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ON OSCILLATION PROPERTIES
FOR LINEAR HAMILTONIAN SYSTEMS

ZHAOWEN ZHENG AND FANWEI MENG

ABSTRACT. In this paper, by using the nonlinear func-
tional called negativity-preserving, some new oscillation cri-
teria for linear matrix Hamiltonian systems are established.
Our main theorems are of the form that the upper limit of
the largest eigenvalue of the coefficient matrices are bounded
away from a positive constant, rather than tending to infinity.

Our results are generalizations of a recent paper due to Sun
[24].

1. Introduction. We consider oscillatory properties for the linear
Hamiltonian system

11 ' = A(t)z + B(t)u,

(1.1) {w=4Xﬂx—A%wu t > to,

where A(t), B(t) and C(t) are real n X n matrix-valued functions, B
and C' are Hermitian and B is positive definite. By M* we mean
the conjugate transpose of the matrix M; for any n x n Hermitian
matrix M, its eigenvalues are real numbers. We always denote them
by A [M] > X[M] > --+ > A\,[M]. The trace of M is denoted by
tr (M) and tr (M) = >, A(M).

We also consider the corresponding matrix system

12) {K:A@X+B@M

U =CH)X — A*(t)U >t

For any two solutions (X (¢t),U1(¢)) and (X2(t), Ua(t)) of system (1.2),
the Wronskian matrix X7 (¢)Uz2(¢t) — Uy (¢t)X2(t) is a constant matrix.
In particular, for any solution (X (¢), U(t)) of system (1.2), X*(¢)U(t)—
U*(t)X (t) is a constant matrix.
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A solution (X (¢),U(t)) of system (1.2) is said to be nontrivial if
det X (¢) # 0 is fulfilled for at least one t > typ. A nontrivial solu-
tion (X (¢),U(t)) of system (1.2) is said to be conjoined (prepared) if
X*@)U(t) — U*(t)X(t) =0, t > to. A conjoined solution (X(t),U(t))
of (1.2) is said to be a conjoined basis of (1.1), or (1.2), if the rank of

the 2n X n matrix (‘;EQ) is n.

Two distinct points a, b in [ty, 00) are said to be (mutually) conjugate
with respect to (1.1) if there exists a solution (z(t),u(t)) of (1.1) with
z(a) = z(b) = 0 and z(t) # 0 on the subinterval with endpoints a and
b. The system (1.1) is said to be conjugate on a subinterval J of [tg, c0)
if no two distinct points are conjugate. If (1.1) is conjugate on J and
(X (¢),U(t)) is the conjoined basis of (1.2) satisfying X (a) = 0,U(a) =
I, the identity n x n matrix, a € J, then det X(t) # 0 for ¢ € J{a}. A
conjoined basis (X (t),U(t)) of system (1.2) is said to be oscillatory in
case the determinant of X (¢) vanishes on [T, 00) for each T' > ;. We
note that the definition of oscillation agrees with the nondisconjugacy
of system (1.1), or (1.2), on any neighborhood of +o0.

When A(t) = 0, system (1.2) reduces to the second order self-adjoint
matrix differential system

(1.3) (P)Y'Y +Q1)Y =0, t>t

with P(t) = B~1(t) is positive definite, and Q(t) = —C(t). Oscillation
and nonoscillation of system (1.3) and its special cases

(1.4) Y'+ Q)Y =0, t>t

have been extensively studied by many authors, see [1-8, 15, 20, 21,
25] and the references contained therein. Many of these criteria are
modeled on the criteria for the scalar equation

(1.5) (pP(t)y) +alt)y =0, t=>to
(1.6) Yy +q(t)y=0, t>to.

Here we list some known criteria for equation (1.6):
t

(1.7) 1tlim q(s)ds =00, (Fite-Wintner-Leighton [15]);
=00 Jyo
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1
(1.8) lim —

t—oo t

t s
/ / g(r)drds = 0o, (Wintner [22]);
to Jto

1 t s 1 t s
(1.9) liminf —/ / q(7)dr ds < limsup —/ / q(7) drds < oo;
t—oo to Jto t—o0 t to Y to

see Hartman [13]; and

¢
(1.10) lim sup 1 (t—s)"q(s)ds = 0

n
t—o0 to

for some integer n > 1, see Kamenev [11]. In 1989, Kamenev’s theorem
was extended by Philos, see [23], with the function class H(t,s).
However, all these criteria cannot be applied to the Euler differential
equation

(1.11) y' + tlzy =0, 7>0.

In 1995, Li [17] improved Kamenev’s theorem (including Philos’s
theorem) by using a generalized Riccati transformation, which is ap-
plicable to the oscillation for equation (1.11) with v > 1/4. In 1999,
Kong [13] introduced a new interval criteria for linear equation, which
is also applicable for equation (1.11).

For systems (1.3) and (1.4), Etgen and Pawlowski [8] showed that
system (1.3) is oscillatory provided

(1.12) [9(P(t)y'] +g(Q(t)y =0

is oscillatory, where g is a positive linear functional. So all the results
can be generalized to system (1.3). Using the nonlinear functional, it
was conjectured by Hinton and Lewis [9] that (1.4) is oscillatory if

(1.13) lim )\1</t:Q(s) ds> = .

t—o00

This conjecture was partially proved by several authors and finally
settled by Byers, Harris and Kwong [2]. Coles [3, 5] extended this
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result by applying the weighted average method. Butler, Erbe and
Mingarelli [1] showed that (1.4) is oscillatory if

(1.14) lim sup % /t: A1 [/S(Ql(r) dr] ds = 00

t—o0 to

provided
1 t S
liminfg/ / tr(Q(7)) drds > —o0.

t—o0

In 1995, Erbe, Kong and Ruan [7] gave the following Kamenev type
oscillation criteria.

Theorem 1.1. Suppose that there exists a constant a > 1 such that

(1.15) lim sup —A; {/t(t — $)2Q(s) ds] = .

t—o00 te to

Then system (1.4) is oscillatory.

However, the results mentioned above cannot be applied to the second
order Euler differential system

a B

(116) Y"+diag <t—2,t—2>Y:0, t>1, a>p>0.

In 1998, Meng, Wang and Zheng [21] generalized Theorem 1.1 which
can be applied to the Euler differential system. In 1999, Kong [13]
obtained the following theorem which is also applicable for oscillation
of the Euler differential system.

Theorem 1.2. System (1.4) is oscillatory provided that for each
r > to and for some A > 1, either

i) the following two inequalities hold:

t )\2
(1.17) 1i£gpﬁi_l/r (s — )™Mz (Q(s)) ds > h
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and

1 t nA2
1.18 li — | (-8t ds> —~ .
(1.18) el -1 / (t=9)"tr (Qs)) ds 2 7=y
or

ii) the following inequality holds:

(119) tmsup o ([ (5 MG + Qe sl ds) = o7

In 2004, with the auxiliary function (¢ — s)?**(s — r)?, @ > 1/2, Sun
[24] improved Kong’s theorem and obtained oscillation criteria which
was the upper limit of the coefficients larger than some constant; Dube
and Mingarelli [6] generalized Sun’s theorem with the auxiliary function
(t —s)P(s — )9, p,q > 1 to obtain oscillation criteria.

The oscillation for the Hamiltonian system (1.2) also has been in-
vestigated by many authors, see [14, 19, 20, 24, 28, 29, 30, 31 et
al.]. Most of these oscillation criteria involve the fundamental matrix
®(t) for the linear system v’ = A(t)v. This eliminates the applications
of these criteria because such a system cannot be solved if A(t) is of
variation. Moreover, by using the transformation

o (o] = ("0 ) 0]

we can transform system (1.2) into the following Hamiltonian system
X =& (t)B(t)@(t)U,

{U’ =3 1(H)C(HP* L)X t>to.

Now system (1.21) becomes (1.3) with P(t) = ®~1(¢)B~1(t)®*~1(¢)

and Q(t) = —®1(t)C(t)®*1(¢). So those criteria are similar to that

of system (1.3). In paper [20], the authors obtain oscillation criteria
with the fundamental matrix ®(t) as follows:

(1.21)

Theorem 1.3 [20, Corollary 2.5]. Suppose that there ezist a(t) €
CY([to,00); RT) and f(t) = —ad'(t)/2a(t) such that B~ is differen-
tiable. If, for each r > ty,

(1.22)

lim sup Al{ /Tt[(t — 8)%(s — 1)°Ca(s) — (£ + 1 — 25)*Ba(s)] ds} ds > 0.

t— o0
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Then system (1.2) is oscillatory, where Ba(t) = a(t)®*(t)B~1(t)®(t)
and

Co(t) = —a(t)®*(t){C+ f(A*B™ '+ B A)— 2B +(fB~ 1) }(t)®(t).

We note that most of the results mentioned above depend on the lin-
ear functionals or the largest eigenvalue of the matrices under consid-
eration. In 2002, Meng and Mingarelli [18] obtained oscillation criteria
of Kamenev type for system (1.2) with the fundamental matrix ®(¢) by
introducing a monotone subhomogeneous functional of degree ¢, ¢ > 0,
on a suitable matrix space. Mingarelli [22] introduced a new nonlinear
functional called negativity-preserving and obtained oscillation criteria
for system (1.3), which also can be applied to system (1.2).

On the other hand, without the fundamental matrix ®(¢), Kumari
and Umanaheswaram [6] obtained oscillation criteria of Kamenev type,
which generalized the results due to Erbe, Kong and Ruan [7], also
Meng, Wang and Zheng [21]; using linear functional and integral
average methods, Yang, Mathsen and Zhu [29] obtained oscillation
criteria of Wintner type; and Zheng [31] obtained oscillation criteria of
interval type.

In paper [24], by multiplying a ternary function ¢(¢,s,r) = (t — s)?
(s — r)*, the author obtained oscillation for system (1.2). Here we list
the main result as follows.

Theorem 1.4 [7, Theorem 2]. Suppose that there exists an
a(t) € C([to,00); R") such that a(t)B~1(t) < I and f(t)B '(t) are
differentiable, where f(t) = —a'(t)/a(t). Then system (1.2) is oscilla-
tory provided for some o > 1/2 and, for each r > ty,

1 t
(123) hiri)sup W)\l{ / (t — 5)2(3 - 7‘)2a

(Pt + 22 TSRS )}

o
(2a—1)2a+1)’

)
where Di(t) = D(t) — (aA*B71A)(t), K(t) = (a(t)/2)(A*B~! +
B~ A)(t) and D(t) = {a[-C — 2fK + f?B~' — (fB~')']}(¢1).

>
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Theorem 1.5 [29, Theorem 3|. Suppose that there exists an a(t) €
C([to,0); R*Y) such that a(t)B~1(t) < I and f(t)B 1(t) is differen-
tiable, where f(t) = —a’(t)/a(t). Then system (1.2) is oscillatory pro-
vided for some a > 1/2 and, for each r > to,

. 1 ! 2a 2
hmsupm)\l{/T(t—s) (s—r)

o X (D1(s) 49! (t(f ;;gzit)arK(S)> ds}

o
2a —1)(2a+1)’

>
(
where D1 (t) and K (t) are defined as above.

In this paper, using a more generalized Riccati transformation and
matrix analysis technique, we obtain some new oscillation criteria
for system (1.2), which extend and improve the oscillation criteria
mentioned above.

2. Main results. In what follows, we denote by M the linear space
of n x n real matrices, and by S the subspace of all symmetric matrices
in M. For any A,B € S, A > B means that A — B > 0 is positive
semi-definite, and A > B means that A — B > 0 is positive definite.

A nonlinear (and possibly discontinuous) functional ¢ : S — R with
g(A) < 0 whenever A < 0is called negativity-preserving and the class of
all such negativity-preserving functionals on S is denoted by A/(S). The
negativity-preserving functionals N (S) contain most known functionals
used in oscillation, for example, g(A) = A1 (A4); ¢(A) = tr (A— P) where
P is positive semi-definite and fixed, and are of negativity-preserving
functionals. In addition,

a(4) = %;q(m —ay, 1<i<n,

are also negativity-preserving functionals. We also note that any
positive linear functional is negativity-preserving. Thus, functionals
in the class M'(S) make up all those being used in the current study of
matrix oscillation theory.



350 ZHAOWEN ZHENG AND FANWEI MENG

Firstly, we give the main oscillation criteria for system (1.2) using the
largest eigenvalue functional.

Theorem 2.1. Suppose that there exists an a(t) € C([to,o0); RT)
such that a(t)B~'(t) < I and f(t)B~1(t) is differentiable, where
f(t)=—d' (t)/a(t). If for each r >ty and, for some p,v > 1,

. 1 ¢ v
hmsup WAI{ [ (t — S)H(S — 'I")

(o)l

> v+ v —2)

M(p—-1)(v-1)
(p+v)

where D1(t) and K(t) are defined as in Theorem 1.4. Then system
(1.2) is oscillatory.

Proof. Suppose to the contrary that there exists a conjoined basis
(X(¢),U(t)) of (1.2) which is not oscillatory. Without loss of generality,
we may suppose that det X (¢) # 0 for t > to. Define
(22) W) =) {UOX O+ FOB O}, t>h.

Then W (t) is Hermitian, and satisfies the Riccati equation

1
(2.3) W'=——WBW ~ AW ~ WA~ D.

Let V(t) = W(t) + (aB~'A)(t). Then we have

(2.4)
1
§(V+V*) =W+K,

1 1
(2.5) aV*BV = EW*BW+A*W+WA+aA*B*1A.
So we have by (2.3), (2.4) and (2.5) that for t > to,

1
(2.6) W'=——V*BV —D.
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For simplicity, set g(¢,s,r) = (t — s)*(s — r)”. We get

= (t — s)"?(s —r)"/?
X [V(t — )M 2 (s — )WDY (it — 5) WD (5 — /2

= g(t7 87 T)h(t7 87 7‘)7
where h(t,s,r) = v(t — s§)*/2(s — )W/ D=1 — y(t — ) /D=1 (5 — )¥/2,
Since B(t) > 0, we may define R(t) = BY/2(t). Set
1
Q(ta S, T) = R(S) \% g(ta S, T‘)V(S) - ia(s)h(ta S,’I“)B_I(S) R(S)

We have

1 —1Fx/* —1 9% 1 * 1 2p—1

“RT'®"OR™ = IV BV - 2 /Gh(V* + V) + zah?B .

a a

For each r > ty and p,v > 1, by multiplying (2.6) with g(¢,s,r) and
integrating it from r to ¢, t > r, we get

/g(t,s,T)Dl(s)ds:—/ g(t,s,r)W'(s)ds
- / t 9(2’(?)’”) (V*BV)(s) dt
= —g(t, s,r)W(s)ﬁ

(2.7) + / Vg(t,s,r)h(t,s,m)W(s) ds

- / t 97(2’(2’)7’) (V*BV)(s) ds

t
1
- / S VIV +V —2K) ds

t
—/ Iv*BY ds.
r a
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Consequently,
vt— (p+v)s+ pr

(2.8) /Tt(t —s)H(s—r)” <D1(s) + & s)(s 1)
= [ [ott..1D1(9) + ValEs. (e 1)K (5)] ds

t 1 t
:/ 5\/§h(V*+V)ds—/ gV*BVds

K(s)> ds

tq tq
:—/ —R_1<I’*<I’R_1ds—|—/ Zah2B_1ds
T a ™

IN

t t
/ a(s)h3(t,s,r)B~1(s) ds < i / h*(t, s, 7)1 ds

[l/(t — 5)H/2 (s — )WLyt — 5) /D71 (5 r)”/2]2 Ids
[/rt VAt —s)(s — 1)’ 2ds
— 2uv /Tt(t —s)F s —r)""tds

S

e e L

¢
+u2/ (t—s)* (s —r)ds|I.

Now we compute these three integrals in (2.8) using Euler’s beta
function

1

(2.9) /s“’l(l—s)ﬁ’lds:
0

We have

/Tt(t —s)H (s —71)" %ds = /OtT w” 2 (t —r — w)* dw

L(a)T'(8)

m, Re (Oé,ﬁ) > 0.

=(t— r)’”"’_l/o s”_2(1 —s)"ds
F'v—-1DI'(p+1)
L(p+v)

_ I Vfll—‘(y — 1)F(/j’)
_,u(t—v“)+ —F(,u—i—ll) .

(2.10)

=(t— 7“)’”"’_1
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Similarly, we have the second and the third integral in (2.8) as follows

(2.11) / (t—s)*t(s—r)tds = (t - T)W—l%

! n—2 —r)V¥ds = — ) V—IF(V—F]')F(/J’_]')
/T(t‘s) (s —r)”ds = (t — )i+ o

e e a DTG D)
_y(t )+ 1 F(u+y)

(2.12)

Replacing the three integrals in (2.8) by (2.10), (2.11) and (2.12), we
have

(2.13) / (t — s)"(s — )" (Dl(s) " vt (—t (_Ms';‘(’;)_s :—),WK(S)> ds
1 ptv—1 ,UVZF(V_ DI(p)
Sz(t—’r) + [ P(M+V)
2w () | D)0~ ﬂ I
T(u+v) I(p+v)
= (t -t

Al(p +v)
x Iy = (k) = 2uL(v)0(p) + pl(v)0(p — 1)1 1
M(p—1)C(v-1)

= (t—r)”"‘”—lp,y(,u—f—l/_2) AT (u +v)

Dividing both sides with t*1¥~! and taking the largest eigenvalue, we
have

1 t
limsup W)\l {/ (t — 3)“(3 - T')U

(o)

< pv(p+v—2)

M(p—-1)(v-1)
A(p +v)

This contradicts condition (2.14). The proof of Theorem 2.1 is com-
pleted. a
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Remark 2.1. When A(t) =0, f(t) = 0, Theorem 2.1 coincides with
[6, Theorem 6] for system (1.4).

Remark 2.2. When g = 2 and v = 2a, a > 1/2, Theorem 2.1 reduces
to Theorem 1.4. In fact, by (2.14), we get

. 1
Hin Sup et

(oo o)
T2 - 1)I(20 — 1)
AT (20 + 2)

> 20 2(2+ 2a — 2)

8a2T'(2a — 1)I'(1)
~4(2a+1)-2a- (2a— 1)T(2a — 1)

e

(2o —1)(2a+1)°
Similarly, if we choose p = 2, @ > 1/2 and v = 2, then Theorem 2.1
reduces to Theorem 1.5.

Remark 2.3. From the proof of Theorem 2.1, we note that our theorem
cannot be applied to the critical case p = v = 1.

By Theorem 2.1, if 1 < p < 2 and v = 3 — p, using the equality

™
F(p)r'(1-p)= Snpr for 0<p<1,

we obtain the following useful corollary.

Corollary 2.1. Suppose that there exists an a(t) € C([ty,00); RT)
such that a(t)B~Y(t) < I and f(t)B~1(t) are differentiable, where
f(t) = —d'(t)/a(t). If for each v >ty and, for some 1 < p < 2,

(2.14) limsup %2)\1 {/:(t (s — )t

(o o) )
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where Di(t) and K(t) are defined as in Theorem 1.4. Then system
(1.2) is oscillatory.

In a similar manner, by using the negativity-preserving functional,
we have the following theorem.

Theorem 2.2. Suppose that there exists an a(t) € C([to,0); RT)
such that a(t)B~Y(t) < I and f(t)B~1(t) are differentiable, where
f(t) = =ad'(t)/a(t). If, for each r > to and for some p,v > 1, there
exists a q in N(S) such that

: 1 v
(2.15) limsupgq (W/r (t —s)"(s—1)

vt— (u+v)s+ pr
[P0+ H S )]
. v r p+r—1
—W(u+u—2)r(“4r(1;1:r(y) ) (1—¥> 1) >o,

where D1 (t) and K(t) are defined as in Theorem 1.1. Then system
(1.2) is oscillatory.

Acknowledgments. We thank the referee for good comments on
this paper.
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