Some directions of current research.

5.1. Polynomially bounded semi-groups. Throughout this
paper, we have considered the Weyl calculus strictly for self-adjoint
operators A acting on a Hilbert space X, i.e., we've focused on the
generators of unitary semigroups e>7%4. However, it is easily seen that
the formal Bochner integral (3.1) is well-defined for f in S(R") if the
exponential satisfies the polynomial growth estimate:

(5.1) €244 < M(1 + ¢k

for some k > 0. Hence, we may define (3.1) on the space L}(R™)
of Borel-measurable functions f for which (1 + |¢])¥f € L! and with
norm given by || f|l1x = ||(1+ |€])¥ f||.. Observe that S(R™) c L!(R")
with a continuous embedding. Using estimate (5.1), it follows that the
map f +— f(A) defines an operator-valued tempered distribution. Also
from (5.1), we see that the holomorphic extension ¢ + €2™¢4 is an
entire function that satisfies estimate (3.12), i.e., the operator-valued
distribution f — f(A) has compact support. Using methods similar to
those employed in Proposition 3.1, it can be shown [1, 11] that (3.1)
satisfies the desired property for polynomials on R™.
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Much work continues in the identification and classification of the
generators A for polynomially bounded semigroups. Recent work by
Eisner [5] characterizes such generators based on an integral criterion
for the resolvent (z — A)~! along vertical lines L C C, but more
concrete examples can be found by a consideration of Fourier multiplier
operators [4]. Let m € L*°(R") and consider the map S(R"™) —
S’(R™) defined as:

(5.2) £ (mf)"

As S(R") densely embeds into LP(R™) for any 1 < p < oo, the
question becomes what conditions are necessary on m to ensure that
(5.2) extends to define a continuous linear operator T, on LP(R™). One

result in this direction is given by the Hormander multiplier theorem:
given k = [n/2] + 1, if m € L= (R") N C*(R™\{0}) that satisfies:

(5.3) |D%m| < Cla] ™

for all |a| < k, then T, defines a continuous operator on LP(R") for
all 1 < p < oo and satisfies the norm estimate || T,,|| < M,C.

Consider now the semi-group e2™Tm . The identity T¥ = T}, holds
for all integers £ > 0; hence, for any polynomial p on R", we have
P(Tyn) = Tp(m)- From this we derive the result:

(5.4) 2™ m = T oriem

using the Taylor expansion for z ~ €?™®. We now establish that
the function z — e*™*™(®) gatisfies the hypotheses of Hormander’s
theorem. To begin, let f € C*(R) and g € C*(R™\{0}). From the
chain rule, given any multi-index |a| < k we have the formula:

(55)  Df(g(x)) = £, 9 (g(2)) S, My, D732 g(z) - - - D73 g )

where o is the set of j-tuples of nonzero multi-indices (cj1,...,0; )
that satisfy o1 + -+ 0j; = a. Applying (5.5) with f(z) = e2™it®
and g(z) = m(z), then applying estimates (5.3), we derive the new
estimates: |De?>™m(@)| < B, tl*l|z|~1el for each |a| < k, that is:

(5.6) ‘Dae%ritm(w) < B(l + M)k ‘x|f\a|
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for all || < k. Thus, formula (5.4) makes sense, and from Hérmander’s
theorem we have the growth estimate:

(5.7) |27 || < MpB(1 + |¢])*;

hence, the semi-group e2"*Tm has polynomial growth.

5.2. Integral representations. It is prudent to consider how the
Weyl calculus fits within the greater context of functional calculi, i.e.,
with the general problem of defining a map F' +— B of some suitable
function space F' to an operator algebra B that satisfies some desired
property, such as continuity, algebraic homomorphism, etc. As can be
seen from (1.1) and (1.2), the Weyl correspondence itself is motivated
from the Fourier transform representation for smooth, rapidly-decaying
functions f € S(R™) and its extensions to L!(R™) or L*(R"); the
primary formal challenge is that of making sense of the operator-valued
kernel e?™%4, This same line of reasoning has been used to develop
other functional calculi, namely the holomorphic calculus [14]: given
a Hilbert space X and some A € L(X), let f be holomorphic in a
neighborhood U of the spectrum of A, o(A). Then, from the Cauchy
integral representation for f:

(59) 1) = 3 [ F€)E =" e

where I' € {U\o(A)} is a continuous curve with winding number 1
relative to z, we may define:

(5.9 £4) = 5 [ fe)E- )7 e

with a similar expression holding for holomorphic functions of several
complex variables. While this elegant formula readily defines a calculus
for polynomials p and other entire functions, it is limited in its ability
to deal with operators that have an unbounded spectrum, such as
the P and @) operators from above. Furthermore, the requirement of
analyticity makes the application of this calculus to S(R™) and other
function spaces of interest difficult, as such functions do not always
admit useful holomorphic extensions.
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More recent work by Andersson and Sj6strand [2] has focused on
a variation of this approach that employs the less-restrictive use of
almost-holomorphic functions; in particular, they consider functions
f(2) = g(z, %) of a complex variable that satisfy the condition:

)
(5.10) (Im z)ka—‘g‘ < C

for all integers k. Observe that this class contains the holomorphic
functions, which satisfy df = g = 0. Such almost-holomorphic
functions admit the integral representation [2]:

(.11) 1) == [ s - e

Using this, [2] defines an extension of the holomorphic calculus for
smooth functions f € C*°(R") with compact support and operators
A; with real spectrum that satisfy the temperate growth estimate:

(5.12) [(z — 4;) 7Y < Crj lim 2|~

where N > 0. Note that such operators include self-adjoint opera-
tors, such as the operator T of Section 4, cf. Proposition 4.2. Their
method is to define, for each f € C*°(R") with compact support, an
almost-holomorphic extension f with compact support that satisfies
the estimates:

(5.13) |(Im 2;)*0; f| < Ck;

in each variable z1, ..., z, separately. From this, they use the temper-
ate growth estimates (5.12) to define the Bochner integral:

(5.14)
fdre ) = (= 2) [ BBt e - A
C’!L
(6 A ey d,

Using their explicit form for the extension f, they show that for any
fixed compact set K, the operators f(Ay,... ,A;,) thus obtained satisfy
the norm estimate:

(5.15) If(AL, .. An)ll < ArXjaj<my D]



1494 MICHAEL EYDENBERG

Thus, the functional calculus defined by (5.14) extends to define an
operator-valued distribution on the space of test functions D(R™) C
S(R™). If the support of this distribution is compact, then we may
extend it to define an operator-valued tempered distribution with
compact support and analyze its action on S(R™) and polynomials in a
manner similar to that done with the Weyl calculus in subsection 3.2.
However, little is known concerning the support of this distribution
outside of the case when the A; commute. Nevertheless, Andersson
and Sjostrand also define an extension of (5.14) to include those
smooth functions f that satisfy an asymptotic growth estimate f(z) =
SN jarzF + 2 NFtlry i (2) for [z > 1 and ry41(x) bounded with all
of its derivatives. As this class includes S(R™), we can consider the
smooth calculus as defining an operator-valued tempered distribution,
though not necessarily with compact support.

5.3. The Feynman calculus. We also wish to mention briefly the
importance of the Feynman calculus [9] in contemporary functional
calculus research. The setting of this calculus is rather different than
that of the Weyl and holomorphic/smooth calculi, in that we consider
not fixed operators A; but operator-valued functions A;(t) : [0,7] —
L(X) that satisfy some Bochner integrability condition A; € Ly,
relative to a collection of Borel measures p;. In its simplest form,
given n such functions we map a monomial z* on R"™ to an element
L(X) as follows: let m = || and for each o € Sy, define the simplexes
AT ={t1,... ,tm € [0,T)™ : 0 < ty, < --- < t,,, <T}. Next, define
for each 1 < ¢ < m:

1 if1<i<ay,
2 ifa; <i<a;+ as,
(5.16) c(i) =
E ifar+--+ap_1<i<m.
We now make the correspondence [13]:
(5.17) A% = E”/A Acto) (to) Ao (m)) (to(m)) dui™ -+ dpp™.

From this, we may extend the calculus to include those functions f
that are holomorphic in the complex disk |z;| < r; via their Taylor
expansion [13].
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Note the similarity of (5.17) with definition (3.2) for the monomial
Pa(B) of a collection of bounded operators B = {Bi,...,B,}; in
particular, we see that (5.17) is symmetric in the A;(¢) and for each
o € Sm, coo defines a map from {1,...,|a|} to {1,...,n} that
assumes the value ¢ exactly a; times. A key difference is rather than
normalize this sum by the factor ay!- - - «,!/|al!, we lift the redundancy
by associating to each o the simplex A and integrating over the
measures. This adds the flexibility of defining new functional calculi by
adjusting the measures u; associated to the operator-valued functions
A;(s). For example, if n = 2 and the support of the measure p; lies
“to the left” of the support of u2 on [0, 7], then only the integrands of
the form A5 (t)A;(t) will contribute to (5.17).

The question of how the Weyl and Feynman calculi are related
continues to be an active area of research [8, 9]. We will not go into
details of the correspondence here, but we wish to relate a result of this
work using a straightforward observation of definition (5.17): assume
that the u; = (1/T") dx are all probability measures on [0,7] and the
A;(t) = A; are constant, self-adjoint operators on L(X). Then, by
noting that the measure of each simplex A is 1/|a|! and that each
unique integrand in 5.17 is repeated a;!---ay! times, we reproduce
the result of Proposition 3.2 concerning the action of the calculus on
polynomials. In the case that the A; are also bounded, so that (3.1)
extends to be defined for holomorphic functions, this result implies that
definitions (5.17) and (3.1) are the same. Further results along these
lines may be found in [8].
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