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MODULARITY OF SOME NONRIGID
DOUBLE OCTIC CALABI-YAU THREEFOLDS

SLAWOMIR CYNK AND CHRISTIAN MEYER

ABSTRACT. In this paper we discuss four methods of prov-
ing modularity of Calabi-Yau threefolds with h'?2 = 1: ex-
istence of elliptic ruled surfaces inside (Hulek-Verrill), cor-
respondence with a product of an elliptic curve and a K3
surface (Livné-Yui), correspondence with a (modular) rigid
Calabi-Yau threefold, and existence of an involution splitting
the fourdimensional representation into two-dimensional sub-
representations.

We apply these methods to prove modularity of 17 out of
18 double octic Calabi-Yau threefolds for which “numerical
evidence of modularity” was found in the second author’s
recently published book [11].

We observe that modularity holds for those elements in a
pencil having certain additional geometric properties. In the
proofs we use representations of the considered Calabi-Yau
threefolds as a Kummer fibration associated to a fiber product
of rational elliptic fibrations.

1. Introduction. The modularity conjecture for Calabi-Yau mani-
folds predicts that every Calabi-Yau manifold should be modular in the
sense that its L-series coincides with the L-series of some automorphic
form(s). The case of rigid Calabi-Yau threefolds was (almost) solved
by Dieulefait and Manoharmayum in [6, 7]. On the other hand, in
the nonrigid case it is not even clear which automorphic forms should
appear.

Examples of nonrigid modular Calabi-Yau threefolds were constructed
by Livné and Yui [10], Hulek and Verrill [8, 9] and Schiitt [16]. In these
examples modularity means a decomposition of the associated Galois
representation into two- and four-dimensional subrepresentations with
L-series equal to L(ga,s), L(g2,s — 1) or L(g2 ® g3, ), where g is a
weight k cusp form. The summand with L-series equal to L(g2 ® g3, s)
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is explained by a double cover of a product of a K3 surface and an
elliptic curve, see [10].

The L-series L(g2, s—1) is the L-series of the product of the projective
line P! and an elliptic curve E with L(E,s) = L(g2,8). A two-
dimensional subrepresentation with such an L-series may be identified
by a map P! x E — X which induces a nonzero map on the third
cohomology, see [8]. Using an interpretation in terms of deformation
theory, we conjecture that a splitting of the Galois action into two-
dimensional pieces can happen only for isolated elements of any family
of Calabi-Yau threefolds.

In this paper we will study modularity of some nonrigid double
octic Calabi-Yau threefolds. We will prove modularity of all examples
listed in Table 1 except Xi54. Apart from the methods of Livné-Yui
and Hulek-Verrill, we will use two others: one is based on giving a
correspondence with a rigid Calabi-Yau threefold, the other is based on
an involution. We also observe that the splitting of the Galois action
into two-dimensional pieces holds for those Calabi-Yau threefolds in the
studied families having certain additional geometric properties. The
Calabi-Yau threefold X;s54 is also the only one which we were not able
to represent as a Kummer fibration associated to a fiber product of
elliptic fibrations, cf. [14].

1. Modular double octics with A'2 = 1. Let D be an arrange-
ment of 8 planes in P3. If no six of the planes intersect in a point
and no four in a line then the double covering of P3 branched along
D admits a resolution of singularities X which is a smooth Calabi-Yau
threefold, see [2]. The resolution of singularities is performed by blow-
ing up singularities of the branch locus in the following order: fivefold
points, fourfold points that do not lie on a triple line, triple lines, dou-
ble lines. The Euler number of the resulting Calabi-Yau threefold can
easily be expressed in terms of numbers of different types of singular-
ities. The Hodge number h!2(X) (the dimension of the deformation
space) can be computed as the dimension of the space of equisingular
deformations of D in P3; it can also be computed as the dimension of
the equisingular ideal of D, see [5].

An extensive computer search in [11] produced 18 double octic
Calabi-Yau threefolds with h'?2 =1 (in 11 one-parameter families) for
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which
tr (Frob;|H§’t(X)) =ap+p-by,

for all primes 5 < p < 97, where a,, respectively b,, are the coeffi-
cients of a weight four, respectively two, cusp form. This is strong
numerical evidence for modularity in the sense of splitting into two
two-dimensional subrepresentations. We list all these examples in Ta-
ble 1. We include the number of the arrangement (as in [11, page 59]),
the equation, the expected modular form of levels 4 and 2 (using Stein’s
notation from [17]) and the Picard number h!!. Since the Calabi-Yau
threefolds in the table coming from arrangements with the same num-
ber are birational, see Lemma 3.1, we will use the notation X,, for
any Calabi-Yau threefold in the table constructed from arrangement
number n.

The Picard groups of all listed Calabi-Yau threefolds are generated
by divisors defined over Q, so Frobenius acts on He?t by multiplication
with p. In fact, in all the examples except X344, the skew-symmetric
part of the Picard group is zero, whereas for Xs44 it is generated by a
divisor coming from the contact plane x +y — z +t = 0.

TABLE 1.
no. | equation: u? = zyzt-... wt. 4 | wt. 2 | AT
4 | (z+y)y+2)(z—y—2z-1t) 32k4A1 | 32A1 | 61
(t+y—=z-1)
4 | (z+y)(y+2)(z+2y+22-1) 32k4A1 | 32A1 | 61
(z+y+2z—1)
4 | 2(@+y)(y+2)(2z+y+2z—2t) 32k4A1 | 32A1 | 61

2z + 2y + z — 2t)

(
8 | (z+y)y+2)(—2+t)Bz—y—2z+1t) | 24k4Al | 24A1 | 61
13 | (z+y)(y+2z)(z—z—t)(z —z—2t) 32k4A1 | 32A1 | 61
13 | (@ +9)y+2)e—2z t)(x—z+t) | 32k4Al | 32A1 | 61
13 | (z+y)(w+2)(z—z—t) (2w — 22— t) | 32k4A1 | 32A1 | 61
21 | (z+y)(y+2)2z+y—t)(2z — z — 2t) | 32k4B1 | 32A1 | 53
53 | (z+y)(z+t)(z—y—2z—1) 32k4B1 | 32A1 | 53
(e +y—z+1)
154 | (z+y+2)(z+y+z—1t) 8k4A1l | 72A1 | 41
(=

2z +y — 3z + 3t)(2z + 3z — 2t)
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TABLE 1. (Continued)

no. | equation: u? = xyzt-... wt. 4 | wt. 2| AL

244 | (x+y+z+t)(z+y—2z—t)(y—2z+1t) | 12k4Al | 48A1 | 39
(z—z+1)

249 | (z+y+2)(z+2z+t)(2x+3y — 2+ 2t) | 24k4A1 | 24A1 | 37
(y—z+2t)

249 | (x+y+2z)(x+2z+1t)(2z —y+ 32+ 2t) | 24k4Al | 24A1 | 37
(=3y + 3z + 2t)

267 | (r+y—2z)(z—y—2+t)(2y—2z+t) | 96k4B1 | 96B1 | 37
(@ t+y+z+1)

267 | (x+y+2z)(z+2y—z+1t) 96k4B1 | 96B1 | 37
(—y + 2z — 2t)(2z + 2y — 2z + 2t)

267 | 2z +2y — 2)(2z +y — 2z + 2t) 96k4B1 | 96B1 | 37
(y+z—t)(x+y—2z+1)

274 | (z+y+z)(—z—z+t)(x+2y —z+t) | 96k4E1 | 96B1 | 37
(x+y—2z+2t)

275 | (x+y+2)(2z — 2z —t)(8y + 4z + t) 96k4B1 | 96B1 | 37
(2z + 4y + t)

2. Double quartic elliptic fibrations. In this section we will
shortly review some information about rational elliptic fibrations that
can be realized as a resolution of a double covering of P2 branched along
a sum of four lines. The structure of the elliptic fibration is determined
by the choice of a point in P2. Some of these surfaces where described
in [4]; we will omit here all the details explained in that paper.

The double covering is rational exactly when the lines do not intersect
in one point. We can have the following combinations of singular fibers
(the Picard number p(S,,) of a generic fiber can be computed from the
Zariski lemma):
singular fibers p(Sw)

Si1 | D, D;

Sa | Iz, I, D§

Sg | I2,12,14,14

S4 | Iz, 12,12, D}

Ss | Iz, I2,12,12,14
Se | I2,12,12,12,12, 12

W NN ==
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A double covering of S; branched along the two singular fibers is
birational to a product of P! and an elliptic curve F, and all smooth
fibers are isomorphic to E. This elliptic fibration depends on the j-
invariant of F.

The surfaces S; and S; are extremal, i.e., they have p(S,) = 1.
Consequently, they are uniquely defined as fiber spaces. Moreover, the
parameters corresponding to the singular fibers of S3 form a harmonic
quadruple, i.e., their cross-ratio equals —1; they can be chosen as

-1 0 1
L, I, I, I,

Denote by S4 the pullback of S3 via the involution ¢ — ¢ — 1/t + 1 of
P!, so S} has the following singular fibers:

-1 0 1 o
I, I, Iy I

Thus S3 and S5 have singular fibers at the same points but of different
types. There exists an isogeny ¥ : S; +— S} which is a degree 2
unbranched covering on a smooth fiber.

Fibration Sy is not extremal, so we can chose arbitrary coordinates of
singular fibers. The configuration of lines is not uniquely determined
by the coordinates of singular fibers. In fact, there are exactly two
types: one with a triple point and one with a “vertical line.”

The Picard number of the generic fiber of fibration S5 equals two, so
we cannot choose arbitrary coordinates of singular fibers. In fact, there
is an involution of P! which preserves the fiber I, and exchanges two
pairs of I3s. The configuration of lines is uniquely determined.

Fibration Sg is the most complicated one. In this case the configura-
tion of lines is not uniquely determined. There can be several choices
coming from automorphisms of P! preserving the singular fibers.

3. Kummer fibrations. All examples in Table 1 except X154 can be
realized as a Kummer fibration associated to a fiber product of elliptic
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fibrations, cf. [15]. Contrary to Schoen we do not require that the
involution on the fiber product lifts to a resolution, so the resulting
Calabi-Yau threefold is not necessarily a blow-up of the Kummer
fibration.

To see the fibration, we reorder the planes such that the first four and
the last four intersect in a point. Then, after change of coordinates in
P23, we may assume that these points of intersection are (0,0,0,1) and
(1,0,0,0), or equivalently that the double octic is given in weighted
projective space P(1,1,1,1,4) by the equation

w2 = fl(xayaz) et f4($,y,z)f5(y,z,t) et fS(yaZat)'

Consequently the double octic is birational to the quotient of the fiber
product of elliptic fibrations

u2 = fl(xayvz) T 'f4($,y,2)

and
Uz = f5(yvz7t) BRI fs(yrzvt)

by the involution

(xaya Z,t, u, ’U) — (maya Z,t, —u, _U)'

In the following table we list descriptions of Calabi-Yau threefolds
from Table 1 as Kummer fibrations. For each Kummer fibration, we
give coordinates and types of singular fibers. In some cases we were
able to find two different representations as a Kummer fibration.

Lemma 3.1. The Calabi-Yau threefolds in Table 1 defined by ar-
rangements of the same type are birational. The Calabi-Yau threefolds
X5, and Xs3 are birational; and the Calabi-Yau threefolds Xo67 and

Xo7s are birational. There exists a correspondence between the Calabi
Yau-threefolds Xg and Xoy49.



NONRIGID CALABI-YAU THREEFOLDS 1943

0 1 2 3 oo -1 0 1 o
X4 Iz Iz I Iz n n Iz N Iz
Ip I» I Io D¢ Dy In Iy I»

I, I, I, D}

0 1 [es) -1 0 1 o

X3 Di Di I L I I L
I. I D} In Dy Iy D}

-1 0 1 oo -1 0 1 oo

Xo1 I I, I I I I, D; I
D In In Ix Dy I I I

-1 0 1 o -1 0 1 o

Xs3 I Df L. Iy In I I. D}
I Iy 12 Dg I DZ I I

-1 0 1 2 oco|-1 0 1/3 1 3 oo

Xoga Io In Iy Iz Iy| In Io Io Iy Ip Iz
Iy I Iy Iy Is | Io Is Iy Iy I I

Xogg Io Ia In 1y Iz I
12 14 IO I2 I() I4

Xogr I I In I I Ip
Iz IQ 12 12 I2 I2

Xora In In In I Ip I
Iy I I o 12 I2

Xors In In In I In I
I I> I I I I
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Proof. From the explicit description of the fiber products in local
coordinates it easily follows that the Calabi-Yau threefolds defined by
arrangements of the same type with different parameters are in fact
projectively equivalent.

Arrangement number 21 is projectively equivalent to

z(z —z)(z +2)(z +y)y(t + 2)(t — 2)(t +y) = 0.

Substituting the birational involution of P3 given by
(z,y,2,t) v (yz,zz, vy, tz),
we obtain
(z2y*)?z(z — 2)(z + 2)(z +y)z(t +y)(t — y)(t +2) =0,

and since arrangement number 53 is projectively equivalent to

z(z —z)(@ +2)(x +y)z(t+y)(t —y)(t+2) =0,

we conclude that the resulting Calabi-Yau threefolds are birational.

To prove that X967 and Xo75 are birational, observe that the corre-
sponding arrangements are projectively equivalent to

Arr. no. 267: z(x — 2)(2z — 22 + y)(2z — z — y) %
xtlt+z—y)2y—2z—2¢)(2z2 —y+2t) =0
Arr. no. 275 z(x — 2)(2z — 2z + y)(2z — z — y) %
xt(2t —y)(2t —2)(3t—y —2) = 0.

Simple computations show that the cross ratios of the quadruples

07 y_]-7 y_(1/2)7 (y—Z)/2
0, y/2, z/2, y/3+2z/3

are equal so there is a birational transformation in y, z, ¢ that maps one
of them to the other.

To see the correspondence between the Calabi-Yau threefolds Xg
and Xo49, first pull back arrangement number 8 by the map ¢t —
(t+ 1/t —1)?, obtaining
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1 0 13 1 3 o
Iy I, ©Lb I, I, I
I, Ib Iy I, Iy I

Now it is enough to compose this map with the isogeny of the elliptic
fibration with fibers Iy, I4, I, I that exchanges I fibers with I, fibers,
see [4]. o

Remark 3.2. Arrangement numbers 267 and 275 are not projectively
equivalent, they come from different twisted self-fiber products of
the same elliptic fibration. The self-fiber product (without twist) of
this elliptic fibration gives a nonbirational Calabi-Yau threefold with
h'? = 2 (see Example 1).

4. Ruled surfaces over elliptic curves. In this section we will use
elliptic ruled surfaces to prove modularity of four Calabi-Yau threefolds
from Table 1.

Proposition 4.1. The Calabi- Yau threefolds X4, Xg, X244 and Xo4g
are modular, with modular forms as listed in Table 1.

Consider a Calabi-Yau threefold X such that an L-series of the form
L(g2,s—1) (where g5 is a weight two modular form corresponding to an
elliptic curve E) appears in the Galois representation. Then by the Tate
conjecture we can expect that there is a correspondence between X and
the product E x P! which induces the isomorphism of representations.

Hulek and Verrill proved in [8] that when a smooth ruled surface
over an elliptic curve S — FE is contained in a Calabi-Yau threefold
X then the map on third cohomology H?3(X) — H?(S) is surjective.
The map can be represented by a direct sum of H'(Tx) — H'(Ns|x)
and its complex conjugate. The map H'(Tx) — H'(Ng|x) associates
to a deformation of X the obstruction to lift it to a deformation of E
(inside X). Therefore, if this map is nonzero, then E deforms inside X
only over a codimension one submanifold of the Kuranishi space of X,
cf. [19, Proposition 4.1].
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Now, if we have ruled surfaces Ei,...,FE,, with r = h?1(X), such
that the map

1) H(X) — @ H(B)

is surjective, then the obstructions are independent and the surfaces
do not deform simultaneously over any subvariety of the Kuranishi
space of X of positive dimension. This explains why in a family there
were always only finitely many examples where one was able to prove
modularity in that way.

If we have several ruled surfaces over elliptic curves, it is usually
difficult to determine whether the map (1) is surjective. In case we know
the Kuranishi space of X we can try to invert the above argument. For
each elliptic fibration we consider the hypersurface V; of the Kuranishi
space over which F; deforms, knowing that the kernel of (1) is the
tangent to the intersection of the V;s plus its complex conjugate (see
example at the end of this section).

To use this method in our examples we need to find elliptic fibrations
inside the double octics. If a plane S in P3 contains two double lines
and the other four arrangement planes intersect at a point in S, then
the pullback of S to the double covering is an elliptic fibration. On the
Kummer fibration these planes are recognized as corresponding to the
product of fibers Iy and I.

We were able to find such a plane only for two arrangements:

Arrangement number 4: the plane S has equation x — z = 0,
respectively y + 2z — t = 0, respectively 2z + y — 2t = 0 (for the three
arrangements in the table).

Arrangement number 244: the plane S has equation x +y + z —
t=0.

To prove modularity of Xg and Xo49 we will study an auxiliary
Calabi-Yau threefold Xa¢9 with h'?2 = 2. Modularity of this Calabi-

Yau threefold follows from existence of some elliptic ruled surfaces and
their behavior under deformations.
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Example 1. Consider the double octic Calabi-Yau threefold Xogg
defined by the following arrangement of eight planes (arrangement
number 269 in [11]):

zyzt(z+y+2)(e+2y—z+t)(y+z—-t)(z+y—22+1t)=0.

It has h*!(Xq69) = 2. Substituting y = y— 2,2 = 2+t we can represent
this Calabi-Yau threefold as the following Kummer fibration:

1 0 1/3 1 3 oo
L I, I, Ib I, I
I, I I, I, I, I

On the other hand, substituting z = = + 2z — 4y, z = = — 2y, we can
also obtain the following Kummer fibration:

-1 0 1/3 1 3
IO _[2 .[2 I4 12 -[2
Iy I, Ip Is Iy Ip

Hence, using the isogeny between S3 and S% from Section 2, we can
find correspondences between this Calabi-Yau threefold and the Calabi-
Yau threefolds Xg and Xoyg.

Observe that the planes z = z+ 2y and y = 2z —t contain two double
lines and a fourfold point, so they give two ruled surfaces E;, Fs over
an elliptic curve with conductor 24.

The Kuranishi space of the Calabi-Yau threefold X559 may be para-
metrized by the equation

zyzt(z +y + 2)(Bzx + Cy — Az + At) x
X(y+z—t)(Bx+By+ (-A+B—-C)z+ At) =0.
By [9] both elliptic fibrations give nonzero maps
H3}(X) — H3(E;)
so they deform over curves in P2. One easily checks that they deform
over the lines given by

A+B-C=0,
C =2B
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which intersect only at the point (1, 1,2) corresponding to the equation
we started with. Consequently, the obstructions are independent and
the map

H*(X) — H*(Ey) ® H*(E2)

is surjective, giving a splitting of the representation on H® into two-
dimensional pieces. Counting points over F, for p < 97, one checks
that X is modular and that the coefficients of the L-series are given by
b, + 2pcy,, where by, respectively c,, are the coeflicients of the unique
cusp form of level 24 and weight 4, respectively 2.

There is a degree two correspondence between the above Calabi-Yau
threefold and X549, hence also Xg. These correspondences prove the
modularity of Xg and Xoayg.

5. Correspondences with rigid double octics. In this section
we will use correspondences between rigid and nonrigid Calabi-Yau
threefolds to prove modularity of the latter.

Proposition 5.1. The Calabi- Yau threefolds X4, Xo1, X53 and Xoaq
are modular, with modular forms as listed in Table 1.

In [3] we checked the modularity and computed modular forms
of some rigid double octic Calabi-Yau threefolds. Now we will use
correspondences between some rigid and nonrigid Calabi-Yau threefolds
to show the modularity of the latter.

We first recall the considered rigid examples. As before, we will use
the equations and numbers of arrangements from [11, page 52] (the
numbers from [3] are given in brackets).

Arrangement number 3 (old number 6) is given by the equation
zyzt(z +y)(y +2)(z + ) (t +z) = 0.
The corresponding fiber product of elliptic fibrations has singular fibers

L I I, I
D; I, I, I
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Arrangement number 19 (old number 23) is given by the equation
zyzt(r+y)(y+2)(z —z—t) (e +y+2z—t)=0.
The corresponding fiber product of elliptic fibrations has singular fibers

L L I, I
In D I, I

Arrangement number 239 (old number 86%) is given by the
equation

zyzt(r+y+z2)(c+y+t)za+z+t)(y+2+t)=0.
The corresponding fiber product of elliptic fibrations has singular fibers

L I, I, I, I
Iy, Lk ', I, I

Lemma 5.2. There are correspondences between the Calabi-Yau
threefolds given by the following arrangements:

(1) Number 4 and number 19,
(2) Number 21 and number 3,
(3) Number 53 and number 3,
(4) Number 244 and number 239.

Proof. All the correspondences are in fact defined on the level of the
fiber products of elliptic fibrations. They are given by applying the
isogeny of the elliptic fibration with fibers I, I5, I4, I, that exchanges
the fibers I and Iy. a

Assume that we have a generically finite correspondence between two
Calabi-Yau threefolds X and Y. Then this correspondence induces an
isomorphism between H*°(X) and H>°(Y) coming from a pullback of
the canonical form. If Y is rigid, then taking this isomorphism plus its
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complex conjugate we obtain a splitting of the Galois representation
on H?(X) into a two-dimensional representation isomorphic to H?(Y")
and its complement. Using the correspondences from the above lemma
and counting points in F, for p < 97 we obtain Proposition 5.

6. Kummer construction. In this section we will use the Kummer
construction studied by Livné and Yui [10].

Proposition 6.1. The Calabi- Yau threefold X13 is modular, with
modular forms as listed in Table 1.

We will consider a two-dimensional family of double octic Calabi-Yau
threefolds which are the quotient by an involution of a product of a K3
surface studied in [1] and an elliptic curve. Take the elliptic curve

E, ={(z,t,u) € P(1,1,2) : u® = (z — t)(z® — pt?)t}
and the K3 surface
Sy ={(y,2t,v) € P(1,1,1,3) : v* = yzt(y + t)(z + t)(y + \2)}.
On the product Y} , := E, X S\ we have a natural involution
((z,t,u), (y, 2, t,v)) — ((z,t, —u), (y, 2, t, —v)).

The quotient X3 , of Yy , by this involution has a Calabi-Yau nonsin-
gular model. To show this, observe that Y} , is birational to the double
covering of P3 branched along the octic D) , given by the equation

(z —t)(z® — pt?)yz(y +t)(z + t)(y + Az) = 0.

The birational map can be given in appropriate affine coordinates
(t=1) by
('/'U7 ]‘, u)’ (y, Z’ ]‘7 U) }_> (I’ y? Z? uv)'

The octic itself is defined over Q. Over Q[,/p] it splits into a sum
of eight planes (for general u, two of them are not defined over Q).
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Using [2] we conclude that X , has a nonsingular model X A, Which
is a Calabi-Yau threefold.

For general values of A and p, the arrangement D), ,, is arrangement
number 52 in [11], so X, , has the invariants h'1(X,) = 56 and
h'2(Xy,) = 2.

For A # 0, —1, the rank of the symmetric part of the Picard group
of the K3 surface Sy is 19; denote by H2 _ (S) the three dimensional
skew-symmetric part. Thus, there is a Shioda-Inose structure on Sy,

namely, there exists an involution on Sy such that the quotient of S
by that involution is a Kummer surface.

In [1] it is proved that the surface Sy, with A € Q\ {0, —1}, is modular
exactly when A € {1,8,1/8,—4,—-1/4,—64,—1/64}, and the modular
form for S, is computed. We have the following diagram of rational
maps

Y)\p ___________________ > X)\”u

)

The rational map Yy , — X A,u can be resolved by blowing up at points
and lines so it induces a well-defined map in cohomologies H(X ,,) —
H3(Y),,). The image of the map is invariant under the involution on
Yy s so in fact we obtain a map H*(X,,) — H'(E,) ® H3 ,(S))-
From the description of deformations of double coverings of smooth
algebraic varieties [5], it follows that this map is surjective; moreover,
both vector spaces have dimension 6, so it is an isomorphism. We
obtain

Proposition 6.2. H*(X,,) ~ H(E,) ® H2_.,(S)).

Corollary 6.3. The Calabi-Yau threefold X&u is modular for
Ae{1,8,1/8,—4,—-1/4,-64,—-1/64} and p € Q\ {0,1}.

For the seven values of A the L-series of Sy corresponds to a cusp form
for Sg(rl(8)), 53(F1(16)), 53(F1(12)), S3(F1(7)) (fOI‘ A and 1/)\ the
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L-series differ only by a twist). They are the only 7-product weight 3
modular forms. The modular form of the surface S corresponds to the
symmetric power of the modular form associated to the elliptic curve
E1/(x+1), see [1]. For the seven special values of A, the elliptic curve
E1/(x+1) has complex multiplication. Denoting by a,, respectively b,
the Fourier coefficients of the level 2, respectively level 3, modular forms
we get

b, =

2
p_2p (

M):l

(F4™) =1

The Fourier coefficient of the L-series of Sy equals (%) (bp +p).

The third symmetric power of a weight 2 form yields also a weight 4
modular form with Fourier coefficients
cp = af’] — 3pap,
so we obtain

apb, = cp + pay.

Consequently, we get much better modularity properties for the
threefolds X)\ = X)H(l/)\Jrl).

Proposition 6.4. The L-series of the Calabi- Yau threefold X has
Fourier coefficients equal to

cp + 2pay,.

In the table we collect the data for the four Calabi-Yau threefolds,
the L-series of which do not only differ by a twist:

A=1 A=38 A=—-4 A= —64
wt 2 form 256k2D 32k2A 144k2B 49k2A
wt 3 form 8k3A[1,1] | 16k3A[1,0] 12k3A[0,1] Tk3A[3]
wt 4 form 256k4H 32k4A 144k4A 49k4D
bp=a2—2p| p=1,3(8) p=3(4) p=1(3) p=1,2,4(7)
by = 0 p=5178) | p=1(4) p=2(3) p=3,5,6(7)
n-products | 7%(z)n(2z) n°(42) 7 (22)n%(62) | 7°(2)n(7z)
(wt 3) n(42)n°(82)
n-products — n?%(82)n%(4z) (n'2(122)) —

(wt 2) (' (242)(62)
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6.1. Singular K3. From the above considerations we excluded
the case of A = —1. There are two reasons for this. First, in this
case all divisors on the K3 surface are symmetric and consequently
h'2(X_4,) = 1 (this is arrangement number 13). Second, 1/(A+ 1)
makes no sense. We can however take in that case also the curve
E1)9, as the modular forms appearing in S_; and Sg are the same.

Hence, for the Calabi-Yau threefold )N(,Ll /o the modular form has
coefficients ¢, + pa,, where c,, respectively a,, are coefficients of a
weight 4, respectively 2 level, 32 newform.

In the above considerations we can replace the elliptic curve Ey/(x1)
by another elliptic curve with the same modular form, or replace both
E, and S, by some twist.

Now fix A € {1,8,1/8,—4,—1/4,—64,—-1/64}. Using [1] we can
compute the characteristic polynomial of Frobenius on H? for the
Calabi-Yau threefold X , for any rational 4 # 0,—1. Denoting by
ay, @y, respectively f3,, 3p, the eigenvalues of Frobenius on H'(E) ,),
respectively H'(E, ), we find that the characteristic polynomial of
Frobenius acting on H* ()Z'A,,L) is (up to sign)

(T = pBp)(T = pBp) + (T — ) (T — B ) (T — a3y 3,) (T — iy Bp).-

This polynomial splits over Z into the characteristic polynomial of the
Frobenius action on H?((P! x E,),) and the degree 4 polynomial (7 —
o2Bp)(T—alB,)(T—a2B,)(T—a;Bp). In the construction, this splitting
comes from the Cartesian product of E, and a transcendental cycle on
the K3 surface Sy; it should have a better geometric interpretation via
the Shioda-Inose structure.

If the elliptic curves E) and E, are nonisogenous, the degree 4
polynomial does not divide by the characteristic polynomial of P! x E,
for any elliptic curve E. To see this, denote the eigenvalues of Frobenius
on H'(E) by 7p,7, and assume that py, = B,a2. Multiplying by 3,
and dividing by p = |B,|?, we get Bpy, = 0412,. Since F) has complex
multiplication, looking at the sets of primes p for which the coefficients
op, Bp and v, equal +ip'/? we easily see that the other two elliptic
curves have complex multiplication by the same quadratic field and so
up to a twist the three weight two forms coincide. In particular, E)
and E, are isogenous.
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7. Involutions. In this section we will use an involution on a
Calabi-Yau threefold to split the cohomology group H2. Note that
van Geemen and Nygaard [18] were the first to use an automorphism
of a Calabi-Yau manifold to split the Galois representation and prove
modularity.

Proposition 7.1. Calabi-Yau threefolds Xs3, Xoasa, Xog7, Xora and
Xo75 are modular, with modular forms as listed in Table 1.

On some of the Calabi-Yau threefolds considered in this paper we can
find an involution. On the middle cohomology the involution may have
only eigenvalues 1. If both 1 and —1 are eigenvalues, then the map
gives us a splitting of H3. Since the splitting is compatible with the
Frobenius morphism it is in fact a splitting of the Galois representation
into two-dimensional subrepresentations.

We can use the Lefschetz formula to compute the trace of Frobenius
composed with the involution. This trace is equal to the trace of
Frobenius on the +1-eigenspace minus the trace of Frobenius on the
—1-eigenspace. Together with the trace of Frobenius on H? this gives
the traces on the two subspaces.

Assume that we have a Q-linear involution on P3 which preserves
the arrangement of eight planes. This map induces an involution
® : X — X on the Calabi-Yau threefold X defined by this arrangement.
We will compute the trace

d, = tr ((Frob, o ®)*|H3(X,,Q;))

of Frobenius composed with ®. Since this map acts by multiplication
with +p on H? and with +p? on H* the Lefschetz fixed-point formula
relates d;, to the number N, of fixed points of Frob, o ®.

Lemma 7.2. If ® is a linear involution on PN (F,) defined over F,,,
then the fized points of Frob, o ® are F:-rational.

Proof. The Frobenius morphism Frob, commutes with any linear
involution defined over F,, so any fixed point of Frob, o @ is also a
fixed point of Frob,:. u]
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Using the lemma we reduce the counting of fixed points over the
infinite field F;, to counting of points over the finite field F,2, which
can easily be done using a computer.

From the representation as a Kummer fibration, we can easily recog-
nize some linear involutions preserving the arrangement:

Arrangement number 53: (z,y,z2,t) — (y,z,—t, —2).

Arrangement number 244: (z,y,z,t) — (y,z, —t, —2).

Arrangement number 267: (z,y,z,t) — (t,—z,—y, ).

Arrangement number 274: (z,y,z,t) — (z, —t,z, —y).

Simple computations show that the above involutions are not equal
to identity on the deformation space H'(Tx) = H'?(X), hence they
split the Galois representations. In fact, it is easy to observe that
H'?(X)® H?'(X) must be (—1)-eigenspaces. Counting fixed points on
the singular double octic yields, for all primes 5 < p < 97:

Xs3:1+p° —ap + by +0° +p
X 1+p®—a,+pb,+2p>—p p=1 mod4
244 ¢
1+p*—a, + pb, + 3p p=3 mod 4
Xogr i1 +p3 —ap —i—pbp +p2 — P
¥ 1+p*—ap+pbp+p*—p p
274 ¢
1+p*—ap,+pb,+p*+3p p

1 mod 4
3 mod 4

Analyzing the action of Frobenius on the generators of the Picard group
and the space of curves H* gives the traces of Frobenius of the two-
dimensional Galois subrepresentations. Applying the Faltings-Serre-
Livné method finishes the proof.

Schiitt suggested to us that counting points in F, and F,> we can
compute the characteristic polynomial, which factors into two degree
two polynomials. Since we know that the representation splits we get
the traces of both actions. It is however not straightforward that the
numbers a,, respectively pb,, will correspond to the +1-eigenspace,
respectively the —1-eigenspace.

Remark 7.3. The described involutions act on singular double octics.
Since the resolution of singularities of a double octic is not unique (it
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depends on the order in which we blow up lines in a triple point) it may
happen that an involution maps to a birational Calabi-Yau threefold.
Since two smooth models differ by a sequence of flops, we can compose
the involution with these flops or we can consider a threefold that
dominates both smooth models. The action on H? is well defined.

If we know that we can choose such a resolution of singularities of
the double covering to which the involution lifts, then the quotient will
be (after resolution) a rigid Calabi-Yau threefold.

Example 2. Consider the arrangement of planes (arrangement
number 287 in [11]) given by

zyzt(z+y+2z—3t)(r+y—3z+1)
x(z—3y+z+t)(-3z+y+z+t)=0.

The corresponding Calabi-Yau threefold Xsg7 has Hodge numbers
h''(Xa2s7) = 37, h'?(X2s7) = 3. Counting points in F,, shows that, for
5 < p < 97, the trace of Frobenius on the middle cohomology equals
ap + 3b,, where ay,, respectively by, are the coefficients of the weight 4
level 6, respectively weight 2 level 24, cusp form. The arrangement has
many linear symmetries. We can use the induced involutions on X to
decompose the Galois representation.

We can also use the elliptic fibrations on X described in [12, page 62]
and apply the deformation argument from Example 1 to prove modu-
larity of Xog7.

In fact the full permutation group S, acts on this Calabi-Yau three-
fold. If we consider the action of permutations of order 3, then the
eigenvalues will be defined in F,, only for some p, so the decomposition
of Frobenius action will depend on p.
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