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ORDERS OF VANISHING OF ZEROS OF
CHARACTERISTIC p ZETA FUNCTION

V. BAUTISTA-ANCONA, J. DIAZ-VARGAS
AND J.L. MALDONADO-BAZAN

ABSTRACT. Orders of vanishing of zeros of zeta functions
have much arithmetic information encoded in them. For
the absolute zeta function, Dinesh Thakur gave sufficient
conditions for the order of vanishing of its zeros when the finite
field has two elements. Such conditions consider only principal
ideals. This result was generalized by Thakur and Diaz-
Vargas. Now the conditions involve not only the principal
ideals but all the classes of ideals, still in the field of two
elements. In this work, we generalize these results to arbitrary
finite fields, using similar proofs of Thakur and Diaz-Vargas.

1. Introduction. One of the most important topics in the study
of zeta functions is the order of vanishing of its zeros. Some results
have been found for the characteristic p zeta function and the “trivial”
zeros that we analyze. In [7], Thakur gave sufficient conditions for a
hyperelliptic function field over the finite field Fy, ¢ = 2, to have order
of vanishing 2 at the negative integer —s. An interesting phenomenon is
that such conditions involve the sum of the digits in the expansion base
2 of s, I5(s), see Theorem 5. This result was generalized by Thakur and
Diaz-Vargas in [2] considering now all the ideal classes in the definition
of the zeta function, and not only the principal ideals. The conditions to
have order of vanishing at least 2, depend again on the decomposition
base 2 of es, where e is the exponent of the ideal class group, see
Theorem 8.

In [7], Thakur says succinctly how to deal with the general case ¢ = p
and arbitrary function fields, when one considers only principal ideals.
The conditions in order to have multiplicity ¢ at the zeros, depend now
on Weierstrass gaps at co. We add an extra condition and give the
proof of Theorem 7, which is a generalization of Thakur’s theorem for
g = 2. We analyze also what it means for a function field to have an
r-gap structure at oo.
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Finally, in Theorem 9 we obtain, by joining Theorems 7 and 8, our
principal result. This is a partial generalization to any value of ¢
and, considering all the classes of ideals, of conditions that guarantee
multiplicity at least ¢ at the trivial zeros, for a very specific class of
function fields.

We also present examples of the phenomena described in the theo-
rems, wherever possible.

2. Basic definitions. Let K be a function field of one variable
with constant field F, of characteristic p, oo a place of degree 1.
Then its residue field at oo is F,; and its completion K, at oo is the
Laurent series field Fy((uo)), where uy is any uniformizer at oo, i.e.,
a generator of the maximal ideal of the valuation ring at oc.

Let A be the ring of elements of K that have no poles outside oo.
Let C4 the completion of the algebraic closure of K.,. We denote by
h the class number of K, so the class number of A is h too.

For z € K, we define the degree of z as deg(z) = —vo(z). By
convention, deg(0) = —oo. Similarly, for the Z ideal € A, define
degI = diqu A/I

We define now the relevant zeta function, see [8, page 156].

C(s,X):=Ca(s,X):=>_ X* Y ai e K[[X]],
d=0 deg a=d

a monic

C(s):=Ca(s):=C((s,1) € Ks.

In this work, we will focus on orders of vanishing of trivial zeros of
the characteristic p absolute zeta function. We begin by giving the
definition of order of vanishing.

Definition 1. The order of vanishing of {, at the zero s, is defined
as the order of vanishing of ((s, X) at X = 1.

3. Zeta values at negative integers. For a nonnegative integer
k=Y kig", with 0 < k; < g, we let l,(k) = > k;, that is, [,(k) is the
sum of base ¢ digits of k.
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Theorem 1 [7]. Let W be an Fg-vector space of dimension d inside
a field (or ring) F over ¥y. Let f € F—W. Ifd > (l4(k)/q — 1), then

S (f+w) =0

weWw

This proposition is useful for proving the following result, about the
“trivial zeros” of the absolute zeta function. The theorem is analogue
to the classical result, since multiples of ¢ — 1 are playing the role, in
this context, of even integers.

Theorem 2 [3]. For a positive integer s, ((—s) € A and ((—(g—1)s)
=0.

The reciprocal is true in the following situation.

Theorem 3 [3]. Let A =TF,[z], and let s be a positive integer. Then
¢(—s) =0 if and only if s is a multiple of ¢ — 1.

It is not known for general A if the values at odd integers are not
zero.

4. Order of vanishing. An immediate consequence of Theorem 2 is
that the negative integers are zeros of the zeta function for A = Fa[z].
In fact, more is true; from Definition 1, we get the following

Theorem 4 [6]. The negative integers are zeros of the zeta function
for A = Fy[z], whose order of vanishing is one.

4.1. Considering only principal ideals: Case ¢ = 2. In this
and in the following subsections, we will give some theorems related
with the order of vanishing of the zeta function. We will do it in two
ways: first considering only principal ideals and then considering all the
ideals (principal or not). Observe that in the first case, the absolute
zeta function is a complete zeta function.

We have the following, easy to prove, lemma.
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Lemma 1. We have

Wyg={a€ Aldeg (a) <d}=L((d—1)0).

Then a simple application of Theorem 1 and the Riemann-Roch
theorem to Wy, together with the simplicity of the zeros, gives [7]
the following

Theorem 5 (Thakur). If ¢ = 2 and K is hyperelliptic, then the order
of vanishing of ((—s), s a positive integer, is 2 if lz(s) < g, where g is
the genus of K.

Example 1. Let A = Faz,y], where y*> + (22 +z + )y + (2® + @
+1)(z° + 2% +1) =0.

This is Example 26 of [1]; we have that ¢ = 3. So, by Theorem 5,
the order of vanishing is 2 if s = (2! +2™ +2"), 1 >0, m >0, n > 0
(possibly with [ =m =mn). O

Theorem 5 is not valid for ¢ > 2, that is, we cannot assure that if
s=k(g—1) >0, and —s is a zero of ¢ with l,(s) < g, then —s is a zero
with order of vanishing 2. Let’s see it in the next example. Let S4(d)
be the coefficient of X% in (4 (—s, X).

Example 2. Consider A = F3[z,y] where y* = z(z+1)(2+2)(z%+1).

This is Example 36 from [1]; we have that ¢ = 2, deg(z) = 2, and
deg (y) = 5. By Theorem 2, ((—2) = 0. Now, I3(2) =2 =g. Then W;
has dimension 2, and so we have [3(2) > dimW3/(¢ — 1) = 1, and by
Theorem 1, S4(d) = 0 for d > 3. Therefore,

Ca(-2,X)=(1+X)1-X).

Then, the order of vanishing of —2 is 1. u]

For more background and perspective on zeta functions, see the books
by Goss [4] and Thakur [8].
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4.2. Considering only principal ideals: Case ¢ = p™. Theo-
rem 5 gives us sufficient conditions for a hyperelliptic function field to
have order of vanishing 2 when ¢ = 2. Now, we try to generalize this
result to the case ¢ = p™. For that, we need to define what it means
for K to have an r-gap structure at oo.

Definition 2. Let g be the genus of K over F,;. We say that K has
an r-gap structure at oo if there is an r such that I(igoo) = i + 1, for
1<i<rl((g+r)o)=r+1,and rg < g+r.

Example 3. Let K be a function field of genus g = 5 over F3. Then
K does not have a 1-gap structure at co.

Suppose that K has a 1-gap structure at oo, i.e., [(300) = 2 and
[(600) = 2. Consider the following diagram:

1 2 3 45 6 7 89
1 2 2

where the first row is filled with the possible gaps (that lies between 1
and 29 — 1 = 9) and the second row with the values of [(ic0).

Recall that i is a gap if and only if I((¢ — 1)oo) = [(ic0), and there
are g gaps. We know that 1 is always a gap and that 4,5,6 are gaps
by assumption.

Then
(1) 2 3 (4 (5) 6) 7 8 9
1 2 2 2 2

Observe that 3 is a gap since if it were not a gap then an element of
degree 6 could exist, which does not exist because we know that 6 is a
gap. By the same reason, 2 is a gap and 1 is always a gap. Then K
has gaps at 1,2, 3,4, 5,6, which is a contradiction because it only has
g = 5 gaps. So there is not such a function field. O

The following example shows that if the function field K has genus 5
over F3 and K has a 2-gap structure, then it has an element of degree 3.
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Example 4. Let K be a function field of genus g = 5 over F3 that
has a 2-gap structure at co. Then its gaps are: 1,2,4,5,7.

In order to prove this, a 2-gap structure means that: [(300) =
2,1(600) = 1(700) = 3. Then 7 is a gap. Consider the following diagram:

(1) 2 3 456 (1) 89
1 2 3 3
Now assume that 2 is not a gap, then 4,6 and 8 are not either.
Therefore,
(1) 2 3 456 (1) 89
1 2 3 3 3 4
We observe that this is a contradiction, because this force to [(500) =
3, saying that 6 is a gap, which is absurd. Therefore, 2 is a gap.

(1) 2) 3 4 56 (1) 89
11 2 3 3

From the previous diagram, we see that 3 is not a gap. Suppose now
that 4 is not a gap, then 8 is not either.

(1) 20 3 4 56 (1) 89
1 1 2 3 3 3 4

This forces 5 and 6 to be gaps. This is a contradiction, since there is
an element of degree 3. Then 4 is a gap.

(1) 2) 3 (4 5 6 (7) 8 9
11 2 2 3 3

Lastly, assume that 5 is not a gap,

(1) (2) 3 (4 5 6 (7) 8 9
1 1 2 2 3 3 3

and we have that 6 is a gap, which is absurd since there is an element
of degree 3, that again must exist. In conclusion, we have the complete
diagram:

1 (2 3 4 (6) 6 (1) 8

1 1 2 2 2 3 3 4
and the gaps are: 1,2,4,5,7. a
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The following theorem “generalizes” the previous example.

Theorem 6. Let K be of genus g over Fy. Suppose that K has
an r-gap structure at oo with r > q — 1. Then K has an element of
degree q. Moreover, K does not have elements of degree # iq between
1 and rq.

Proof. Since K has an r-gap structure, we have the following diagram:
(1) 2 ... g—1 qg g+1 ... 2¢ ... rq rg+1 ... g+r
1 2 3 r+1 r+1

Observe that by definition, K has as gaps rq + 1,... ,g9 + r since
rq < g+ and I(rgoo) = r 4+ 1 and I((g + r)oo) = r + 1. Therefore,
we have g — r(¢ — 1) gaps. Notice also that between 1 and rq there
are exactly 7 numbers that are not gaps. Suppose that there exists
an element of degree 1 < k < g — 1, that is, suppose that k£ is not
a gap. Let c be the greatest number such that ck < rq. If ¢ < r,
then rq = ¢(q — 1) + res < r(¢ — 1) + res with res < ¢ — 1. Then
rq < r(q — 1) + res implies that » < res, and this is a contradiction
with the fact that » > ¢ — 1. Therefore, ¢ > r and this implies that we
have more than r numbers that are not gaps; this is a contradiction.
Therefore, 1,2,...,q — 1 are gaps. We have the following diagram:

1) (2 ... (¢g—1) q g+1 ... 2¢ ... rg (rgq+1) ... (g+7)
11 ... 12 3 r4+1 (r+1)
Therefore, ¢ is not a gap and from here 2¢,3q,...,rq are also not
gaps. O

In the previous theorem the hypothesis that r > ¢ — 1 assures us the
existence of an element of degree q.

The next theorem is essentially due to Thakur, compare with [7].

Theorem 7. If g = p™ and K is of genus g with an r-gap structure
at oo with r > q — 1, then the order of vanishing of ((—s) at positive
integers s, s a multiple of ¢ — 1, is q if (I4(s)/q—1) <.

Proof. Let x be an element of degree ¢ (it exists by the previous
theorem). Recall that Sa(d) is the coefficient of X¢ in (a(—s, X),
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and that Wy = £((d — 1)oo) (Lemma 1). For d > (I4(s)/q — 1) + g, by
Riemann-Roch’s theorem (since h = dim (H —(d—1)o0), H a canonical
divisor), we have

dim Wy = dim £ ((d — 1)oo) =1 ((d — 1)o0)
ly(s)

Then S4(d) = 0 for d > (l4(s)/g—1)+g. So, ford > g+ r, as
r = (lg(s)/qg—1) we have that Ss(d) = 0. Since A does not have
elements of degree # iq we only consider, in the summation, elements
of degree dg. From here,

Ca(=3,X) = Sa(dg)X™.
d=0
Now, as z has degree ¢ in A but one in F[z], we have that S4(dg) =

Sp,o(d) for 0 < d < 7. As (l4(s)/q—1) < 7, then Sg_[5)(d) = 0 for
d > (l4(s)/q — 1). From here, we have

CA(fS,X) = CFq[cc](fsan)'

We know that the order of vanishing at zeros for CFq[m](—s,X ) is one
and therefore is g for (., [4] (—s,X1?), and, from here, we get the result. O

An example of the situation described in the theorem is the following,
which appears in [7] and is due to José Felipe Voloch:

Example 5. Let ¢ = 3, and consider 2?(z—1)3—y?+yz3+y3+y° = 0
with oo being (1,0).

We found the next example using the computer program Kant/Kash.
Example 6. Let ¢ = 3, and consider y® + 23y3 + 22+ 2 +1=0.

In this case, ¢ = 3, g = 6 and we take r = 2. The gaps are
1,2,4,5,7,8. Furthermore, [(300) = 2 and [(600) = [(8c0) = 3.
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Therefore, we have a 2-gap structure. If we take s = 3™ + 3", then the
order of vanishing of the function in —s is 3. o

4.3. Considering all the ideals: Case ¢ = 2. Now, we need to
define a zeta function that involves not only the principal ideals but all
the ideals of A. We do it as it is suggested in [7]. Let e be the exponent
of the ideal class group of A. Let s be a multiple of e, and define Z*
as a®/¢, where @ is the monic generator of Z¢. Then, we can define the
zeta function as follows: for s, an integer multiple of e,

((s,X)=Ca(s,X) =D X4 > 17,
d=0 deg Z=d
I ideal of A

Thakur and Diaz-Vargas, in [2], generalize Theorem 5, including
now in the calculation of the zeta function all the ideals, not only the
principal ones.

Theorem 8. Let e be the exponent of the ideal class group and g = 2.
Let A = Faz,y] be given by y* — a(x)y = b(z) or y?> — y = b(x), where
degree of x = 2 and degree of y = N is an odd number. Assume that Ly,
k=1,...,h—1, are the integral ideals representing all the nontrivial
classes of ideals, with deg (I},) = di of order ey, as an element of the
ideal class group. Moreover, assume that I,* = fi is an irreducible
polynomial and that it divides to b(z). If N > 2u+ egdy, for all k, then
C(—es), where s is a positive integer, has order of vanishing at least
two, if l4(es) < p.

The next example satisfies the conditions of the theorem (for details,
see [2]).

Example 7. Let A = Faz,y]/(y® + z(z + D)y + z(z +1)(z® + 23 +
2 +z +1)).
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4.4. Considering all the ideals: Case ¢ = p”. The main result
of this work is in the following theorem which is a generalization of
Theorem 7, but now considering all the ideals. The proof is a partial
“generalization” of the proof of Theorem 8.

Theorem 9. Let e be the exponent of the ideal class group and
g = p". Let K = Fy(z,y) be given by y? — a(z)? 'y = b(z) with
an r-gap structure at co. Suppose that degree y = N > gdeg a(x)
is relatively prime to p, and let u = (b(z)/a(z)?). Let m(z) be an
irreducible polynomial in Fy[x] such that, if u = m(z)"z, z € Fy(x),
m(z) does not divide z, and n < 0, then n is relatively prime to p.
Assume that I, k = 1,2,... ;h — 1, are integral ideals representing all
the nontrivial ideal classes, with deg(Zy) = di, and order eg, as an
element of the ideal class group. Moreover, assume that I;* = fi is
irreducible and divides b(z). If N > qu + erdy for all k, then ((—es),
where s is a positive integer, s a multiple of ¢ — 1, has multiplicity at
least q, if (I;(es)/q — 1) < p.

Proof. Tt follows from [5, page 117] that = has order ¢ and oo is a
place of degree 1. Furthermore, we have

C(—es, X) = iXd o1 = ixd > e
d=0 deg Z=d d=0 deg a=d

a monic

h—1 oo

) X ) I
k=1 d=0 degZ=d
I~It

Since K has an r-gap structure, the principal part

o
§ Xd § a®
d=0 dega=d

a monic

contributes to the order of vanishing in ¢ by Theorem 7. In fact, it was

proved that
DX Y A% =G (—es, X9).
d=0 deg a=d

a monic
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Also, I;* = fi has deg = exdy < N, and so fi = fi(z), that is,
fr € Fglz]. Write e/e;, = si. From here, the k-term is

o0 oo
1
> oxt IES:fS_SkE XY (TD).
d=0 deg T=d ko a=0 deg T=d
I~Tt I~I?

We want to show that the vanishing order, for each k, is ¢ (hence,
the total order of vanishing is at least ¢). Here, f;°* is independent of
d, and, therefore, we can ignore it for vanishing considerations.

Now, Z;,Z are integral of degree d + dj, of the form go(z) + yg1(x) +
y2g2(z) + -+ y? tgy_1(x) if and only if

9o(x) +yg1(x) + y?ga(x) + - + ¥ 19y 1(2)

=7
Iy
is integral, if and only if,
(90(x) + yg1 (@) + y2g2(x) + - - - + y? 1 gg—1(x)) ™"
A
(90(2) + yg1 () + ¥2g2(x) + -+ + Y7 gg—1(z)) ™

= €A,
Jr

ie.,

€k

(90(z) + yg1(x) + v2g2(z) + -+ 9y 'gg-1(z)) " =0 (mod f3).
Then, y? — a(z)?" 'y = b(z) implies that
Yy = a(x)? 'y (mod fi),
and therefore,

(90(2) + 991 (&) + 502(2) -+ + 4" gy (2)) ™ =
90" () + ygi (z) + y2gn(x) + -+ yqilg;_l(x) (mod ).
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So, if this is congruent to zero (mod fx), fx | go* which implies that
fx | 9o, since fi is an irreducible polynomial in . So, we have

> @p™

deg ZT=d
I~IT?

= > (fedo +ygr + -+ + % "ge-1)",
deg frgo+yg1+--+y4—lgq_1=d+ds

where g, is a polynomial in x, and the bar denotes the action of “di-
viding by fr.” We now examine sufficient conditions for the vanishing
of the previous sum. If qu + epdr < d + di, then d + dy, — erd; >
gp > pu > (l4(es)/q — 1) implies that the sum vanishes. So, without
loss of generality, d + dr < qu + exdr, < N, and these are the only
terms which can give nonzero contributions. As d + di < N, then
g1 =+ =gg—1 = 0. Then, degree g, = d+dj, — exdi, < qu. Therefore,
the kth term of the zeta sum (up to f, *** factor which can be ignored
as already mentioned) is the following:

d=0  deg frgo—d-+dx
epdp—d
:Xekdk*dkf]:s_’_‘”_’_Xk k=% fqpu
1 es
% § fe (a:“—i—ap,lm“ +---+a0)

Ap—1,--- ,a0€EF 4

_ fngekdk—dk <1 44 X

% Z (xu+aulwu—1+...+a0)es>

ay_1,..-,060€F,
— f;;sXEkdk—dk <i qu Z ygs)
d=0 deg . go=d
= fEX B (e g (—es, X9).
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In order to prove the last equality, observe that by Theorem 7, since
p > (I4(es)/q — 1) implies that

Zqu Z _“—Zqu Z 90" = Cp, o] (—es, X7).

deg »go=d deg ,gg=d

Now, since the order of vanishing of (g [4] (—es, X) is one, we have that,
for each k, the order of vanishing of the kth term is q. o

Remark 1. From the proof of Theorem 9, it follows that when
(lg(es)/q —1) < p, we have

h—1

¢ (—es, X) = Cryfa) (—es, X9) (1 +> fé“/“’“e“)Xekdk—dk)-

k=1

Then, the order of vanishing is exactly ¢ when

h—1
1+ Zf]ges/ek)(ekfl) 7& 0.

k=1

In particular, when h = 2 the order of vanishing is exactly q.

In our search for examples of Theorem 9 we looked first at ¢ = 2. We
have

Proposition 1. Suppose that g = 2 and K is hyperelliptic. If K has
an r-gap structure at oo, then g—1 < r < g, where g is the genus of K.

Proof. Assume that r = g — k, with & > 2. Then, since K has an
r-gap structure, [(2roco) = I((2g—2k)oo) = g—k+1, and I((g+7)00) =
1((29 —k)oo) = g—k+ 1. So, between 29 —2k +1 < n < 2g —k all the
numbers n are gaps. Observe that, as k > 2, then there is a gap at an
even number, a contradiction. a

Remark 2. Still, we do not have an example of the phenomenon
described in Theorem 9. We contacted J.F. Voloch, whose comment
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was that it is probable that a field satisfying the hypothesis of the
theorem exists, but that the method used by him to find Example 5 is
no longer useful in our case; because, apart from asking for the curve
geometric conditions, we are asking also for conditions that are not
geometric, for example, the type of curve, the class number, etc. So, he
recommended that we do a computational search using the computer
program Kant/Kash. But we have not yet been successful.

5. Acknowledgments. The authors would like to sincerely thank
the referee who made valuable stylistic suggestions and also found many
errors in earlier versions of this paper. We thank too Gabriel Villa
Salvador for his useful comments.
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