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AMBARZUMYAN-TYPE THEOREMS FOR THE
STURM-LIOUVILLE EQUATION ON A GRAPH

CHUAN-FU YANG, ZHEN-YOU HUANG AND XIAO-PING YANG

ABSTRACT. In this paper we consider the inverse spectral
problem of small vibrations of a graph consisting of d, d > 2,
d € N, joint inhomogeneous smooth strings which can be
reduced to the Sturm-Liouville boundary value problem on
a graph. This problem occurs also in quantum mechanics.
An analog of Ambarzumyan’s theorem is proved for the case
of a Sturm-Liouville problem on the compact metric graph
consisting of d segments of equal length with the Neumann
boundary conditions at the pendant vertices and Kirchhoff
boundary conditions at the central vertex, which case is also
exceptional. We also extend Ambarzumyan’s theorem of a
Sturm-Liouville problem to the compact metric graph with
the Dirichlet boundary conditions at the pendant vertices, by
imposing an additional condition on the potential functions.
The proof is based on the Gelfand-Levitan equation and
variational principle.

1. Setting of the problem. From an historical viewpoint, the
paper [1] of Ambarzumyan may be thought to be the starting point of
the inverse spectral theory aiming to reconstruct the potential from the
spectrum (or spectra), Ambarzumyan proved the following theorem:

If ¢ € Cl0,7], and {n? : n = 0,1,2,...} is the spectra set of the
boundary value problem

-y +q(@)y =Xy, '(0)=y'(r)=0,

then ¢ = 0 in [0, 7].
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Later it became clear that the case investigated by Ambarzumyan
was exceptional; in general, two spectra are needed to determine
the potential [2, 3, 10]. Various generalizations of Ambarzumyan’s
theorem can be found in [1, 5, 6, 7, 9, 12], etc.

Quantum graphs are differential (self-adjoint) operators on metric
graphs determined on the functions satisfying certain boundary condi-
tions at the vertices. Differential operators on metric graphs (quantum
graphs) is a rather new and rapidly developing area of modern math-
ematical physics. Such operators can be used to model the motion of
quantum particles confined to certain low-dimensional structures. In-
verse spectral problems of the Sturm-Liouville equation on graphs were
investigated by Brown and Weikard [4], Pivovarchik [11, 12], Wassel
[13] and Yurko [14], etc.

In the present paper we consider inverse spectral problems for the
Sturm-Liouville equation on a star-shaped metric graph consisting of d
segments of equal length. For their inverse spectral problems, in general
one spectrum does not uniquely determine the potential on the edges
of the graph [11]. However, as in the case of a single interval, there
are exceptional cases, in which the potential is uniquely determined by
its spectrum. We consider an exceptional case in which a part of one
spectrum of a boundary value problem with the Neumann boundary
conditions at the pendant vertices uniquely determines the set of
potentials on the edges of the graph. We also investigate extensional
Ambarzumyan-type theorems, that is, a part of one spectrum of a
boundary value problem with the Dirichlet boundary conditions at the
pendant vertices and an additional condition on the potential functions
uniquely determine the set of potentials on the edges of the graph.
The proof uses the Gelfand-Levitan equation and variational principle
[7, 9, 10]. In paper [12] a star-shaped graph consisting of three
segments was considered with the Neumann boundary conditions at
the pendant vertices and Kirchhoff boundary conditions at the central
vertex. The present paper extends the results in [12] to star graphs
consisting of an arbitrary number of segments with the Neumann
boundary conditions and the Dirichlet boundary conditions at the
pendant vertices, respectively.

Consider the following boundary value problem:

(1.1;) —yi +qi(x)y; =Ay;, j=1,2,...,d;d>2,deN
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subject to

or

(1.25)2 y;(O) =0, 57=12,...,d,

(13) yl()‘aﬂ-) = yQ()\a 71') == yd(>‘77r)a

(1.4) 1A m) +yp(A, ) + - +yg(A, ) =0,

where the ¢; € L?[0, 7], j = 1,2,... ,d, are real-valued functions. Equa-

tion (1.3) is called a continuity condition, (1.4) a Kirchhoff condition
and the collection of both interface conditions. This problem occurs
in the small vibrations of a graph of d inhomogeneous smooth strings
each having one end joint, and a quantum particle moving in a quasi
one-dimensional graph domain.

For all

d
f,9 € L3[0, 7] = P L*[0, 7],
i=1

define an inner product and a norm

(f.9) :i/ow fi(2)gj(z) dz, ||| = (i/ﬂwlfj(x)lzdx)l/z,

where f = (flv"' 7fd)T7 g= (glv"' 7gd)T'

Give the operator interpretation of the above problems. By A;, A,
we denote the operator acting in Hilbert space L2[0, 7| by the formulas,
respectively,

y1 (@) 1 (2) + q1(z)y1(z)
Al = )
Ya(z) —yq(z) + qa(z)ya(x)
Y1 (z)
D(Al): Y5 ELZ[O,’/T],—y;I‘FC]jy]’ €L2[0,’/T],yj(0):0 :
ya(z)

i =1,...,d, yi (A7) = = ga(A7), DI g\ 7) =0
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and
y1(x) 1 (@) + q1(z)y1(2)
A2 = ’
Ya() —yq () + qa(z)ya(z)
Y1 (z)
D(4s)— : ty; € L?[0, 7], —yi +qy; ELz[O,ﬂ],yg(O):(J '
ya(z)
i=1di (A m) = = g\ 1), S5 vi(Am) =0

Here the operator A;, i = 1,2, corresponds to problems (1.1;), (1.2;);,
(1.3) and (1.4), respectively. It is easy to check that the operators A;,
1 = 1,2, are self-adjoint, and each operator’s spectrum, which consists
of eigenvalues, is real. Denote the spectrum of the operator A; by
o(A), i =1,2.

The main results of this paper are as follows.

Theorem 1.1. Let the real-valued functions q; € L2[0,n], j =
L,2,...,d. If {0y u{mi : k = 1,2,...} C o(A2), where 0 is the
first eigenvalue of Az, and my is a strictly ascending infinite sequence
of positive integers, then ¢;(x) =0, j = 1,2,...,d, almost everywhere
in L?[0,7].

Theorem 1.2. Let the real-valued functions q; € L?*[0,n], j =
L,2,...,d. If {0} U{(mr — (1/2))? : k = 1,2,...} C o(A2), where
0 is the first eigenvalue of Az and the multiplicity of each eigenvalue
(my — (1/2))% is d — 1, my, is a strictly ascending infinite sequence of
positive integers, then ¢;(z) =0, j =1,2,...,d, almost everywhere in

L2[0, 7).

Theorem 1.3. Let the real-valued functions g¢; € L?*[0,7], j =
1,2,...,d. Then (1/4) U {(mx — (1/2))? : k = 1,2,...} C o(A1),
where 1/4 is the first eigenvalue of Ay, my is a strictly ascending
infinite sequence of positive integers, and the potential functions q;(x),
j=1,2,...,d, satisfy
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x d
/ costqj(ac)d:vzo
0 =
if and only if ¢;j(z) =0, j =1,2,... ,d, almost everywhere in L?[0, 7).

Theorem 1.4. Let the real-valued functions g¢; € L?*[0,7], j =
1,2,...,d. Then {1/4} U{mi : k = 1,2,...} C o(A1), where 1/4
is the first eigenvalue of Ay and the multiplicity of each eigenvalue m?
is d—1, my is a strictly ascending infinite sequence of positive integers,

and the potential functions q;(x), j = 1,2,... ,d, satisfy

- d
/ costqj(:v)dw:O
0 =

if and only if ¢;j(z) =0, j =1,2,... ,d, almost everywhere in L2[0, ).

The paper is organized as follows. In Section 2, we obtain the
equation for eigenvalues of problems (1.1;), (1.2); or (1.2;)2, (1.3)
and (1.4), respectively. Finally, Section 3 proves theorems obtained in
this paper.

2. Equation for the eigenvalues. In this section, by resorting
to the Gelfand-Levitan equation developed in [7, 10|, we derive the
equation for eigenvalues of the problem (1.1;), (1.2;); or (1.2;)2, (1.3)
and (1.4), respectively.

First we study the equation for eigenvalues of problems (1.1;), (1.2;)1,
(1.3) and (1.4). Denote by s;(A,z),j = 1,2,... ,d, the solution of (1.1,)
that satisfies the conditions

(2.15) 55(A,0) =0, s5(),0) =1;

then the solution of equation (1.1;) that satisfies the condition (1.2;);
is
(2.25) yi(Asz) = cjsi(A ),

where ¢; are constants. Substituting (2.2;) into (1.3) and (1.4), we
obtain the following equation for eigenvalues of the operator A;: A is
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an eigenvalue of operator A; if and only if

(2.3)
sit(A, ) —s2(A, ) 0 0 0
0 sa(A,m)  —sz(A\,m) .- 0 0
e1(A) = : : : . : :
0 0 0 ceoosgo1(A, ) —sa(A, )
si(Am)  sh(A, ) st(Am) - S:1—1(>‘7 ) s:i()\,w)
d
= Z 55 (A, ) H si(A, ) =0.
j=1 j#le{1,2,... ,d}

Making use of the formulas in [7, 10], we have

i _Ln(ﬁw) =l ) i(z,t)sin
s;(\,z) = 7 +\/X/0 Kj(z,t)sin(V\t) dt
sin(vAz)  cos(vAz)

= V5 - \ Kj(z,x)
(2.4;) +§ / K i(z,t) cos(VAt) dt
Kj(z, z)
si(A\x) = cos(VAz) + v sin(VAz)

+ o / Koo () sin(V/A¢) dt

where K;(z,t), j = 1,2,...,d, have first partial derivatives K; (z,t)
and Kj(z,t) belonglng to LQ[O 7| as functions of ¢ for fixed z, and
(

K;

j(x,t) =0 (t > ), K;(0,0) =0, K;(z,0) =0,

29 Ky =3 [ a(0) de

For brevity, we set
/ (m, ) sin(Vt) dt, by — / K (m, ) cos(VAL) dt
0

then the Riemann-Lebesgue lemma implies

(2.6) a; — 0, b — 0 (as A — o0).
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Lemma 2.1. The function 1()\) defined by (2.3) corresponding to
the operator Ay can be presented as follows:

(2.7)
o1(N) = d cos(v/Ar) sin?~ 1(\/_71') (d — 1) cos(v/Am) sin?=2(v/Ar)
Vo Wi
d
(d — 1) cos®(v/Ar) sin? 2 (v/Ar)
bj —
X ; o
: n (VAT 5550 05
Kj(m,m J
x; (m,m) + N
sin d I
ZKJ ™, —I—Cos(\/_w)Jz:;m:1 \/Xlﬁm
d —1K d—1 a;61,
+ sin( \/—71' ;mZ:l d+m ;leﬁd+m’

where ozi'n, 1<m<d-2, ,83;1, 1<m<d-1,1<j5<d, are entire
functions in A, which are the finite summation of the finite products

with b, sin(v/Ar) and cos(vVAr).

Proof. By (2.3) and (2.4;) we have
cos(VAT) + ]
el %

K;(m,m)
v, sin(V/ A7) +
sin(v A b; — cos NoY: Ky(m,m
o QI [EsR b e i)
K;(m,m)
\/_
nd-

] A
j#le{1,2,... ,d}

i ]

I
M&

[OS (V) +

w7 (VAm) | sin'*(v/An)
\/Xd 1 \/Xd

. d-3
x Y (bz—cos(\/XW)Kz(mﬂ)H%
j#le{1,2,... ,d} \/X

X
l—|H
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x Y (i—cos(VAT) Ky (m,m)) (b, —cos(VAm) Ky, (m, 7))
<l
J#l

l1€{1,2,...,d}

1
o s H (b — cos(VAm)Ky(m, m))
VA jAle{1,2,- ,d}

-y o)) o))
=~ \/Xd 1 \/Xd
cos?(v/ ) sin? 2 (v/Ax)
X b —
j#lE{;Qv"'vd} \/Xd

X Z Ki(m,m)

J#le{1,2, - ,d}

d-2 ol sin? (VA
reos(Vin) Y S+ ¢(xd L, m)

d—1 ;
B
+ K;(m, ) sin(VAn) g —
VA WX’

>

+a] Z d+m:|

Therefore, equation (2.7) is obvious and we finish the proof. O

If g;(x) = 0, then, by substituting s;(\,7) = (sin(vAr))/v/A and
si(A,m) = cos(v/Ar) into (2.3), we get

1(A) = cos Var M.
e1(N) ( ) \/qu

The set of zeros of this characteristic function, which consists of
eigenvalues of the operator A as ¢;(z) = 0.

The geometric multiplicity of an eigenvalue is the dimension of its
eigenspace, that is, the number of its linearly independent eigenfunc-
tions. For the operator A; this number is 1 to d. The algebraic multi-
plicity is defined in terms of a characteristic function. This is a function
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whose zeros are precisely the eigenvalues of the problem. The order of
a zero is the algebraic multiplicity of the corresponding eigenvalue. In
particular, the geometric multiplicity of each eigenvalue of the self-
adjoint operator A; is equal to its algebraic multiplicity. The set of
zeros of the function @1 () is {n?}22, U {(n — (1/2))?}22,. Since

d
LA a=(m-172)2 # 0
and
d di2
ﬁ‘pl()‘)b\:nz — . = le()\)b\:nz = 0’

ddfl
W%(A) Ix=n2 # 0,

the algebraic multiplicity of each eigenvalue in {(n — (1/2))2}52, is 1

and the algebraic multiplicity of each eigenvalue in {n?}°°, is d — 1.
Thus the following lemma is obtained.

Lemma 2.2. If ¢;(z) =0, j =1,2,...,d, then

-3

Moreover, the (geometric) multiplicity of each eigenvalue in {(n —
(1/2))2}2, is simple and the (geometric) multiplicity of each eigen-
value in {n?}2°, is equal to d — 1.

Now we investigate the equation for eigenvalues of the problem (1.1;),
(1.25)2, (1.3) and (1.4), and denote by 5;(\,z), j = 1,2,...,d, the
solution of (1.1;) that satisfies the conditions

(283) gJ(AaO) =1, y]()‘a 0) =0.

Then the solutions of equations (1.1;) that satisfy the conditions (1.2;),
are

(293) yj(/\vx) :Ejgj()‘ax)a
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where ¢; are constants. Substituting (2.9;) into (1.3) and (1.4), we
obtain the following equation for eigenvalues of the operator As: A is
an eigenvalue of the operator A, if and only if

(2.10) => 5 [ snm=o.

Jj=1 J#le{1,2,- d}

Using the formulas in [7, 10], we have

sin(v/ ) ~
TKJ (z,z)

- % / " Ry ) sin(VL) dt

5;(\ z) = cos(VAz) +

(2.11;)
#(\z) = —VXsin(Vz) + K (z, z) cos(VAz)

+/ K . (x,t) cos(VXt) dt,
0

where I?j(ac,t), j = 1,...,d, have first partial derivatives I?jyz(a:,t)
and K ;(x,t) belonging to L?[0, ] as functions of ¢ for the fixed z, and

~ 1 [7
(2.12) Kj(m,m) = 5/ g;(z) de.
0
For brevity, we set

/ (m,t)sin(VXt) dt, dj = /0 i K; . (m,t) cos(VAt) dt;

then the Riemann-Lebesgue lemma implies

(2.13) c; — 0, dj — 0 (as A — o).
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Lemma 2.3. The function p2(\) defined by (2.10) corresponding to
the operator As can be presented as follows:

va2(A ):—d\/XSIII(\/_ﬂ') cos? (\/—71') (d-1)
x sin(V/Ar) cos?2(V/Ar) Zc] -1)

j=1
x sin?(vV/Ar) cos?2(V/Ar)
d d
(2.14) X ZKj(ﬂ',ﬂ') + cos? L (Vanr) Zdj
j=1 j=1
d d d=1 g
+ cos?(VArr) ZKJ T, +s1n(\/_7r)zz m
j=1 j:lrn:l\/X
d d-1 d d—1 ;
K;(m,m)gi d;h?
+ cos(VAT) x AL P L, J_m
ISR

where f3,, g7, ki, 1 <m <d-1,1<j<d, are entire functions in A,
which are the finite summation of the finite products with c;, sin(\/Xﬂ)

and cos(v/ ).

Proof. From (2.10) and (2.11;) we have

'M&

II
—

p2(N) = [ Vsin(Var) + K;(, ﬂ')COS(\/_Tl')-f-d:|

J

sin(vAT) ~ c
X cos(VAT) + ——L Ky (7, 7) + —=
[ ST

I
M=

[ — \/XSiIl(\/Xﬂ') + I?j (7, m) COS(\/XW) + dj}

j=1

X [cosdl(\/XW) + COSdz(\/X\;TX) Sin(ﬁﬂ.)
foyd COSdﬁ2 ™

X Z K; (71', 71') + %

JAIE(1,2, d}
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cos? 3 (v Arr
D VREEE s
j#le{1,2,... ,d}
x> (e +sin(VAm) K (r, 7)) (e, + sin(Var) Ky, (w,7))
l1€{1,2,... ,d}
1 ~
ot —— H (a + sin(\/Xﬂ')Kl(ﬂ', m))
VA ez

d
Z[ VA sin(VAr) cos? (V) — sin(v/Ar) cos? 2 (VM)
X Z ¢ — sin? (V) cos? (V)
JAIE{L,2,... ,d}
X Z K ()
JAIE{L,2,... d}
d—

—i—sm\/_ﬂ' Z

m=1

(V) K ()

+ Kj(m,7) cos(\/_7r) o

+ d; cos? 1 (VAr) + d;

The proof of the lemma is complete. u]

If g;(z) = 0, then, by substituting 3;(\,7) = cos(vVAr), si(Am) =
—v/Asin(v/Ar) into (2.10), we get

@2(\) = —dVAsin(vVAr) cos® (V).

The set of zeros of this characteristic function, which consists of
eigenvalues of the operator A, as ¢;(z) = 0. The arguments concerning
the multiplicity of each eigenvalue refer to Lemma 2.2. From this, the
following lemma is true.
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Lemma 2.4. Ifg;(z) =0, j =1,2,...,d, then

o(Az) = {0} (J{n®}7Z IU{(n 1)2}00

n=1

Moreover, the (geometric) multiplicity of each eigenvalue in {n?},
is simple and the (geometric) multiplicity of each eigenvalue in {(n —
(1/2))%}22, is equal to d — 1.

3. The proof. Now we can prove theorems in this paper through a
series of lemmata established in Section 2.

Proof of Theorem 1.1. Since the equation for eigenvalues of the
operator A, is that ¢(A) = 0 and {m? : k = 1,2,...} C o(A42),
for all k = 1,2,..., we obtain pa(m2) = 0. From equation (2.14) in
Lemma 2.3 and {m;}$>, C N, p2(m3) = 0 implies

J:]_ : m=1

1)(d=1ms Zd i i Zn —o.
j=1 j=1m=1

Since my is a strictly ascending infinite sequence of positive integers,
letting my — oo in (3.1), together with (2.12) and (2.13), it follows
that

w d N
(32) : /0 Y a@)de = Y- Rym,m) = 0.

=1

M&

P2 (mk e

(3.1)

Next we show that

T
e (e b)
vdr Vdr
—_——
d

is the first eigenfunction of A;. By the variational principle, we obtain

(3.3)
inf < /Zy]y]dx—i—/ Zq] x)|y;|? dx):O,

Y€D(A2),Z L Mysl12=1
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where ¥ = (y1,9s, - ,4a)", [511% = JiF 1951 dz. Now [[Yo| = 1 and
Yy € D(A5) are obvious, and so

2

d d
s 1 1 ™
0 < (A2Y), Y. :/ i(z)|—=| do = — i(z) dz,
< (420, Y)) ; ;qg() = i /. ;%()

and by (3.2), the righthand side is exactly 0, the test function Yy makes
the functional (42Y,Y)/||Y||? achieve its minimum value and is thus
the first eigenfunction. Substituting Yy which is the eigenfunction
of eigenvalue 0 into the equation (1.1;), we obtain g¢;(z) = 0, j =
1,2,...,d, almost everywhere in L2[0,7]. The proof is finished. O

Proof of Theorem 1.2. Since the equation for eigenvalues of the
operator Ap is that ¢2(A\) = 0 and {(my — (1/2))? : k = 1,2,...} C
o(Az), forall k = 1,2, ..., we obtain ¢a((mg — (1/2))?) = 0. Since the
multiplicity of each eigenvalue (my — (1/2))? is d — 1, we have

A
(3.4) im 22
A= (mi—(1/2))* cos?2(v/Arr)

identically in k € N.

From equation (2.14) in Lemma 2.3 and {m;}3; C N, using the
identities cos((my — (1/2))7) = 0 and sin((my — (1/2))7) = (=1)™+ 1
by (3.4) we get

im 22N
A= (my—(1/2))? cosd=2(v/Arr)

(=1)™*(d - 1) ch —(d-1)) Kj(m,7)

Jj=1

0=

(3.5)

: A(N)
+ lim I ,
A= (me=(1/2)% (/X7 cos?=2(v/An)
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where the entire function in A

d
AQ) =sin(VAm) 30 3 VA"

(3.6) + cos(V/Ar) Z K] ™ W)gm\/xdimil

j=1m=1
d d-1 ; )
+3° 3 dnd, VAT
j=1m=1

Thus, limy_, (5, — (1/2))2 (A(A )/\/_d ' 0s972(V/Arr)) exist for all k € N,

but (my — (1/2))? is a zero of cos?~ 2(\/X71') with multiplicity d — 2,

which implies that (my — (1/2))? is a zero of A()\) with multiplicity

d — 2 at least. (1) If (my — (1/2))? is a zero of A(\) with multiplicity
m > d — 2, then

lim ) AN
A= (mp—(1/2))2 \/X COSd_Q(\/XTF)

(2) If (ms — (1/2))? is a zero of A()\) with multiplicity d — 2 exactly,
by (3.6) then

(3.7) = 0;

: AR

lim o1
A= (me=(1/2)) (/X7 cos?=2(V/ M)
Combining (3.5), (3.7) and (3.8), one can readily see that

(3.8)

d
(3.9) (—1)mk(d—1)zcj Z (m,7) +O(1/mg) =0

or

d
(3.10) (=1)™(d —1) Z cj —

Since my is a strictly ascending infinite sequence of positive integers,
letting my, — oo in (3.9) or (3.10), together with (2.12) and (2.13), it

follows that
. d
5/0 qu(x) dz = ZKj(ﬂ',ﬂ') =0.
j=1 j=1

Kj(m,m) =

H
=
=

Jj=1
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Next, using methods in the proof of Theorem 1.1, the proof is finished. O

Proof of Theorem 1.3. The sufficient part is obvious by Lemma 2.2.
To prove the converse, we employ Lemma 2.1. Since the equation
for eigenvalues of the operator A; is that p1(A) = 0 and {(mj —
(1/2))? :+ k = 1,2,...} C o(4y), for all k¥ = 1,2,..., we obtain
o1((mg — (1/2))?) = 0. From equation (2.7) in Lemma 2.1 and
[} © N, gr((mk — (1/2))2) = 0 implies

Lpl(<mk _ 1>2> ()i S K ()

2 (mx — (1/2))7
d d—1 J
ZZ mk— 1/2 d+m
j=1m=1

(—1)(me+1)(d=1) Zt{l L4

Jj=1"7

T - (12))

d d-1 a"yj
+ J 'm
2. 2 = (/7
=0,
which implies
(3.11)
d d d-1 j
K;(m,m)
(mk+1 d K ,n_ ,n. 1 (mk—',-l) Bm J 9
25 N PP DY v v
d d-1 ¥
( (mk+1) (d—1) aj m =0
Z * 2 2 (e

Since my is a strictly ascending infinite sequence of positive integers,
letting my — oo in (3.11), together with (2.5) and (2.6), it follows that

(3.12) %/0 qu(x) dr =Y Kj(m,m) =0.
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Next we show that Y;,4 = (sin(z/2),... ,sin(x/2))T is the first eigen-

d
function of A;. By the variational principle, we obtain
(3.13)

1
- = inf (Al}/, Y)

= 1
4 vep(Ay)lY|=1

m d m d
= ([ mas [ gl )
i lyslP=1 (U 0

YED(A1),y =1

where Y = (41,92, ,ya)", [ysll® = f7 |y |? d. Now Y3/ € D(Ay) is
obvious, and so

1 _ (A1Ya4,Y1)4)
4= Yyl
1/4 Z;l:1 IN sin?(z/2) dz + IN Z?:l gj(z) sin®(z/2) dx
Sy fy sin®(2/2) do

1 fy Z?:l ¢;j(z)(1 — cosz) dzx
=+

4 dm
1 n f07r Z?;l q;(z) dz 3 fow coszT Z?:l g;(z) dzx
B 4 dﬂ' dﬂ' )

by (3.12) and assumption, the righthand side is exactly 1/4, the test
function Y; /4 makes the functional (4,Y,Y)/||Y] 2 attain its minimum
value and is thus the first eigenfunction. Substituting Y74, which is
the eigenfunction of eigenvalue 1/4, into equation (1.1;), we obtain

1.z .z 1 =z
151n§+qj(m)51n52151n§;

therefore, gj(z) =0, j = 1,2,... ,d, almost everywhere in L?[0,7]. O

Proof of Theorem 1.4. The sufficient part is obvious by Lemma 2.2.
To prove the necessity, we use Lemma 2.1. Since the equation for
eigenvalues of the operator A; is that ¢1(A) = 0 and {m? : k =
1,2,...} C o(A;), for all k = 1,2,..., we obtain ¢;(m3) = 0. Since
the multiplicity of each eigenvalue m} is d — 1, we have
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N 2 (G
3.14 lim =0
( ) A—m? sin? \/_7r
for all kK € N.
From equation (2.7) in Lemma 2.1 and {ms};>, C N, using the
identities cos(mgm) = (—1)™* and sin(mgm) = 0, by (3.14) we get

<P1(>\)
0= lim ——————
A-m?2 sin?2 V)

(CD)™@-1D)XF b (d-DY], K
my my
+ lim - lB()\) ,
A—m? \/— d—2(\/xﬂ.)

where the entire function in A

(3.15) -

d d-2
B()\) —COS\/_TFZZ al, Nt
j=1m=1

d d-1
d—m—1
(3.16) + sin( \/—7r Z Kj(m,m) \ES VA
j=1m=1
d d-1

+ Z Z aﬂfn\/xdimil-

j=1lm=1

Thus, lim,_, ;2 (B()\)/\/XZ(F1 sin®™?(v/Ar)) exist for all k € N, but m?2

is a zero of sin?~%(v/Ar) with multiplicity d — 2, which implies that m?
is a zero of B(\) with multiplicity d — 2 at least. (1) If m7 is a zero of
B()\) with multiplicity m > d — 2, then

(3.17) lim . IB()\)
A—=m? \/_ si d72(\/X7r)

(2) If m? is a zero of B()\) with multiplicity d — 2 exactly, by (3.16)
then

B ()‘) d+1
3.18 lim =0(1 m, .
( ) 2 2 \/—2d 1 ; d 2(\/X ) ( / )
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Combining (3.15), (3.17) and (3.18), we obtain

d d

(3.19) (=)™ b = Y Kj(m, @)+ O(1/migt) = 0.

Since my is a strictly ascending infinite sequence of positive integers,
letting my, — oo in (3.19), together with (2.5) and (2.6), it follows that

d

/ qu )dx = ;Kj(w,w) =0.

Now it is sufficient to use the arguments in the proof of Theorem 1.3
to finish the proof. mi

Remark 3.1. The potential ¢; = ¢, j = 1,2,...,d, with a real
constant c¢ in equation (1.1;), can be reconstructed from its spectrum.
We need only apply Theorems 1.1-1.4 to equation (1.1;) with potential
q; — C.
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