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PERTURBATIONS OF
NONASSOCIATIVE BANACH ALGEBRAS

ANAR DOSI

ABSTRACT. In this note we prove that if either 2 is a
Banach-Jordan algebra or a Banach-Lie algebra then all per-
turbations of the multiplication in 21 give algebras topolog-
ically isomorphic with 20 whenever certain small-dimension
cohomology groups associated with 2 are vanishing.

1. Introduction. The perturbation problems in the associative Ba-
nach algebra context are well known [8], and serious advancements in
that direction were done by Johnson in [9] and Raeburn and Taylor
in [10]. The main question is the following. If we perturb the mul-
tiplication in a Banach algebra, do we obtain a topologically isomor-
phic algebra? One can ask similar questions. Which properties inherit
the neighboring multiplication? Is the perturbed Banach algebra ho-
momorphism equivalent to the original one? All these questions were
deeply investigated and vividly reflected in the above mentioned papers.
The main tools in these investigations are the Hochschild cohomology
groups H™(,2(), n > 0, (see [7, 1.3.1]) associated with the original
associative Banach algebra 2. It is proved that all these perturbation
problems have positive solutions if certain small-dimension cohomolo-
gies are vanishing. For instance, if H%(,2) = 0 and H>(, ) are
Hausdorff, then all Banach algebra multiplications sufficiently close to
the original multiplication in 2 define Banach algebras topologically
isomorphic with 2. In the latter case, we say that 2 is a stable Banach
algebra (see [7, 1.2.2] and Definition 2.1 below).

Which nonassociative Banach algebras are stable? That is the main
question which we investigate in this paper. Nonassociative structures,
especially Jordan and Lie structures, present great interest in analysis.
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On this account we investigate the perturbation problem for Banach-
Jordan and Banach-Lie algebras. In a purely algebraic context, the
perturbation problem arose in deformation formalism. A deformation
of a finite dimensional Lie algebra g is a Lie algebra with the same linear
space g but with perturbed Lie multiplication. That can be expressed
in terms of the structure constants {ij} of the original Lie algebra
with respect to its fixed basis e = (e1,...,e,) in g. The structure
constants of a deformed Lie algebra with respect to the same basis e
can be written as {Cf;(¢)}, which depend upon a family of parameters

¢ such that
tim G5 (5)} — {C5}.

Thus the stability of g in the above mentioned sense means that all
deformed Lie algebras (g,{C/;(¢)}) are isomorphic to (g,{CJ}) for
small e. The first results in that direction are due to Gerstenhaber [5].
In particular, it was proved that semi-simple Lie algebras are stable
(for a geometrical viewpoint, see [1]). That result can also be derived
(see Remark 6.1 below) from a more general perturbation theorem
in the Banach-Lie algebra framework proposed in the present paper.
Our approach is based upon the implicit function theorem proposed
by Raeburn and Taylor in [10]. Roughly speaking, by differentiating
the identities of a nonassociative Banach algebra we are raising the
cohomology level. By assuming that certain cohomologies vanish, we
obtain a positive solution of the perturbation problem on the grounds
of the implicit function theorem.

There is a well-developed cohomology theory for Banach-Lie algebras.
We prove that if the second cohomology group H?(£) of a Banach-Lie
algebra £ is vanishing and the third one H3(£) is Hausdorff, then £
is a stable Banach-Lie algebra. But for Banach-Jordan algebras no
explicit (as in the Lie algebra case) cohomology theory exists. We
suggest certain construction which defines small (up to third) dimension
cohomology groups having similar meaning as in Lie and associative
algebras, and we prove under the same conditions on cohomologies of
a Banach-Jordan algebra that it is stable; thereby, the perturbation
problem has a positive solution.

2. Preliminaries. All linear spaces considered are real or complex.
The set of all positive integers is denoted by N and Z;={0} UN. Let
B(X,Y) be a normed space of all bounded linear operators between
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normed spaces X and Y furnished with the operator norm, and let
B(X) = B(X,X). The class of all Banach spaces is denoted by BS.
Let X,Y € BS, U C X an open subset, and let f : U — Y be a map.
If f is differentiable on U in the Fréchet sense, then f': U — B(X,Y)
denotes the derived map. Moreover, if f’ is continuous, then f is said to
be a C! map. By analogy, it is defined to be a C* map. Let X € BS.
The set of all invertible elements in the Banach algebra B(X) is denoted
by B(X)~1, and let 1x be the identity operator acting on X. It is well
known [2, Theorem 5.4.3] that B(X)~! is an open subset in B(X) and
the map B(X)™' — B(X), T — T~'is a C* map. The unit ball
of a normed space X is denoted by X(;). We use the conventional
denotation X ®Y for the projective tensor product of X,Y € BS, and
we write X®" instead of n-times projective tensor product of X on
itself. The direct sum X @ Y is endowed with the sum-norm and X"
denotes the direct sum of n copies of the space X. The bounded linear
map d,, : X — X", d,,(z) = (z,... ,z), is called the diagonal map.

2.1. Exterior and symmetric powers of a Banach space.
Let X be a Banach space, S, (herein n € N) the group of all
permutations over the finite set {1,...,n}, and let ¢(7) be the sign
of a permutation 7 € S,. Consider an operator §, € B(X®"),
0r(21® Q%) = 1)@+ - ®Tr(n), T € Sy The exterior power A\ X
of X was defined [3] as the image of a bounded linear projector

A, €B (X@”), A=Y e (n)6,,

TES,

and we write z; A --- A z,, instead of A, (z; ® --- ® z,,). For brevity,
we also use the denotation z = x1 A -+ A z,, and we write z, =
1 AN+ ANT; A\ --- A\ x, whenever the variable z; is thrown out from
the expression of z. On the same grounds we write z, . whenever the
variables z; and z; are thrown out from z.

Now let us introduce a symmetric power V"X of X as the image of
a bounded linear projector

B, €B (X§") , B.=n"'Y 4.
TES,

One can easily observe that, for a Banach space Y, the spaces
B(A"X,Y) and B(V"X,Y) are isometrically isomorphic with the spaces
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of all continuous skew-symmetric and symmetric n-linear maps on X
with values in Y, respectively. By analogy, we write z; V- -V, instead
of Bp(z1 ® -+ ® ).

2.2. Polynomials. Let X and Y be linear spaces, and let n € N.
A mapping ¢ : X — Y is said [2, 6.1] to be a homogeneous polynomial

of degree n if ¢ splits into the superposition X b xn Iy of the
diagonal map d, : X — X" and an n-linear map f : X™ — Y. Thus,
o(z) = f(z,...,z) and thereupon p(Az) = A\"p(z) for all scalars .
Obviously, one can assume that f is a symmetric n-linear map. In
particular, all linear maps X — Y are homogeneous polynomials of
degree 1, and it is convenient to assume constant maps X — Y to be
homogeneous polynomials of degree 0. A mapping ¢ : X — Y is said to
be a polynomial if there are a number n and homogeneous polynomials
©0,--- »¢n (@i has degree 1) such that ¢ = ¢y + - -+ + ¢,. In this case
we say that ¢ has degree < n. The main result [2, Theorem 6.3.1] of
the algebraic theory of polynomials asserts that the latter expansion
for a polynomial ¢ is unique. To have a more precise formulation of
this result, let us introduce a map App : X — Y by setting

(Anp) (z) =@ (z+h) — ¢ (2),

where ¢ : X — Y is an arbitrary mapping and h € E.

Theorem 2.1. Let ¢ = pg + -+ + p, be a polynomial of degree
< n, and let f, : X" — Y be a symmetric n-linear map such that
On = fn-d,. Then App is a polynomial of degree < n — 1 and
Ay, - Ay @ is a constant map for all z4,... ,z, € X. Moreover,

1
fo(z1,... yzn) = HA”“ Ay .

As follows from Theorem 2.1, to each polynomial ¢ = ¢,, of degree n
there uniquely corresponds a symmetric n-linear map @(z1V---Vz,) =
n!=1A,, -+ A, ¢ such that ¢ = @ -d,. Thus the mapping ¢ — @
implements a bijection between homogeneous polynomials of degree n
and symmetric n-linear maps.
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Now assume that X and Y are normed spaces, and let P,(X,Y) be
a space of all continuous homogeneous polynomials of degree n. We
set [|o|| = sup{|le(z)]| : z € X1y} for ¢ € P,(X,Y). It is proved [2,
Theorem 6.4.1] that ||¢|| < oo and the map ¢ — ||¢|| is a norm on
Pn(X,Y).

Lemma 2.1. The linear operator P,(X,Y) — B(V"X,Y), ¢ — @,
is a topological isomorphism. In particular, Pn(X,Y) € BS whenever
Y € BS.

Proof. By Theorem 2.1 and by the very definition of the function
App, we conclude that

Ay Dy p= (Agy - 'Aznsa) (0)
— Z (_1)n7p(p(mi1 +"'+$ip)'

1<iy < <ip<n
It follows that

181 = n!=" sup {[| A, - Ag, ll s 21 € X1) }

<al™t Y s {n® e (0 e ka7l
1<i1 < <ip<n

T; € X(l)}
<7t (2n)" [l

that is, |§|| < n!='(2n)"||¢|. Consequently, P,(X,Y) — B(V"X,Y),
¢ — @ is a bounded linear operator. It remains to note that the
correspondence B(V"X,Y) — P, (X,Y), f — f-d,, is a bounded
linear operator (namely, || f-d,| < ||f]|), and it is the inverse operator to
¢ — @, for a symmetric n-linear map related to the polynomial f-d,, is
unique (see Theorem 2.1) and therefore it might coincide with mmjf. o

2.3. Nonassociative stable Banach algebras. Let 2 be a
nonassociative algebra with a set of identities I. The algebra 2 is said to
be a nonassociative Banach algebra if its underlying space is a Banach
space and the multiplication x is jointly (or separately) continuous
with respect to this norm. Thus we have a bounded multiplication
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% : ARA — A subjected to a family of identities I. For instance, if I
consists of nonassociative polynomials zy — yz and (zy)z? — z(yz?),
then a nonassociative Banach algebra 2 with the set of identities I
is called Banach-Jordan, B-J for short, algebra, and if I consists of
polynomials z? and (zy)z + (yz)z + (2x)y then we say that 2 is a
Banach-Lie, B-L for short, algebra. We shall focus on the latter two
classes of nonassociative Banach algebras.

The following definition plays a key role in this note.

Definition 2.1. Let 2 be a nonassociative Banach algebra with a set
of identities I and let * : A®A — A be relevant bounded multiplication.
We say that 2 is stable whenever there is a constant € > 0 such that if
m : A®A — 2 is any bounded multiplication satisfied to all identities
from I with ||m — || < e then there exists T € B(2)~! such that
T(m(a®b)) = T(a) * T(b). Further, 2 is said to be strongly stable if
additionally we have an estimation |7 — 1y|| < C||m — ||, where C > 0
is a constant does not depend upon m and T'.

Thus the stability of an algebra 2 means that all multiplications suf-
ficiently close to the original one give algebras topologically isomorphic
with 2(. As we mentioned above, so are all associative Banach alge-
bras and associative Banach *-algebras whenever H?(2(, %) = 0 and
H3(2,2l) is Hausdorff [9, 10].

2.4. Johnson lemma and implicit function theorem. Our
approach is strongly based on the implicit function theorem proposed
in [10]. Here we briefly remind the reader about this theorem and
demonstrate its connection with the perturbation problem of Banach
space complexes which were solved by Johnson in [9, Lemma 6.1].

Let T : X — Y be a Banach space operator with the closed range,
and let

T : X/ker (T) — im (T), T (z~ modker(T)) =Tz,

be the induced operator. The latter has a bounded inverse, and the
norm of this inverse operator is called the inversion constant of T, and
it is denoted by ic(T"). Further, let

S:(Sl,SQ), 51€B(X,Y), SQEB(Y,Z)
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be Banach space operators. We say that S is a differential pair if
5251 = 0, and a differential pair S is said to be ezact if im(S;) =
ker (S2) and im (S2) is closed. The following assertion belongs to
Johnson [9].

Lemma 2.2. Let X,Y,Z € BS, and let S = (51, 52), S1 € B(X,Y),
Sy € B(Y,Z) be an ezact differential pair. Then so is a differential
pair sufficiently close to S. Namely, if T = (T1,T»), Th € B(X,Y),
Ty € B(Y, Z) is a differential pair with kr < 1, then T is ezact, where

kr = c1||S1 = Thi|| + c2[|S2 — T2l + c1e2 ||S1 — Th || [|S2 — T2,
¢ > ic(S;), i = 1,2. Moreover,

ic(Ty) < (1—kr) "er (L4 e ||S2 — To)),
ic(To) < (1—kr) P ea(l+cr ||S1 — Tul]).

Remark 2.1. The latter assertion plays an important role in multi-
variable spectral theory. Namely, the Johnson lemma 2.2 automatically
involves the following well-known assertion that all w-type Slodkowski
spectra oy ,(%,0) [3, 4] of a nonnegative parametrized Banach space
complex (X,0) are closed sets.

Now let us formulate the implicit function theorem.

Theorem 2.2. Let XY, Z € BS, U C X and V C Y be open
subsets. Let f : U = V and g:V — Z be C? maps and up € U,
vg € V fized points with f(ug) = vo. If g - f is a constant map,
im(f'(uo)) = ker(g'(vo)) and im(g'(vo)) is closed, then there existe > 0
and C > 0 such that for each v € V with ||v—v|| < € and g(v) = g(vo)
there is a w € U with ||u — wo|| < C||lv — vol| and f(u) = v.

Note that differential pairs in the assertion appear naturally. Namely,
since g - f is a constant map, one follows ¢'(f(u)) - f'(u) = 0, u € U,
by virtue of the chain rule. Thereby, S(u) = (f'(u),¢'(f(w))), u € U,
are differential pairs and S(ug) is an exact one by assumption. Since



516 ANAR DOSI

f and g are C? maps, one can conclude that ks(u) < 1 uniformly on a
certain neighborhood of ug. By the Johnson lemma, all S(u) are exact
differential pairs on a sufficiently small neighborhood of uy and

ic (f () < (1~ kswy) " er(L+ezllg’ (f (w) — g (wo)l),
ic (g (f () < (1 - ksw) "e2 (@ +ellf (@) — F (uo)])-

Thus, by shrinking U if necessary, one may assume that ic(f’(u)) and
ic(¢'(f(u))) are bounded uniformly on U. The latter are essential to
proceed as in Newton’s method and end the proof [10, Theorem 1].

3. Small cohomologies of nonassociative Banach algebras.
In this section we briefly review the main cochain complex associated
with a B-L algebra, and we define small (up to third) dimension
cohomologies of a Banach-Jordan algebra having similar meaning as
in Lie and associative algebras.

3.1. Banach-Lie algebras. Let £ be a B-L algebra. Then £
turns into a Banach £-module by dint of the adjoint representation
ad : £ — B(L). The latter involves [3], the following cochain Banach
space complex

(3.1)

0— ¢ 5B S B((ne ) D S

" B(Ame, 8) s

with the coboundary operators

n+1 ) o
'w(@) = ()" aw ()] + D (1) w (laal nay )

where w € B(A"L,£), a = a1 A --- A apt1- The cohomology spaces
ker(d™)/im(d"~'), n € Z,, of the cochain complex (3.1) are called
cohomology groups of a B-L algebra £ and are denoted by H™(£). Since
we are interested in small dimension cohomologies, it is reasonable to
have a more explicit description of the relevant coboundary operators.
So, d°z(a) = [z,a], x € £, thereby d°z = ad(z). For d', we have

le (a1 N ag) = [al, Tag] — [ag, T(Ll] - T [al, az]
= —T'[a1,a2] + [a1,Taz] + [Ta1, az],
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whence ker(d') is the subspace in B(£) of all Lie derivations. Further,

d?w (a1 Naz A ag)
= [a1,w (a2 A a3)] — [az,w (a1 A a3)] + [as,w (a1 A az)]
—w ([a1,a2] A as) + w ([ar,a3] A az) — w ([az,a3] Aay).

Thus, H°(£) is the center of the B-L algebra £, H'(£) is the quotient
of all bounded Lie derivations modulo the inner derivations of £.

3.2. Banach-Jordan algebras. Now let 2 be a commutative
nonassociative Banach algebra (that is, I = {axy — yz} is the set of
identities, see subsection 2.3), and let ¢, : A — 2 be a mapping
given by the rule ¢,(z) = (2%2)z — z2(2z), where 2 € 2. Note
that {p, : z € A} C P3(A,2A). Indeed, it is beyond a doubt
fo 0 A = A fo(x,y,t) = ((zy)2)t — (zy)(2t), is a bounded 3-
linear map and f, - d3 = ., thereby ¢, is a homogeneous polynomial
of degree 3 (see subsection 2.2). By Lemma 2.1, the map ¢ — @
implements a topological isomorphism P53 (2, %) — B(V32,2l) between
the homogeneous polynomials of degree 3 and bounded 3-linear maps.
Let us calculate ¢, € B(V32, ). Taking into account that f,(z,y,t) is
symmetric with respect to the first two variables z and y, one follows
that

3¢ (a:\/y\/t) =f. (mvyat)+fz (tvyax)+fz (mvtay)
= ((zy) )t + ((ty) z) = + ((at) 2) y
— (zy) (2t) — (ty) (zz) — (at) (2y) -

Now assume that 2 = J is a B-J algebra. Then all homogeneous
polynomials ¢, z € J, are vanishing on J. It follows that @, (zVyVt) =
0 for all z,y,z,t € J. Consequently,

(3.2) ((ab)c) d+((ad) c)b-+a ((bd)c) = (ab) (cd)+ (ac) (bd)+(ad) (bc),

for all a,b,c,d € J. Note that all variables on the righthand side
are symmetrically situated, thereby so might be on the left one. By
permuting the variables a and ¢, and then b and ¢, we deduce the
following relations:
(3.3)
((ab) ) d + ((ad) )b+ a ((bd) ¢) = (a (bc))d + (a (bd)) ¢ + (a (cd)) b
=a(b(ed)) + ((ac)b)d + ((ad) b) c,



518 ANAR DOSI

(3.4) (a(bc))d+(a(bd)) c+(a(cd)) b= (ab) (cd)+(ac) (bd)+(ad) (be) .
The identities (3.2)—(3.4) are well known in the theory of Jordan
algebras.

The latter equality in (3.3) is equivalent to the following

a(b(cd)) — (a(cd)) b= (a(bc))d— ((ac)b)d+ (a (bd)) c — ((ad) b) ¢
or in an operator form
(3.5) [Lay Lo (cd) = ([Lay Lo] ¢) d + ¢ (|La, L) d) .

Thus, all operators [L,, Lp] are derivations of the Jordan algebra J.
Moreover, from the identity (3.4) we derive (by setting ¢ = d) the
following formulae

(3.6) 2(a (be)) c+ (ac®) b= (ab) ¢® + 2 (ac) (bc).

The latter will be used below in Lemma 3.1. It is also useful to have
an operator version of the identity (3.4) itself. It is the following

(37) [Ld7 Lbc] + [Lca Lbd] + [Lba Lcd] =0.

Now we introduce a cochain complex associated with a B-J algebra.
Let J be a B-J algebra. Consider the following sequence of Banach
space operators:

(3-8)

~ 50 ~ ~ A\ O ~ ~ ~
0— 3% 5382 g B (v23,3) 25 B(3, P (3,3)),
where

50 (a®b®c)—a®bc+b®ac+c®ab
3 (a®b) = [La, L],
(62T) (aV b) = aTb+ bTa — T (ab),
(6°w) (a)b=w (abV b*) + w (a V b) b* + (ab)w (b V b)
—w(ab®>Vb) —w(aVb®)b— (aw(bVb))b.

To be correct, first note that §27 is a bounded symmetric bilinear
map, for ab = ba. Further, note that (6°w)(a) € P3(J,J), that is,
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(83w)(a) is a homogeneous polynomial of degree 3. Indeed, one needs
(see subsection 2.2) to prove that (5°w)(a)(b) = (4 (b, b, b) for a certain

Ca € 8(3@3,3). We set

Ca (Il,x2,$3)
=w (ax1 V z2x3) + w(aV x1) (x2z3) + (az1) w (z2 V x3)
—w(a(ziz2) Vas) —w(aV (z122)) 23 — (aw (21 V 22)) 3.

It is beyond a doubt (, is a bounded 3-linear map and (,(z,z,z) =
(83w)(a)(z); therefore, (§3w)(a) is a continuous polynomial of degree 3.

Lemma 3.1. 66" ' =0 foralln, 1 <n < 3.

Proof. First, note that the equality §'6° = 0 follows from (3.7).
Moreover, using (3.5), we conclude that §26'(a ® b) = 0 for all a,b € J,
whence 6261 = 0.

Now take 7' € B(J), and let w = 6T € B(V2J,J). We have to prove
that 63w = 0. Take a,b € J. Then

w (abV b%) = (ab) Tb* + b>T (ab) — T ((ab) b°) ,
w(aVb)b* = (aTb)b* + (bTa) b* — b*T (ab) ,

(ab)w (b V b) = 2 (ab) (bTb) — (ab) TH?,

—w (ab?® v b) = — (ab®) Tb — bT (ab®) + T ((ab?) b),

—w (aVb?)b=— (aTb?)b— (b°Ta) b+ bT (ab?),

— (aw (b Vb)) b= —2(a (bTb)) b+ (aTb?)b.

Taking into account that (ab)b? = (ab?)b, (bT'a)b? = (b*Ta)b, we derive
from the above equalities that (63w)(a)b = (aTb)b? + 2(ab)(bTb) —
(ab®)Th — 2(a(bTh))b. But the latter is vanishing out of (3.6), that is,
53w = 0. Consequently, §35% = 0. a

Thus, the sequence (3.8) is a cochain Banach space complex by virtue
of Lemma 3.1. Their cohomology spaces are called small cohomologies
of B-J algebra J and denoted by H"(J),n = 0,1,2,3. Thus H°(J) is the
set of all absolutely convergent series ZneN A ®bp®cp, € J®2 such that
Y oneN On ®@bncn = =D cn b ®ancn =, cn Cn ®anby. In particular,
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a®a®a € H°(J) whenever a? = 0. The first cohomology H(J) is the
quotient space of all absolutely convergent series ) an ® by € J 3
such that ) _nan(2by) = D, cn(@n®)by, £ € J, modulo all series
Y oneN Gn®@bncn +by ®ancn +cn ®anby, with 3 i [lan]|||brl||lcnl] < co.
Further, H?(J) is the quotient of all derivations of J modulo derivations
of the form Y _n[La,, Lv,] with > - llan|[||bn || < oco.

4. The function f. We intend to apply the implicit function the-
orem to the perturbation problem for nonassociative Banach algebras.
Therefore, we might suggest the main functions f and g (see Theorem
2.2) within that problem. The latter is the main goal of this and the
next sections.

Let X € BS, and let * : ¥®% — X, T ®y — x*y, be a bounded
linear operator. Let us introduce the following function

FiBX) ™ — B(x8%,%), f(I)(x®y)=T""(TzxTy),

where z,y € X.

Lemma 4.1. The map [ is a C*° map, and its derived map
fBX) N — B(B(X),B(X8%,X%))
is acting by the rule

(f' (1) G)(z®y)
=T 'GT ' (Tz+Ty) + T~ (Gz +Ty) + T~ (Tz * Gy)

for all G € B(X) and z,y € X. In particular,

(f'(1e)G) (z®@y) = -G (xxy) + Gz xy +a * Gy.

Proof. Consider the following maps

G:BE) T —BX), GT)=T7"

G2 B(X) x B(X) — B(X8X,%X), ((T,G)(a®b) =TaxGb;
(3: B(X) x B(X®X,X) — B(X®%,%X), G(Tw) =T w.
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It is well known [2, Theorem 5.4.3] that ¢; is a C* map. Further, (»
and (3 are continuous bilinear maps; therefore [2, Proposition 5.4.1],
they are C'*° maps too.

Further, note that f = (3 - (¢1 X ({2 - d2)), where da : B(X) — B(X)?
is the diagonal map, and ¢; x (Cz - da) : B(X) ™! — B(X) x B(X®X, %),
T — (& (T),¢(T,T)). Now, since f is a composition of C* maps, it
is automatically a C'* map. Moreover,

F ()G =G (G(T), (G- d2) (T)) - (61 (T) -G, (5 (d2 (T)) - d2 (G))
=G M-a (42 d2) (T)) + G (C1 (T) G5 (da (T )) dz (@)
=TG- T G(T,T))+ (T &G(T,T) - (G,G))
=-T7LGq.-T" 1(2(TT)+T LG (G, T)+ T~ 142( ,G),

which in turn implies that

(f'(T)G)(z@y)
=T 'GT ' (Tz+Ty) + T~ (G * Ty) + T~ (Tz * Gy)

for all G € B(X) and =,y € X. o

Assume that X = £ is a B-L algebra and * is the Lie multiplication
or Lie brackets [-,-]. Then f(B(£)~!) C B(A%L,£) and f(T)(z Ay) =
T~ Tz, Ty]. As follows from Lemma 4.1, f'(1¢) : B(£) — B(A%L, L)
is merely the first coboundary operator d' of the main cochain complex
(3.8) defining the cohomologies of the B-L algebra £.

Further, assume that X = J is a B-J algebra and x is the Jordan
multiplication .. Then f(B(3)™') C B(V?3,3) and f(T)(z Vy) =
T~ YTz Ty). By Lemma 4.1, f'(13) : B(3) — B(V23,3), (f'(13)G)(zV
y) = —G(z-y)+ Gz -y+z- Gy, is the second coboundary operator §2
of the main complex (3.8) defining the small cohomologies of the B-J
algebra J.

5. The function g. Now we introduce the next required function g.
The function g strongly depends on the choice of a nonassociative
Banach algebra. Therefore, we consider the B-J algebra and B-L
algebra cases separately.
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5.1. The function g for a B-J algebra. Now let J be a B-J
algebra. We define a map
9:B(v*3,3) — B(J,Ps(3,9)),
gw)(a) (b)) =w(w(@aVbd)Vw (VD) —w(w(aVw(dVd)Vb),

where a,b € J. Undoubtedly, g=1(0) C B(V23,J) is a subset of all
(jointly) continuous Jordan multiplications on J.

Lemma 5.1. The equality g - f = 0 holds.

Proof Take T € B(J)"!. Then f(T)(f(

b) = T (TaTb)(Th)?) and f(T)(f(T)(aV F(T)(b V) V) =
T- ((Ta(Tb) )T'b). It follows that

3
=
<
=
<
=
3
=
<

Tg (f (T)) (a) (b) = (TaTb) (Th)* — (Ta (Tb)*) Tb=0

due to the Jordan identity. Consequently, g(f(7")) = 0. O

By Lemma 5.1, im(f) C ¢g~!(0) and im(f) consists of those con-
tinuous Jordan multiplications on J topologically isomorphic with the
original B-J algebra J (with respect to the multiplication f(13)). In-
deed, if T € B(J)~!, then J furnished with the Jordan multiplication
axb=T~1(TaTb) is topologically isomorphic with J by means of the
invertible operator T'.

Lemma 5.2. The map g is a C* map and its derived map
g B (V33,3) — B(B(v?3,3).B(3,P:(3,3))

is acting by the rule

(¢ (W)T)(a)(b) =T (w(aVb)Vw(dVDb)+w(r(aVd)Vw(Vb))
+w(w(@Vvb)Vr(bVvbd)—7(w(aVw(dVDb)VDb)
—w(T(aVw(®bVb))Vd) —ww(aVvr(dVb)Vb),

where a,b € J. In particular, if w is the Jordan multiplication -, then

(9" (-)7) (a) (b) = 7 ((ab) Vb*) + 7 (a V b) b* + (ab) T (b V b)
—7(ab>Vb) — 7 (aVb*)b— (ar (bVD))b.
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Proof. Let g1 : B(V23,3) — B(3J,P3(3J,J)) be a mapping given by the
rule g1 (w)(a)(b) = w(w(a Vb) Vw(bVb)). Obviously, g; splits into the
decomposition 7 - t, where

t:B(v23,3) — B (3%4,3),
tw)(a®b®c®d) =ww(aVb) Vw(cVd),

and 1 : B(3®4,3) — B(3,P3(3,3)), n(B)(a)(b) = (a® b®b® D).
We also introduce a map ¢ : B(V23,3)® — (”®4,3) by setting
C(wy,w2,w3)(a®@b®c®d) = wi(wz2(aVb)Vws(cVd)). Then ¢ is a
C* map, for  is a bounded 3-linear map. Moreover, ¢t = ( - d3, where
ds : B(V33,3) — B(Vv33,3)? is the diagonal map. Using the chain
rule, we assert that ¢ is a C°° map and ¢/ (w)7 = ('(w,w,w)(r,7,7) =
¢(ryw,w) + ¢(w, T,w) + ((w,w, 7). Further, taking into account that n
is a bounded linear map, we conclude that g; is a C°° map and

(91 (W) 7) (a) (b) = n (' (w) 7) (a) (b)
={t'(w)T)(a®@bb®D)
=((r,w,w)(a®bRbRD)

+¢(w,Tw) (a®@bRbRD)
+ ¢ (w,w, T)(a®DR bR D)
=7(w(aVb)Vw(bVbd))
+w(r(aVb)Vw(bVb))
+w(w(aVb)Vr(bVd)).

Using the same argument, one can prove that

92 :B(V?3,3) — B3, P: (3
g2 (w) (a) (b)) =w(w(@aVw (Vb

is a C'"°° map and

)

) Vb),

(g5 (w)T)(a) () =7 (w(@Vw(dVD)) Vb +w(r(aVw(Vb))Vb)
+w(w(@aVT(bVb) V).

Consequently, ¢ = g1 — g2 is a C* map and (¢'(w)7)(a)(d) =

(91(w)7)(a)(b) — (92 (w)7)(a)(b)- O
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As follows from Lemma 5.2, the derived map ¢'(-) : B(V?3,3J) —
B(3,P3(3,3)) is merely the coboundary operator 6 of the main com-
plex (3.8) associated by the B-J algebra J.

5.2. The function g for a B-L algebra. The same argument can
be carried out for a B-L algebra £. Namely, we introduce a function

g:B(N°8,2) — B(A’L, 2),
gw)(anbAhe)=w(@Aw(bAc)—wbAw(aAc)tw(cAw(aAd),

where a,b,c € £. Note that g=1(0) C B(A2L,£) is a subset of all
(jointly) continuous Lie multiplications on £. Obviously, g - f = 0,
thereby im(f) C ¢ 1(0) and im(f) consist of those continuous Lie
multiplications on £ topologically isomorphic with the original B-L
algebra £ (with respect to the multiplication f(1lg)). Moreover, the
map ¢ is a C'° map and its derived map

g :B(A\’L,2) — B(B(A’L,£),B(A°L, 2))
is acting by the rule

(¢' W) 7)(anbAc)
=7(aANwbAc)—TbAw(aAc))+7(cAw(aAb))
+w(@ATdACc)—wbAT(aNe) +w(cAT(aNd)),

where a, b, c € £. In particular, if w is the Lie multiplication [+, |, then

(@ (D7) (anbAc)
=[a,7(bAc)]—[b,7(aAe)]+[e,7(aAb)] — T ([a,b] Ac)
+ 7 ([a,c] AD) =T ([b,c] Aa).

Thus, the derived map ¢'([-,-]) : B(A2L,£) — B(A®L, £) coincides
with the coboundary operator d* of the main cochain complex (3.1)
associated by the B-L algebra £.

6. The main result. Now we are in a position to formulate and
prove the main result of this paper.
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Theorem 6.1. If either A = J is a Banach-Jordan algebra with
H3(3) = 0 and the closed image im(6%) or 2 = £ is a Banach-Lie
algebra with H*(L) = 0 and the closed image im(d?), then 2 is a
strongly stable algebra.

Proof. We prove the assertion for a B-J algebra Jj. The same
argument can be applied to the B-L algebra case. Let X = B(J),
Y = B(V33,3), Z = B(J,P5(3,3)) be Banach spaces, and let U =
B(3)~! be an open subset in X. Consider functions f : U — Y and
g 'Y — Z proposed in Sections 4 and 5. By Lemma 5.1, g- f is a
constant map. Moreover, f(13) is the Jordan multiplication - in J. By
Lemma 4.1, the derived map f’(15) : X — Y is the second coboundary
operator 62. Moreover, ¢'(-) : Y — Z coincides with the coboundary
operator % by virtue of Lemma 5.2. By assumption, H3(J) = 0 and
the image im(82) is closed, that is, (f/(13),¢(+)) is an exact differential
pair. Using the implicit function theorem, we infer that there exist
e > 0 and C > 0 such that for each 7 € B(V23,3J) with |7 — || < ¢
and g(1) = g(-) = 0 there is a T' € B(J) ! with || — 15]| < C||r — |
and f(T) = 7. The latter means that a sufficiently close to - Jordan
multiplication 7 is represented as 7(a VvV b) = T~!(Ta-Tb) for a certain
invertible operator T'. Appealing to Definition 2.1, we conclude that J
is a strongly stable B-J algebra. o

Remark 6.1. Let g be a finite-dimensional normed nonassociative
algebra. If either g is a Jordan algebra with H3(g) = 0 or g is a Lie
algebra with H%(g) = 0, then g is a stable algebra. In particular,
a semi-simple Lie algebra is stable. Indeed, taking into account that
dim(g) < oo, we infer that all members of the main complexes (3.1)
and (3.8) are finite-dimensional linear spaces; therefore, im(d?) and
im(83) are automatically closed. Finally, it is well known [6, 3.5] that
H?(g) = 0 whenever g is a semi-simple Lie algebra. By Theorem 6.1,
g is a stable B-L algebra (see also [5]).

Acknowledgments. I wish to thank Yu. V. Turovskii for useful
discussions of results of the paper.
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