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SOME REMARKS ON FACTORIAL QUOTIENT RINGS

GIORGIO DALZOTTO

ABSTRACT. Let D be a Weil divisor with rational coef-
ficients on an integral, normal, projective scheme X defined
over a field K. Assume that N D is an ample Cartier divisor for
some N > 0. Then A(X,D) = @,>0H°(X,0x (nD))T™ C
K(X)[T] is a finitely generated, integrally closed, graded K-
algebra. Since factorial domains are integrally closed, it is nat-
ural to ask for criteria which imply the factoriality of A(X, D).
In 1984 Robbiano found the shape of the divisor D such that
A(X, D) is factorial, in the case C1(X) = Z. The main result
in this paper is Theorem 29 where we give a characterization
of such factorial rings valid over a field of any characteristic.

In the last part of the paper we study how the task of
factorizing an element of a UFD, given as a quotient R/I,
can be achieved by simply calculating inside the ring R.

1. Introduction. In 1979 Demazure developed the theory of Weil
divisors with rational coefficients on normal schemes. He showed that
if D is such a divisor on an integral, normal, projective scheme X
defined over a field K, and if ND is an ample Cartier divisor for some
N > 0, then A(X,D) = @®,>0H°(X,0x(nD))T" C K(X)[T] is a
finitely generated, integrally closed, graded K-algebra.

In [12] Robbiano studied the connection between weighted projective
spaces, rational coefficient Weil divisors and unique factorization do-
mains. In particular, he showed that if dim(X) > 1, the ring A(X, D)
is almost factorial if and only if rank (C1(X)) = 1. Moreover, he de-
scribed the shape that a Weil divisor with rational coefficients must
have to give rise to a factorial ring. This result is described in our
Theorem 8.

The main result in this paper is Theorem 29 where we give a
characterization of such factorial rings. Let X be an integral normal
projective scheme defined over a field K. Assume that dim(X) > 1,
Cl(X) = Z generated by [Dy], where Dy is very ample, and let D =
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> v (pv/qv)V be a rational coefficient Weil divisor such that A(X, D)
is a factorial ring. Then there exists an equivariant isomorphism

A(X, D) = A(X, Do)[Xo, ... Xs]/(X3° = for-r s X% = )

where fo,..., fs € A(X, D) are homogeneous generators of the prime
ideals of A(X, Dy) corresponding to the prime divisors in the support
of D.

A more general structure theorem was proved in a recent paper
by Tomari and Watanabe [15], where they deal with integral normal
projective schemes defined over a field K with char (K) = 0. Their
result is also valid under the hypothesis that char (K) = p > 0, but in
this case they need the extra assumptions GCD (LCM (gv),p) = 1 and
GCD (p,py) = 1. Our result is obtained using a more direct approach
which does not require any restrictions on the characteristic of the
field K.

The aim of the last part of the paper is to understand how the task
of factorizing an element of a UFD, given as a quotient R/I, can be
achieved by simply calculating inside the ring R. In fact, it is natural
to ask for a method to compute the factorization of an element in a
factorial quotient ring R/I where R = K[X;,...,X,] is a polynomial
ring over a field K, and I is a homogeneous ideal of R with respect
to a positive graduation of R. Therefore, we provide an algorithm to
compute the factorization of the residue class of F in K[X1,... ,X,]/I
by the computation of the minimal primes of the ideal (F) + I in
K[Xy,...,X,].

In the last section we give an alternative algorithm to compute
the factorization of an element in R/I in the case where I is a
principal ideal. The approach we use is similar to the one for factoring
polynomials in several variables over an algebraic number field (Trager,
[16]).

2. Rings associated to Weil divisors with rational coef-
ficients. In this section we recall some basic definitions, and we
study the rings associated to Weil divisors with rational coefficients
over a normal projective scheme. In the following, K is a field and
(X,Ox) is an integral projective normal scheme defined over K. We
denote by W—div(X) the set of Weil divisors on X, by W-div(X, Q) =
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W-div(X)®zQ, the set of Weil divisors on X with rational coefficients,
and by Dx the set of divisors D € W—div(X, Q) such that ND is an
ample Cartier divisor for some N > 0. If D € Dx, then | D] de-
notes the integral part of the D, i.e., |D| is the divisor defined by
sup{A € W-div(X) : A < D}. If Ox(D) is the sheaf defined by
Ox(D)(U) ={f € K(X): (f)+D)y > 0}, then Ox(D) = Ox(|D]).
Moreover, when we write D = Y_;_, 1;/6; V; € Dx, we assume that
d; > 0, GCD (n;,0;) = 1 and V; are distinct prime divisors.

Theorem 1 ([4, Proposition 3.3]). Let (X,0x) be an integral
projective normal scheme. Let D € Dx, let T be a new indeterminate
of degree 1, and let A(X, D) be the graded subring of K(X)[T| defined
by the equality A(X,D) = ®,>0H°(X,O0x(nD))T". Then:

(1) A(X,D) is an integral domain and a finitely generated graded
K -algebra such that A(X,D)y = K.

(2) A(X, D) is integrally closed.

(3) There exists an isomorphism of schemes j : X — Proj (A(X, D))
such that j.Ox(nD) = Opoj(a(x,p))(n) and j*Oproja(x,p))(n) =
Ox(TLD)

(4) K(A(X, D)) = K(X)(T).

(5) Let f be a rational function over X. Then there ezxists an
equivariant isomorphism v : A(X,D) — A(X,D + (f)).

Conversely, suppose that A is an integrally closed domain and a
finitely generated graded K-algebra such that Ap = K. Then we want
to find a divisor D € W-div(Proj (4), Q) such that A = A(Proj (A), D).

Let p : Spec(A) \ {m} — Proj(A) be the canonical projection. We
recall that if V is a prime divisor of Proj(A), p the prime ideal of
height 1 such that V' = Proj(A/p), and W = Spec (A4/p) \ {m} the
unique prime divisor of Spec(A) \ {m} such that p(W) = V, then
the pull-back of V' is the divisor p*(V) = ewyW where ey |y =
[(Ap/ma,, Ap) is the length of the Ay,-module Ap/my4,, Ay.

Theorem 2 ([4], Theorem 3.5). Let A be an integrally closed
domain and a finitely generated graded K-algebra such that Ay = K.
Then let T € K(A) be a homogeneous element of degree one, and
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let A = A(Proj(A),D). Then there exists a unique divisor D =
i1 mi/8: Vi € Dx with the property that A, = H°(X,Ox(nD))T™,
Ox(n) = Ox(nD)T™, and p*(D) = div(T). In particular, p*(V;) =
0; Wy, for everyi=1,...,s.

Let (X,0Ox) be an integral projective normal scheme such that
dim (X) > 1, and let D € Dx. The following result states the existence
of an exact sequence which connects the class groups of A(X, D) and X.

Theorem 3 ([17, Theorem 1.6]). Let (X,Ox) be an integral projec-
tive normal scheme such that dim (X) > 1, let D =>""_ n;/8; V; € Dx
and let Lp = LCM (61,...,d5). Then let ¢ : Z — ClL(X) be the
map defined by ¢(1) = [Lp - D], let o : Z — @ _,Z/6;Z be the ho-
momorphism defined by a(l) = (1 mod 61,...,n7, mod Js), and let
¥ : C1(X) — Cl(A(X, D)) be the map induced by p*. The following

sequence
0— Z -2 C1(X) % C1(A(X, D)) — Coker (o)) — 0
1s exact.

Definition 4. A normal ring A is said to be factorial if C1(A) = 0.
A normal ring A is said to be almost factorial if C1(A) is torsion.

Corollary 5. Let (X,0x) be an integral projective normal scheme
such that dim (X) > 1, let D =7 _, n:/0; Vi € Dx, and denote by Lp
the integer LCM (61, ... ,d5). Then

(1) A(X, D) is almost factorial if and only if rank (C1 (X)) = 1.
(2) A(X, D) is factorial if and only if C1 (X) = Z generated by [Lp-D]

and the §;s are pairwise coprime.

Definition 6. A divisor D = Y], n;/6; V; € Dx is said to be a
pairwise coprime divisor if GCD (8;,9;) =1, i # j.

Remark 7. Suppose that Cl(X) = Z, and let [Do] be a generator.
Then either Dy or — Dy is in Dx. In fact, if we consider the embedding
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of X in some PY, and denote by H a hyperplane section of X, then
[nDo] = [H] for some n € Z. This relation implies that either Dy
or —Dg is an ample Cartier divisor. Therefore, we can assume that
Dy € Dx NW—div(X) is such that [Dg] generates Cl(X), and for every
D € W—div(X) we denote by deg (D) the integer defined by the relation
D ~ deg (D)Dy.

Theorem 8 [12, Theorem 3.5]. Let (X,Ox) be an integral projective
normal scheme such that dim (X) > 1, let D = "7 , n;/6; V; € Dx,
and assume that Cl(X) = Z is generated by [Dy] and that Dy € Dx.
The following conditions are equivalent:

(1) A(X, D) is factorial.
(2) D is a pairwise coprime divisor such that >:_,(n; - deg (V;))/8; =

1/(ITi=y 6)-

2.1. Normalized grading. Let Q@ = (qo...,q,) be an 7+ 1-tuple of
positive integers, ¢ = GCD(qo ... ,qr), di = GCD (qo,--- ,¢i—1,%i+1,

. 7qr)7 a; = LCM (do, ce 7di—17di+13 ce 7dr)7 and ¢ = LCM (do, ey
d,). The r + 1-tuple Q is said to be reduced if ¢ = 1.

In the following remark we collect some easy facts about reduced
tuples of positive integers.

Remark 9. Suppose that @ is reduced. The following statements
hold:

(1) a; | g; for every i = 0,...,r.

(2) GCD (¢;,d;) =1 for every i =0,... ,r.
(3) GCD (dj,d;) = 1 for every j # i.

(4) GCD (a;,d;) =1 for every i =0,...,r.
(5) aid; = a for every i =0,...,r.

(6)

6) dj|a; for every j # i.

Definition 10. We say that @ is normalized if d; = 1 for ev-
ery ¢ = 0,...,r. The normalization of Q is the r + 1-tuple Q =
((g0/a0),- - - ,(gr/ar)). Clearly, Q is normalized.
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Now, we study some properties related to an N-grading of a K-
algebra A and the induced map p* : Spec (A4) \ {m} — Proj(A). Let
A be an integrally closed domain and a finitely generated N graded
K-algebra, assume that Ay = K, and let {¢o,... ,t.} be a minimal set
of homogeneous generators of A as a K-algebra. Let ¢; = deg (¢t;) > 0
fori=1,...,r,and let @ = (go-..,¢r). The next lemma is easy to
prove, so we omit the proof.

Lemma 11. The following conditions are equivalent:
(1) GCD{n e N*: A, #(0)} =q.
(2) GCD (qo,--- ,¢-) = q.

(3) Agn, = (0) for n > 0, and there exists a homogeneous element
T € K(A) such that deg (T) = q.

The grading on A is said to be reduced if the r+ 1-tuple @ is reduced,
or equivalently if there exists a homogeneous element 7' € K(A) of
degree one.

It is known that for every integer n > 0 there exists an isomorphism of
schemes 1 : Proj (A) — Proj (A™), where A(™ is the n- Veronese of A,
and it is the graded ring A(™ = ®m20[A(")]m such that [A™)],, = Ap.

In particular, Proj(A4) = Proj(A@), where ¢ = GCD (qo, ... ,q,).
Moreover, A9 = K]to, ... ,t,] where deg (t;) = ¢;/q. Therefore, in the
following we can assume that the grading on A is reduced, and it is
said to be normalized if Q) is normalized.

Proposition 12. Let A be an integrally closed domain and a finitely
generated N-graded K -algebra. Assume that Ag = K. With the above
notation, we have A(® = K[t& ... t%] and deg (t¥) = ¢;/a;.

Proof. In the ring A we have deg (t?") = qid; = aidiqi/a; = aq;/a;
and ¢;/a; € N*, hence tfi e Alo),

Conversely, if 3" - - -3~ € A(®), then sogo + - - - + 8¢, = Aa, for some
A € Nj therefore,

Sigi = — Z 5jq; + Aaid,.
J#i
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Since d; | g; where j # i, we obtain s;g; € (d;). Moreover, ¢; and d;
are coprime, so s; € (d;) for every i =0,... ,r. O

We have seen that @ is normalized but in general {t°, ... , 1%} is not
a minimal system of homogeneous generators of A(*), so the grading
on A(® is not necessarily normalized.

Proposition 13. Let A be an integrally closed domain and a finitely
generated N graded K -algebra. Assume that A9 = K. LetV be a prime
divisor of Proj (A), let p be the corresponding prime ideal of height 1,
and let W be the unique prime divisor of Spec(A) \ {m} such that
p(W) =V. Then ewy = GCD {n € N*: (A/p). # (0)}.

Proof. Let d, = GCD{n € N* : (A/p), # (0)}. Since A, is a
regular ring of dimension 1, then pA, is principle. We can suppose
that pA, = (f), where f € p is homogeneous. The claim is

mA(p)Ap = (fdp )7

where my,, is the maximal ideal of A).

First, we observe that for every homogeneous element u ¢ p, d, |
deg (u). Moreover, by Lemma 11, there exists an element u' = uy /us €
K(A), with u; and us homogeneous elements in A not in p and
deg (u') = deg (u1) — deg (uz2) = dy.

Since u' ¢ pA,, if we prove that GCD (deg (f),d,) = 1, then

f
mA(p) = <u/deg(f) )

and the conclusion follows. Let d’ be the GCD (deg(f),d,). If g€ A
is a homogeneous element not in p, then d, | deg(g), so d’ | deg,(g).
On the other hand, if g # 0 is a homogeneous element in p, then in A,
we have g = (I1/l2) f®, where [y, 12 are homogeneous elements in A not
in p.

Then d' | dy | deg(ly) and d’ | dy|deg (I2). Moreover d' | deg(f), so
d' | deg(g). Therefore, the degree of every homogeneous element in A
is a multiple of d’. Since the grading on A is reduced, then d' = 1. O



1152 GIORGIO DALZOTTO

Proposition 14. Let A be an integrally closed domain and a finitely
generated N graded K-algebra. Assume that Ay = K. With the
above notation, suppose that div (t;) = Z;n:l i Wi j, with W; ; prime
divisors of Spec (A) \ {m}, and let V; ; = p(W; ;) be the corresponding

prime dwisors of Proj(A). Then
(1) dilew, v, , for every j =1,... ,m;.
(2) If div (¢;) is prime for somei =0,...,r, then p*(V;) = d; div (¢;).

Proof. Let p;; be the homogeneous prime ideal of height 1 corre-
sponding to V; ;. By Proposition 13, ey, |v,, = GCD{n € Nx :
[A/pijln # (0)}. Since t; € p;;, then A/p;; is a quotient algebra
of A/(t;). Hence, [A/p;;ln # 0 implies [A/(t;)]n # 0. Therefore
GCD {n € N* : [A/(t;)], # (0)} divides GCD {n € N* : [A/p; j]n #
(0)} = ew, ;|Vi ;-

By Proposition 11 and the observation that tg,... ,ti—1,tiv1,... ,tr
is a minimal system of homogeneous generators of the ring A/(¢;), we
have the equality GCD {n € N* : [A/(¢;)]» # (0)} = d;. O

2.2. Normal embeddings. In this section we study the case
where the grading of the ring associated to a Weil divisor with rational
coefficients over a projective scheme is normalized. Let (X,Ox) be
an integral projective normal scheme such that dim (X) > 1, and

let D € Dx. Let {tg,...,t.} be a minimal system of homogeneous
generators of A(X,D) as a K-algebra, and denote by @ the tuple
(gos--- ,qr), where g; = deg(t;) for every i = 0,...,r. Then there

exists a homogeneous isomorphism K[Ty,...,T,]/I = A(X, D) such
that T; — t; gives a closed embedding of X in the weighted projective

space P(Q).

Proposition 15. Let (X,0x) be an integral projective normal
scheme such that dim (X) > 1, and let D € Dx. With the above
notation, if D is a Weil divisor and t; is prime in A(X, D) for every
1=20,...,r, then Q is normalized.

Proof. Let T = [[._,t be such that p*(D) = div(I) =

3

S omadiv (). We have S onigi = 1. If n; = 0, then d; = 1
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since 1 = 3., nigi. If ny # 0, then D = 370 n;/dip (div(t;)) by
Theorem 2 and by Proposition 14, so d; = 1 since D is a Weil divi-
sor. O

Definition 16. We say that X is normally embedded by D € Dx
if the grading of A(X, D) is normalized. The embedding is said to be
factorial if A(X, D) is factorial and it is said to be almost factorial if
A(X, D) is almost factorial.

Corollary 17. Let (X, Ox) be an integral projective normal scheme
such that dim(X) > 1. If D € Dx N W-div(X) and A(X,D) is
factorial, then X is normally embedded by D.

Proof. Since ty,... ,t, are minimal generators of A(X, D), then they
are irreducible. Moreover, A(X, D) is factorial, hence the element ¢; is
prime for every ¢ = 0, ... ,r. Then @ is normalized by Proposition 15. O

Proposition 18. Let (X,0x) be an integral projective normal
scheme such that dim (X) > 1, and let D € Dx. If A(X, D) is factorial
and its grading is normalized, then D is a Weil divisor.

Proof. Let T = [[;_,t;"* be such that p*(D) = div(T) =
Yoo nidiv (). Since A(X, D) is factorial and ¢; is irreducible, div (¢;)
is a prime divisor for every i. By Theorem 2 and Proposition 14, we
have D = Y>"!_ n;/d; p(div (¢;)). Therefore, D is a Weil divisor. O

Theorem 19. Let (X,Ox) be an integral projective normal scheme
such that dim (X) > 1. Then the following conditions are equivalent:

(1) There exists D € Dx such that A(X, D) is factorial.
(2) Cl(X) =Z.

(3) There exists Dy € Dx NW—div(X) such that A(X, Dy) is factorial,
and its grading is normalized.

Proof. (1) = (2) is a consequence of Theorem 3.

We prove (2) = (3). Let Dy € W—div(X) be such that [Dy]
generates Cl(X). After Remark 7 we can assume that Dy € Dx.
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Moreover, A(X,Dy) is factorial by Corollary 5, and its grading is
normalized by Corollary 17.

Finally, (3) = (1) is obvious. o

Remark 20. Let (X,Ox) be an integral projective normal scheme
such that dim (X) > 1, and assume that Cl(X) = Z. We have seen
that there exists a divisor Dy € Dx N W-div(X) such that A(X, D)
is factorial and its grading is normalized. Let D € Dx be such that
A(X, D) is factorial and its grading is normalized. By Proposition 18
we have that D is a Weil divisor. Assume that D = Zle n: Vi €
Dx N W-div(X). Then by Theorem 8 we have Y ;_, n; deg(V;) = 1,
i.e, D is linearly equivalent to Dy.

3. Factorial graded algebras. We have seen in Corollary 5 that
if X is an integral normal projective scheme such that dim (X) > 1
then either rk (C1(X)) > 1, and in this case we cannot obtain almost
factorial rings from X, or rk(Cl(X)) = 1, and for every D € Dx,
A(X, D) is almost factorial. Moreover, by Theorem 19, if C1(X) = Z
then there exists a divisor Dy € Dx N W-div(X) such that A(X, Do)
is factorial, and we obtain factorial rings from X using the “recipe”
described in Theorem 8. In this section we are going to characterize
such rings (Theorem 29).

In the following, by A we mean an integrally closed domain which
is a finitely generated N-graded K-algebra. Moreover, we assume that
Ao = K and that the grading is reduced. If A = @,>0A, we denote
by m4 the ideal = @, 0A,.

In the following, by {to,... ,t.} we denote a minimal set of homo-
geneous generators of A as a K-algebra, and by ¢; = deg (¢;) > 0 for
1=0,...,7.

Proposition 21. Let f € A,,, m > 0, be a homogeneous element,
and let n > 0 be such that GCD (n,m) = 1. Then X" — f is prime in
AlX].

Proof. Let deg (X) = m, and let deg (¢;) = ¢;-n for every i =0, ... ,r.
Then A[X] is a graded K-algebra such that X™ — f is homogeneous of
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degree nm. Let B = A[z]/(z™— f). If B is not an integral domain, then
there exists a homogeneous zero divisor. But a homogeneous element of
B is of the form az® with a € A homogeneous, 0 <i<nand z=X. O

Proposition 22. Let m be a positive integer, let f € A, be
a homogeneous prime element, let n > 1 be an integer such that

GCD (n,m) =1, and let B = A[X]/(X™ - f).

(1) f is a minimal generator of my if and only if there exists
i € {0,...,r} such that {to,...,ti—1,tit1,...,tr,x} is a minimal
system of homogeneous generators of B as a K-algebra.

(2) Let g € A be a homogeneous prime element such that (g) # (f).
Then g is prime in B.

Proof. Let mp = (to,...,tr,z). We have to prove that f # 0
in my/m? if and only if there exists an i € {0,...,7} such that
Lo, yti1,tit1,-- - »tr, T form a basis of mp/m%. Clearly m4 N A =
m? + ().

Assume that f is a minimal generator of m4, and let tq = f.
Since tg = z™ in B, t1,...,t,, T generate mg/m%. They are linearly
independent. In fact, assume that Z;:1 Ajt; + Ar € m%, where

A, A, A € K. Since m% is a homogeneous ideal and deg(z) #
deg (t;) for every i, we have Az € m%, hence A = 0. Therefore,
22:1 )\]’tj S mQB NA= mi + (to), SO 22:1 )\]E — )\0% =0in mA/mi,

for a suitable \y € K. But tg, ... ,t, are linearly independent, therefore
Ai=0foreveryi=1,...,r.

Conversely, let i € {0,...,7} be such that {tq,...,t;_1,ti11,-- tr, T}
is a basis of mp/m%. Then #; = Zj# Ajt; + AT, Le., t; — Zj# Ajt; +
Az € m%. This implies A = 0 and ¢; — 2z Nty € m% N A. Thergfore,
ti— 2z Ajtj —af € m} for some a € 4, ie., T; — Zj#)\_jt_j—ﬁf =0
in my/m?%. But tg,...,t. are linearly independent, so @ f # 0, i.e., f
is a minimal generator.

Now we prove (2). Since g is a homogeneous prime element, A/(g)
is a graded domain. Then f € [A/(g)]m and f # 0 in A/(g). By
Proposition 21 we have that A/(g)[X]/(X™ - f) = A[X]|/(X"™ - f)/(9)
is a domain, i.e., g is prime. o
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Proposition 23. Suppose that A is factorial and that its grading
is normalized. Let T € K(A) be a homogeneous element of degree
one, and let D be the unique divisor in Dpo;(a) with the property that
A = A(Proj (A), D) and p*(D) =div (T). Then:

(1) D is a Weil divisor.

(2) [D] generates Cl(Proj (A)) = Z.
(

e

3) If V is a prime divisor of Proj(A), then there exists a homoge-
neous prime element fyy € A such that V = Proj (A/(fv)).

(4) If deg(V) s defined by [V] = deg(V)[D], then deg(V) =
deg (fv).

Proof. (1) follows from Proposition 18 and (2) follows from Theo-
rem 3. Let py C A be the unique homogeneous prime ideal of height 1
such that V is isomorphic to Proj(A/py). Since A is factorial, there
exists a homogeneous prime element fy € A such that py = (fv).

Since (T9¢8 (/v) / fi,) defines a rational function over Proj (A), we have
that deg (fv)D ~ V. o

With the same notation as in Section 2, let d; = GCD (qo,... ,¢i—1,
Qit1,y--- 7QT)7 a; = LCM (do7 . ,difl, di+17 . ,dr) and ¢ = LCM (do,
ey dy).

Lemma 24. Suppose that A is factorial and that its grading is
normalized. If t; is a prime element in A, then deg (V;) = ¢;/a;, where
Vi = p(div (¢;)).

Proof. By Proposition 12 we have A(®) = K[tg“, ..., t4]. Moreover,
t'ij" is irreducible in A(®) because t; is prime in A. Since A(® is factorial,
tf" is prime in A(®). Moreover,

Proj (A /(t{*)) = Proj ((4/(t:))“)) = Proj (4/(t)) = V.
Therefore, by Proposition 23, deg (V;) is equal to the degree of tfi in
A e, g;/a;. O

Lemma 25. If A is factorial, then A is factorial and its grading
s normalized.
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Proof. Let X = Proj(A) and let T = [[;_,ti"" € K(A) be such
that deg (7)) = 1. Since A is factorial and ¢; is irreducible, ¢; is
a prime element for every ¢ = 0,...,r. Therefore, by Theorem 2
and by Proposition 14, the divisor D such that A = A(X,D) and
p*(D) =div(T) is D = >_!_,(ni/d;) p(div(¢;)). By Theorem 3, [aD]
generates Cl(X). Moreover, by the definition of A(X, D), we have
Al®) = A(X,aD), hence A® is factorial by Corollary 5. Since aD is a
Weil divisor, the grading on A(®) is normalized by Corollary 17. O

Here we show how the methods explained before can be used to prove
the following fact. For another proof, see [13, 14].

Theorem 26. Let A be a finitely generated factorial K-algebra.
Assume that A is N-graded, Ay = K, and the grading is reduced. Let
m be a positive integer, let f € A, be a prime element and let n > 0
be such that GCD (n,m) = 1. Then A[X]/(X™ — f) is factorial.

Proof. If n = 1, then A[X]/(X — f) & A. Therefore, we suppose that
n > 1 and we denote A[X]/(X™ — f) by B.

First, suppose that f is not a minimal generator of my. By
Proposition 22, B is minimally generated by tg,...,t.,z, and Q' =
(nqo, - - . ,ngr,m) is the vector of degrees. Assume that f =Y a;ty°”
---ty™, where a; € K. Since f is prime and is not a minimal
generator of my, in > ajty™’ ---t, ™’ there is an addendum with-
out t;, for every ¢ = 0,...,7. Therefore, m is a multiple of d; =
GCD (q0y--- si—1,4i+1,--- ,qr) for every i = 0,... ,r. In order to nor-
malize @Q)’, we consider

d; = GCD (qon, ... ,qi_1n,Gi+17M, - - - ,g-n,m) = GCD (d;n, m) = d;
fori=0,...,r and
1= GCD (gon, ... ,qn) =n.
Since d; | m and GCD (n,m) = 1, we have GCD (n,d;) = 1. Then

a; =LCM (do,. .- ,difl,dile,. .- ,dr,n) = a;n,
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and al. ., = LCM (do, ... ,dy,n) = a - n. Therefore, Q' = ((q0/a0),--- ,
(¢r/ar),(m/a)) and

BU) = K[go, ..t X")/(X" — f) = K[t ... 1] = AW,
Since A is factorial and Proj(A4) = Proj(A®) = Proj(B(")) =
Proj (B), we obtain that B is almost factorial. Moreover, by Lemma 25,

A(®) is factorial and its grading is normalized, so B("® has the same
properties.

Let T = [[i_,t;" € K(A) be a homogeneous element of degree
one. Let a and B be two integers such that am + fn = 1. Then
we have am + B3 (ng;)si = 1, ie., T' = z*[[/_,t7* € K(B)

=0 "1
is a homogeneous element of degree one. But (t;) # (f) for every
t=0,...,r, so, by Proposition 22, ¢; is a homogeneous prime element

in B for every i. Moreover z is prime in B since B/(z) = A/(f). By
Theorem 2 and by Proposition 14, the divisor D on Proj (B) such that
B = A(Proj(B), D) and p*(D) = div (T") is

o - B
D = oVt +;3id—iVia

where p*(V,41) = ndiv(z) and p*(V;) = d;div(¢;) for every i =
0,...,7. By Lemma 24, we have the equalities deg (V;) = ¢;/a; for
every i =0,...,7, and deg (V,+1) = m/a. Since

a\m N~ B\(a) _ [(a\m  .~~.a (a\m B
G)ae(ea) (o) =(G)aresat=(G)es

am+pfn 1 1

na na n[li_,di’

we conclude that B is factorial using Theorem 8.

Now, assume that f is a minimal generator of my, so let to = f.
By Proposition 22, B is minimally generated by t1,... ,t,.,z, and Q' =
(ngi, ... ,nqr, qo) is the vector of degrees. We normalize Q'. Since m =
go and GCD (n,m) = 1, we have GCD (qin, ..., ¢i—11, Git17, - - -, ¢r 12, qo)
=d; for i =1,...,r. Moreover, GCD (qin,... ,¢n) = ndp.

Since d; | qo for every i # 0, and GCD (n,qy) = 1, we have
GCD (n,d;) = 1 for every i = 1,... ,r. Therefore, LCM (dy, ... ,d; 1,
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) = aop, and LCM(dl,,

di+1,... ,dr,’l’Ldo) = a;n, LCM (dl,... ,dr
= ((ql/a’l)7 ) (qT/aT)a (qO/ao))'

d,,dy'n) = a-n. So this implies that Q" =
By Proposition 12, we have

B = K¢, ...t XpP] /(XY —to) Z K[tl,... ,td 0] = A,

YY1

57,

hence B("%) is factorial and its grading is normalized. Let 7" = IT;- oti
be a homogeneous element of degree one in K(A). Let o and S8
be such that agyo + Bn = 1. Then ag + B8Y.._(ng)s; = 1, i.e
T = 2 [[/_yt?* is a homogeneous element of degree one in K(B).
By Proposition 22, ti,...,t, are homogeneous prime elements in B.
Moreover ty = 2™, and z is prime in B, since B/(z;) = A/(tp). Then

div (a:a H tffSi) = adiv(z) + soB div (to) + iﬁsidiv (t:) =
=0

i=1

= adiv (z) + soB div (z") + Zﬁsidiv (t:)

= (a+ nspf) div (z —i—Z,Bs div (¢

By Theorem 2 and by Proposition 14, the divisor D such that B =
A(X, D) and p*(D) = div (T") is

a+nsof Z By
Dzi T 7 ’L?
TLdO +1+z 15 i

where V,.1; is such that p*(V,.41) = ndydiv(z), and V; is such that
p*(V;) = d; div (¢;) for every i = 1,... ,r. Moreover, by Proposition 14,
deg (Vi) = ¢;/a; for every i = 1,... ,r, and deg (V;41) = qo/ao. Since

ndy  ag d a;

a+nsoBg  ~~. B4 g | gsodo 8ii
S
1=0

aqo Sidi 0 B
gy ol
=0

a

ago+pBn 1 1

na na ndo[[;_; di’

we conclude that B is factorial by Theorem 8. O
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Remark 27. Using Proposition 7.1 of [13], it is possible to show that
a graded ring is factorial if and only every irreducible homogeneous
element is prime. Then Theorem 26 easily follows by Proposition 22.

Lemma 28. Let A be a domain and a finitely generated N graded K -
algebra such that Ay = K. Assume that the grading on A is normalized.
Then for each homogeneous prime f € A the grading on A/(f) is
reduced.

Proof. Let tg,... ,t,. be a minimal system of homogeneous generators
of A as a K-algebra. Then ty,... ,%, is a system of generators of A/(f).
If tg,... ,t, is a minimal system of generators of A/(f) as a K-algebra,
we have the assumption. Suppose that for some i € {0,...,r} we have
t; = g, where g € K[t(), e bict, tigy .. 7tr]deg(ti)- Then t; — g € (f),
and t; — g is irreducible since t; is irreducible. Hence t; — g is equal
to cf, where c is invertible. Therefore to,... ,t;—1, f,tit1,... ,tr is
a minimal system of homogeneous generators of A. Then A/(f)
Klto, ... yti—1,tit1,--- ,t.], and it is minimally generated by to,... ,
t;i—1,ti+1,.-- ,t-. But the grading on A is normalized, so the grading
on A/(f) is reduced. o

Let (X,Ox) be an integral projective normal scheme. Suppose that
Cl(X) = Z is generated by [Dy]. After Remark 7, we can assume that
Dy € Dx. Then A(X, Dy) is factorial by Corollary 5 and his grading
is normalized by Proposition 23. Moreover, for every prime divisor V'
on X, there exists a homogeneous prime element fy € A(X, Dy) such
that V' = Proj (A(X, Do)/(fv)) and deg (V') = deg (fv).

The next theorem shows that for every D € Dy satisfying the
hypotheses of Theorem 19, i.e., such that A(X, D) is factorial, we have
a complete description of A(X, D) if we know A(X, Dy).

Theorem 29. Let (X,Ox) be an integral projective normal scheme.
Suppose that Cl(X) = Z is generated by [Dy]|, where Dy € Dx.
Let {to,...,t;} be a minimal system of homogeneous generators of
A(X, Dy) as a K-algebra, and let Q = (qo,- .- ,qr), where ¢; = deg (t;)
for i = 0,...,r. Let D = Y _(n:/0;) Vi be a pairwise coprime
divisor in Dx such that Y ;_,(n; - deg (V;))/6; = 1/T1;_, 0. Let &6 =
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[1;_o0; = LCM (84, ... ,ds), and denote by fo, ... , fs the homogeneous
elements in A(X, Dy) corresponding to Vy,...,Vs. Then there exists
an equivariant isomorphism

A(X,D) = Kltg,- .. ,t,][Xo, - Xs] /(X3 = foy--., X0 — £,)

such that deg(t;) = d - ¢; and deg(X;) = deg(f;) - 6/9; for every
i=0,...,r and for every j =0,... ,s.

Proof. We denote by A the ring A(X, Dy) and by A’ the quotient ring
Klto, ... ,t,][Xo, ... XJJ/(XQ — fo,..., X0 — f,) graded by deg (t;) =
d-q; for every i = 0,...,r, and deg (X;) = deg(f;)-0/d; for every
j=0,...,s. We want to prove that Proj(A’) 2 X, and A(X,D) = A'.
First, we determine a minimal system of homogeneous generators of A’
as a K-algebra, using recursively Proposition 22. We observe that

> _o(ni-deg(f;)-6/6;) =1and ;| (6/6;) if i # j, so:
I) GCD (deg (fo) - 6/d1,... ,deg(fs)-0/ds) = 1,
1) GCD (5,,6/5;) = 1,
1IT) GCD (5, deg (f3)) = 1.

Now, for every i = 0,... ,s, consider
B; = Klto, - 1 t,][Xo,s- -, Xi /(X5 = fo, .-, X2 = f),

where deg (t,) = 8p--+0; - gn for h = 0,...,r, and deg(X;) =
deg (f;)-do---0;/d; for j=0,...,i.

Since dp and deg (fo) are coprime, Theorem 26 implies that By is
factorial, and that f; is a prime element in By of degree dodeg (f;),
for © = 1,...,s. Moreover, o is prime in By where zg is the
residue class of Xy in By. Suppose that B; is factorial and that
Zo, ... ,Zi, fit1,--- ,fs are homogeneous prime elements in B;. Since
GCD (0;4+1,deg (fi+1)do---d;) = 1, Theorem 26 implies that B;;; is
factorial and that xy, ... ,z;, fit2,---, fs, Ti+1 are a prime element in
B;y1. In particular, A" = By, hence it is factorial, and zg, ...,z are
prime in A’.

Now we look for a minimal system of homogeneous generators of A’.
Suppose that d;41 = --- = ds = 1 where -1 <[ < s, and §; > 1
for every 0 < i < I. Then A’ = Klto,... ,tr, Zo,...,2;]. Moreover,
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assume that {fo,..., fi,tit1,... ,tr} is a minimal set of homogeneous
generators of A for some —1 < i <, and that f, € (fo,..., fi) + m%,
for every i < h < l. We can choose tg = fo,...,t; = f;, and then
{zo,... ,®i,tiy1,... ,t-} is a minimal system of generators of B; by
Proposition 22. Moreover, fj11 is not minimal in By for every h > 1,
since fry1 € m4 + (fo,..., fi) = m2Bh N A. Then, using Proposition 22
recursively, we conclude that {z, ...,z tiy1,... s try Tit1,... , T} I8 A
minimal system of generators of A’.

Since T" = z°---z% is an element of degree one in K(A’), the

grading on A’ is reduced. Let

!

4 / !/ ! ! !/
Q = (q07"' 7qi7qi+17"' 7qr7qr+17"' 7q7‘+l7i)

1) é 0
= <q0'%7"'aqi'(s_iaé'qi-!-la"' 75'qradeg(fi+1)'(5i+17"'a

deg (fy) - %)

We normalize Q'. Let dj, = GCD (qg; .-+ ,@h_1,Thi1r---Dryi—i)- We
observe that dj, = 1 for every h =i+1,...,r. In fact, if p is prime and
p | dy, thenp|d-g; for every j =0,...,r, j # h. But Q is normalized,
so p | 4, i.e., there exists k € {0,...,l} such that p | . Moreover, p
divides deg (fx) - §/dx which is coprime with 0y, hence p = 1. Now we
prove that d._; , = o forevery h =i+1,... 1. Let h € {i+1,... ,l}.
Then 6y, | d;_;,},, since &y | (6/0p) if i # h. Let p be a prime factor of
d;._;, - Since Q is normalized, p | . Then p | §; for some j. If j # h,
then p | (deg (f;)-9/¢;). By II) and III), deg (f;) - 0/6; is coprime with
dj, s0 p | 0. In the same way we prove that d}, = dj, for h € {0,...,i}.
Therefore,
( 67 ’ ;7 ;+17"'7 ;«, ;‘+17"' ) :"+l7i)
= (607"' a(sia]-a"' 71;(5i+17"' 751)‘

Let aj, = LCM (dg, - - - ,dj_1,d}y,--- 5 dy ;) for h=0,...,r+1—i.
Then

’ ror 1o 1
(a07'-' YRy Qg 1y e e 5 Qpy Qg gy e e e 7ar+l7i)

= (%, ,6—1.,6,...,6,%,... ,6—l>
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Therefore, we have that Q' = (qo,... , i, @it1,--- ,qr>deg (fiz1),-- -
deg (f1)). Since o’ = LCM (dy, ... ,d;,_;) = ¢, and

10 [ d; dit1 8
A0 = Kz, ... i tigr, stz 2]

_K[th"' 7ti;ti+17"' 7t7‘7fi+17"‘ afl] =4

we conclude that Proj(A4') 2 X

Let now D' € Dx be the unique divisor such that A(X,D’) =
and p*(D') = div(T'). On Spec(4’) — {m} we have div(T")
> i—omj div (z;), and p (div (z;)) = Vj, since

A/

Proj (A'/(z;))
= Proj ((A'/(z;))”
— Proj (K[acgo,... L2 ity T2 (2)
=Proj (K[to,- .- »tirtists--- st fists- - Fi)/(F5))
= Proj (K[th t,,tHl, .. ;tr]/(fj))
= Proj (A/ (fg))

Next, we determine the integers egiy (z,)|v; such that p*(V;) =eaiy (;)|v;
div (:v]) for every j =0, ... ,s. Proposition 14 implies that egiy (o;)|v; =
d; for every j = 0,. ,l. Let us prove that eqiy (2;))v; = 1 for every
j > 1. By Proposmon 13, Cdiv (z;)|V; = GCD{n € N* : (A" /(z))n #
(0)}. By Lemma 28, the claim is that there exists a homogeneous
element of degree one in the field of fraction of A'/(z;) = A'/(f;) =
A/(fj)zo,...,z;]. By Lemma 28, there exists an element of degree
one in K(A/(f;)), and its degree is 6 in K(A'/(f;)). Moreover, in
K(A'/(fj), deg(z;) = deg(fi)d/6; for every ¢ = 0,...,l. Since
GCD (0,deg (f1)d/01,... ,deg(fi1)d/di) = 1, there exists an element of
degree one in K (A'/(f;)). Therefore we have eqiy (o,)|v, = 6; = 1 for
every j > l. By Theorem 2 and Proposition 14, we conclude that
D' =% oni/6;V;=D. O

4. Factorization in a graded quotient ring. The aim of this
section is to understand how the task of factorizing an element of a
UFD, given as a quotient R/I, can be achieved by simply calculating
inside the ring R.
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Classical examples of varieties whose coordinate ring is a graded
factorial domain include generic surfaces of P3 with order m >
4, nonsingular quadrics of P%, n > 4, Grassmannians, nonsingular
complete intersections with dimension > 3 in P¢, where n > 4.
Moreover, as we have seen, it is possible to construct factorial domains
taking A(X,D) where X is an integral, normal, projective scheme
defined over a field K whose divisor class group is Cl(X) = Z, and
D is a well-defined Weil divisor with rational coefficients.

Since all these examples are finitely generated K-algebras, it is natu-
ral to ask for a method to compute the factorization of an element in a
factorial quotient ring R/I where R = K[X;,... ,X,] is a polynomial
ring over a field K, and I is a homogeneous ideal of R to respect to a
positive graduation of R.

In order to have the factorization (Proposition 39), we need an
algorithm to compute the greatest common divisor of two elements
in a quotient ring. First, we show that we can assume the elements are
homogeneous.

Let K be afield. Let I be a homogeneous ideal in R = K[ Xy, ... , X,,]
where deg (X;) = ¢; > 0 for every ¢ = 1,...,r. Assume that R/I is
a unique factorization domain, and let W be a new indeterminate.
Then the ring R[W]/IR[W] = R/I[W] is a UFD, and it admits an
induced positive grading with deg (W) = 1. Moreover, (R/I)y =
(R[W]/IR[W])o = K, and we recall that in a positively graded domain
the degree of an invertible element is zero. In the following, by S we
denote R[W], by IS the extension of the ideal I in S, and by w the
residue class of W in S/IS.

Definition 30. Let f € R/I. Let f = fo + --- + faeg(r) Where
fi € (R/I); for every i = 0,...,deg(f). Then "f = wis()f, +
wies(N=1p 4o 4 faeg (f) is @ homogeneous element in S/I.S of degree
deg (f), and it is called the homogenization of f.

Definition 31. Let g € S/IS. Then %g = g|,—1 € R/I is called the
dehomogenization of g.
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Remark 32. Given f € Rﬁ, let F € R be such that f is the residue
class of F' in R/I. Then hF = hf . wdes(F)—dee(f) where "F is the
usual homogenization of a polynomial in R.

Given g E_S/IS, let G € S be such that g is the residue class of G in
S/I. Then 4G = g where ¢G is the usual dehomogenization.

The next lemma is easy to prove, so we omit the proof.

Lemma 33. The following statements hold:

(1) Let f', f" € R/I. Then "(f'f") = "f'hf".

(2) Let g',g" € S/IS. Then (g'g") = g’ 4g".

(3) Let f € R/I. Then ¢("f) = f.

(4) Let g € S/18 be such that w does not divide g. Then *(?g) = g.

Remark 34. Let g be a homogeneous element in S/IS. Then
g ¢ K if and only if g = kw39 for some k € K. Indeed, let
g = ap +a1w + -+ + a,w® where a; € (R/I)geg(g)—i» and as # 0.
Then g = ag +a; + -+ + a;, € K if and only if s = deg(g), and
aoz---:as_lzo.

Proposition 35. If f € R/I is an irreducible element, then " f is
irreducible in S/IS. Conversely, if g € S/IS is irreducible, then %g is
irreducible in R/I.

Proof. Suppose f irreducible and *f = g; - go» where g; and g,
are homogeneous elements in S/IS. Then f = 9g; - gy, so either
dg; € K or %gy € K. Assume that %g; € K. By Remark 34, we have
g1 = kw891 for some k € K. Since w does not divide *f, then
deg (g1) =0, so " f is irreducible.

Conversely, suppose that ¢g = f; - fo. Since g is irreducible, w cannot
divide g, so "(4g) =g = "f1 - "fo. Then either "f; € K or ", € K,
so either f; or fo isin K. O

Proposition 36. Let f,g € R/I.

(1) GCD (f,9) = “GCD ("1, "g).
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(2) Let F,G € R be such that f = F and g = G. Then GCD (f,g) =
4GCD ("F,hG).

Proof. (1) If either f = 0 or g = 0, the conclusion follows. So, assume
that f #£0, g #0, and let ¢ = GCD (f, g). Then we have to prove that
hg = GCD (" f, "g). Since q | f and ¢ | g, then "q | "f and "q | "g.
Let p € S/IS be such that p | "f and p | "g. Therefore, %p divides f
and g, so %p | ¢. Moreover w cannot divide p, hence p = "*(%p). Then
we conclude that p =| "q, i.e., "¢ = GCD (" £, "g).

(2) follows by GCD (£, g) =?GCD ("f, "g) =4GCD (" fwdes (F)—deg (f)

hgwdeg (G)—deg (9)) = 4dGCD (W, hG) o

Therefore, if we want to calculate GCD (f,g) where f,g € R/I, we
may assume that f and g are homogeneous elements.

Proposition 37. Let f,g be homogeneous elements in R/I. Let
fi,91 be such that f = f1GCD (f,g) and g = g1GCD (f,g). Let F,G
be homogeneous elements in R such that f, g are the residue class of F
and G, respectively, in R/I. Let Iy,... ,I. € R be a minimal system of
homogeneous generators of I. Let V1,...,Vg be a minimal system of
homogeneous generators of Syz (F,—G,I1,... ,I,). Letm € {1,... ,s}
be such that Vy, has minimum degree between the vectors whose first
component is not in I. Then Vy, = k(Gy,F1,J1,...,J.) where
Gi=g1, Fi1=f1, and k € K*.

Proof. Let Vi, = (Vip,...,Vrran) € R™T2 for every h = 1,...,3s,
and let v; 5 be the residue class of Vi, in R/I. Let vy = (v1,h,v2.4)
for every h = 1,...,s. Then, vy,...,vs is a minimal system of ho-
mogeneous generators of Syz (f, —g). Since R/I is a unique factoriza-
tion domain, Syz (f, —g) is minimally generated by (g1, f1). Therefore,
vi = k(g1, f1) for some [ € {1,...,s}, and for some k € K*. This
implies that Vi ; = kG and Vp; = kF; where F = f1 and G, = g1-
We prove that [ = m. Since vy, = tv) for every h = 1,...,s and for
somet € R/I, Vi, —TVy, € I where T =t. If T € I, then Vin €1 if
T ¢ I, then deg (V1) > deg(V1,). Therefore, [ = m. u]
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Corollary 38. Let a,f,g be homogeneous elements in R/I for
which a = f/g. Let F,G be homogeneous elements in R such that
f =F and g = G. Let Iy,..., I, € R be a minimal system of
homogeneous generators of I. Finally, let Vi,..., Vg be a minimal
system of homogeneous generators of Syz (F,—G,Ii,...,I.). Then
there exists an index h € {1,... s} such that Vy, = (k, kA, J1,... ,J;)
where k € K* and A = a.

Algorithm DivQuotient

input: F,G two polynomials, I = (I,...,I.) an ideal, W a new
variable

output: either a polynomial H such that the residue class of F' is equal
to the residue class of the product of H and G in R/I, or the string
“error”

F1 = Homogenized(W, F);
G1 = Homogenized(W, G);
[Vi,...,Vs] = Syzygies ([F1,—-G1, I, ... , I]);
UsefulSyz = [V; : V;[1] IsNot 0 And
Deg(V;[1]) =0 For j=1,...,s];

If Length (UsefulSyz) IsNot 0 Then

VH = UsefulSyz[1];

H = Dehomogenized (W, VH[2]/V H[1]);

Return H;
Else Return “error”;
EndIf;

End

Algorithm GCDQuotient
input: F,G two polynomials, I = ([,...,I,) an ideal, W a new
variable

output: a polynomial H such that the residue class of H is equal to
the GCD of the residue class of F' and G in R/I
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F1 = Homogenized (W, F);
G1 = Homogenized (W, G);
[Vi,...,Vs] = Syzygies ([F1,—-G1, I, ... ,I.]);
FirstCompOfV = [NormalForm (V;[1],I) :
J=1,...,s]

CandGlover H = [L In FirstCompOfV : L IsNot 0];
MinDeg = Min ([Deg (M) : M In CandGlover H));
Glover H = [L In CandGlover H : Deg (L) = M];
H = DivQuotient (G1, Glover H[1],I,W);
Return Dehomogeneized (W, H);

End

By the uniqueness of the minimal primary decomposition we have the
following proposition.

Proposition 39. Let R be a Noetherian ring, and let I be an ideal
in R such that R/I is a UFD. Let f € R/I, and let f = pi*---pir
be the unique factorization of f in R/I. Let F € R be such that f
is the residue class of F in R/I, and let g1 N --- N qs be a minimal
primary decomposition of (F')+ 1 in R. Then r = s and, after possibly
reindezxing, q;/I = (p;"*) for eachi=1,...,r.

In particular if /q; = pi = (Pi1,-.., Piy,), for every i =1,...,r,
and if P; € R is such that P, = GCD (P, 1,...,P;,,), then p; = P; for
every i =1,...,r.

Proof. Clearly (p7*)N---N(pir) and q;/IN---Ngqs/I are minimal
primary decompositions of (f). Then r = s and, after possibly
reindexing, q;/I = (p;*) for each i =1,...,7r. mi

Algorithm FactorQuotient
input: F a polynomial, I an ideal, W a new variable

output: a list [[p1,n1],..., [pr, n;]] of the irreducible factors of the
residue class of F' with their respective multiplicities



SOME REMARKS ON FACTORIAL QUOTIENT RINGS 1169

[Py,...,P:] = MinimalPrimes (I + (F));
For : =1 To r Do

n; =1
[(Pi)1, .- 5 (Ps)¢] = Generators (F;);
pi = (P)1;

For k =2 To t Do
pi = GCDQuotient ( p;, (P, I, W);

EndFor;
While DivQuotient(F, p;, I, W) IsNot “error” Do
n; =n; + 1;
F = DivQuotient(F, p;, [, W);
EndWhile;
ListFactorization [1] = [p;, nil;
EndFor;
Return ListFactorization,

End

4.1. A special case. In this section we give an alternative algorithm
to compute the factorization of an element in R/T in the case where I is
a principal ideal. Then we suppose that I = (F') is a homogeneous ideal
in R=K[Xy,...,X,] where deg (X;) = ¢; > 0 for every i = 1,...,r.
Assume that R/(F) is a UFD. Let LT, (F') be the leading coefficient
of F' to respect the variable X, and assume that LTx, (F') € K.

Proposition 40. Let G € R. If G is irreducible in R/(F), then the
resultant of F' and G with respect to X, is the power of an irreducible
polynomial in K[Xo,...,X,].

Proof. Assume Resultant (G, F, X;) = C' - D, where GCD (C, D) = 1.
We observe that R/(F) is an algebraic extension of K[Xa,...,X,].
Let Xi1,X;, be the distinct roots of F, and let G; = G(X;1) .
It is well known that Resultant (G, F,X;) = Norm(G) = [],Gi.
Then G = G divides the residue class of Resultant (G, F, X;) in
R/(F); therefore, either G | C or G | D. Assume for concreteness
that G | C, i.e., C = Gy - H;. The rings K[X>,...,X,][X11] and
K[X,,...,X,][X1;]| are canonically isomorphic under a mapping ¢;
which sends X;; to X, and it is the identity on K[X,,...,X,].

So C is invariant under ¢;, and the equation C = Gi1 - H; becomes
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C = Gj- Hj. Therefore, G; | C for every j. But GCD (C,D) =1
implies that GCD (G, D) = 1 for all j, so GCD ([[ G, D) = 1. But

D | Resultant (F, G, X;) = Norm (G) = [[G;. So we have D = 1. u]

Algorithm FactorPrincQuotient
input: F a polynomial, 7 a polynomial, W a new variable

output: a list [[p1,n1],..., [pr, n:]] of the irreducible factors of the
residue class of F' with their respective multiplicities

[[F1,m1],...,[Fr,m.]] = Factorize (Resultant (F,Z, X1));
For i =1 To r Do
p; = GCDQuotient ( F, F;, (Z), W);
If Resultant (p;, F, X;) Is Squarefree Then
n; = 0;
p; = GCDQuotient (F, F;, (), W);
F = DivQuotient (F, p;, (), W);
While F IsNot ’error’ Do

n; =n; + 1;
F = DivQuotient(F, p;, (Z), W);
EndWhile;
Endif;
ListFactor[i] = [p;, nil;
EndFor;

ListFactor = [ListFactor, FactorQuotient (F, Ideal (), W)];
Return ListFactor;
End

Theorem 41. Let G € R be such that Resultant (F,G, X1) is
square free, and let || G;(Xa,...,Xn) be a complete factorization of
Resultant (F, G, X;) in K[Xy,...,X,]. Then [[(GCD(G,G;)) is a
complete factorization of G in R/(F).

Proof. Let g = GCD (G, G;). Then we must show that each g; is
irreducible and that all the irreducible factors of g = G are among the
gi- Let v =V be an irreducible factor of g. Then Resultant (V, F, X;)
is the power of an irreducible polynomial in K[X5,...,X,], but v | g,
so Norm (v) | Norm(g) and Norm (g) is square free. Therefore the
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Norm (v) is irreducible and must be one of the G;. Since the Norm (g)
is equal to the product of the norms of each of the irreducible factors
of g, each G; must be the norm of some irreducible factor of g.

Then assume that both v; and v, divide GCD (g, G;), where v1 and vq

are distinct irreducible factors of g. Since v1 | G;, we have Norm (v1) |
Norm (Gz), but G; € K[XQ,.. . ,Xn], so Norm (Gz) = (GZ)P The

norm of v is irreducible in K[Xs,...,X,] and divides the irreducible
polynomial G;, so Norm (v;) = G;. Similarly, Norm (v2) = G;. But
v1v2]g, so Norm (viv2) = G? | Norm (g), and this contradicts the

assumption that Norm (g) is square free. Therefore, GCD (g, G;) must
be irreducible for all 7. o
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