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MAXIMUM LIKELIHOOD ESTIMATION FOR
SIMPLEX DISTRIBUTION NONLINEAR MIXED MODELS
VIA THE STOCHASTIC APPROXIMATION ALGORITHM

WENZHUAN ZHANG AND HONGJIE WEI

ABSTRACT. Longitudinal continuous proportional data is
common in many fields such as biomedical research, psy-
chological research and so on, e.g., the percent decrease in
glomerular filtration rate at different follow-up times from the
baseline. As shown in Song and Tan [16] such data can be fit-
ted with simplex models. However, the original models of [16]
for such longitudinal continuous proportional data assumed a
fixed effect for every subject. This paper extends the models
of Song and Tan [16] by adding random effects, and proposes
simplex distribution nonlinear mixed models which are one
kind of nonlinear reproductive dispersion mixed model. By
treating random effects in the models as hypothetical missing
data and applying the Metropolis-Hastings (M-H) algorithm,
this paper develops the stochastic approximation (SA) algo-
rithm with Markov chain Monte-Carlo (MCMC) method for
maximum likelihood estimation in the models. Finally, for
ease of comparison, the method is illustrated with the same
data from an ophthalmology study on the use of intraocular
gas in retinal surgeries in [16].

1. Introduction. Dispersion models, which contain a broader class
of distributions that accommodate a large number of different data
types, were defined in [9]. Besides those familiar exponential family dis-
tributions, the simplex distribution of Barndorff-Nielsen and Jgrgensen
[1] also represents a special dispersion model for proportional data and
is of particular interest in this paper. Based on this distribution, Song
and Tan [16] developed a marginal simplex model for longitudinal con-
tinuous proportional data and assumed a constant dispersion in their
model, and this model was used to analyze the eye surgery data in
[14]; [15] further assumed a varying dispersion on the basis of [16] and
re-analyzed the same surgery data; and Zhang [18, page 4] proposed
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the Fisher score iterative algorithm to estimate the parameter in the
model of [16] and obtained a similar result.

For analysis of longitudinal data, see [2], mixed models enable the
analyst not only to describe the trend over time while taking account
of the correlation that exists between successive measurements, but
also to describe the variation in baseline measurement and in the
rate of change over time. Therefore, mixed models have been widely
applied in such fields as biomedical research, psychological research,
econometrics and so on, and the methods of parameter estimation in
the models have been studied, which is one of the important issues
in regression theory. Hartley and Rao [6], Harvile [7] and McCulloch
[11] analyzed the issue of parameter estimation about linear mixed
models, i.e., variance component models; McCulloch [12] and Zhu
and Lee [21] studied the same issue about generalized linear mixed
models; Zong et al. [22] further studied the parameter estimation of
exponential nonlinear mixed models. Subsequently, Zhang et al. [19,
20] studied parameter estimation for nonlinear reproductive dispersion
mixed models.

In this paper, we propose a mixed model-simplex distribution non-
linear mixed models (SDNMMs) for longitudinal proportional data in
which the simplex distribution was regarded as a random error term.
In our model, the random effects are missing data. In most applica-
tions, marginal log-likelihood functions based on observed data involve
intractable integrals and complicated formulation for such models with
latent variables and/or incomplete data, and they lead to complica-
tions and difficulties for further statistical analysis. Such is the case
with our model. Additionally, it seems to be impossible to conduct
a simulation because the sampling algorithm for this distribution is a
real challenge needing appropriate and urgent resolution. Inspired by
Gu and Kong [5] and Zhu and Lee [21], we develop a procedure (SA-
MCMC) that combines the stochastic approximation (SA) algorithm
with the Markov chain Monte-Carlo (MCMC) method for maximum
likelihood estimation of our model by treating the random effects as
hypothetical missing data and applying the Metropolis-Hastings (M-
H) algorithm.

The paper is organized as follows. Section 2 defines simplex distribu-
tion nonlinear mixed models (SDNMMs) and introduces some related
notations and natures. The SA-MCMC procedure that combines the
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SA algorithm and the M-H algorithm is described in Section 3. In
Section 4, the proposed models are applied to reanalyze the same eye
surgery data in [14] and compare the result with that of Song and Tan
[16].

2. Simplex distribution nonlinear mixed models. Let per-
centage responses for the ith subject be y;;, observed at time ¢;;, and
yij € (0,1), where j = 1,... ,n;and ¢ = 1,...,I. Let b;(k x 1) be
the ith subject’s random effect. y;; | b;, j = 1,... ,n;, are mutually
independent and follow a simplex distribution of the form

(1)
9 9 3]~ 1/2 1
p(Yij | bis pij, 07) = |2m0” {yi; (1 — yij) } } exp § — Fd(ymum’) ;

(yij — pij)?
Yij (1 = yij)ud; (1 — pij)?’

(2)  d(yijs pij) =

where p;; € (0,1) is the location parameter and o? € R" is the
dispersion parameter.

The SDNMMs are defined by (1) and (2), and the expectation p;; is
followed by

(3) pi; = f(xij,8) + z5;bi,

where d(-;-) is a unique deviance function whose definite field is (0, 1) x
(0,1). B = (B1,---,Bp)T is a vector of unknown fixed affect parameters.
Xij, p X 1, and z;;, k X 1, are design vectors for the fixed and random
effects, respectively. The distribution of b; is assumed to be normal
N(0,X), where & = C(0)C(0)” via the Cholesty decomposition
depends upon 6, an unknown vector.

Let b; = C(8) 'b;. Then b; ~ N(0,I), where I is the k x k identical

matrix and i = 1,2,...,I. And we can get
(4) pi; = f(xij,8) + z;;Ch;.

The following notation will be used in subsequent sections: y;
Wity - Ying) s Xi = (Kits - - Xin,) "5 Zi = (21, - Zin,) ", (X4, B) =
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(f(xilng)a oo af(xin,;)lg))Tv Hi = (/“Lila v 7/~Lin¢)Ta d(ylal‘l'l) = 27;1
d(yij; pij)-

Let ¢ = (BT,07)T € ¥ be the vector of unknown parameter. For
computational convenience, we suppose that o2 is given.

According to the conditional independence of yij|5i, j=1,...,n,,
the joint density of (y;, b;) is given by

(5)  p(yi,b [Hp Yij | b ] )k/zeXp{ %BZTB}

Let Yo = (y1,---,yr) and b = (by,...,b;) be the observed-
data and the missing-data, respectively, and let Y. = (Yo,b) be
the complete-data , a(yi;;0?) = [270%{y;;(1 — y;;)}°] /2. Then the
complete data log-likelihood function of v is given by

Le(¢ | Ye) Zlogp yi, b

(6) = Z { Z {loga Yij; 0%) — % d(yij;ﬂij)]
k — o —
-3 log 21 — Ebini},

where p;; = f(xij,8) + zg;.Cl_)i.
The observed data log-likelihood function of v takes the form

(7) Lo(¥ | Yo) =§{log/ [ﬁlp(yﬁ | B,»)] (2r) /2
x exp{ _ %sti} 4B},

Our objective is to find the maximum likelihood estimate of 1, the
value 1 that maximizes Lo(¢ | Yo). By comparing (6) and (7), it can
readily be seen that (6) is simple, in contrast to (7), which involves
intractable integrals. When the dimension of b; is high, the integral in
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(7) usually doesn’t have an analytic form. Then direct maximization of
Lo(v | Yo) is numerically infeasible. Inspired by the stochastic approx-
imation (SA) algorithm in overcoming some difficulties in numerical in-
tegration and Monte Carlo integration, we implement the SA-MCMC
algorithm for maximum likelihood estimation in the SDNMMs.

It follows from the reasoning in Louis [10], VLo(¢ | Yp) and
—V2Lo(1¢ | Yo) are given by

(8) VLo(¥[Yo) = E[VLe(¢ | [Yc) | b, 4],
and

(9) —V2Lo(¥ | Yo)
= E[fszc(’d) ‘ Yc)|Ba’l/J] o E{[VLC(TIJ | Yc)]®2‘55 ¢}
+ E[VL(9]Y)[b, ]2,

where the expectation is taken with respect to the conditional distri-
bution p(b | Yo,%); V and V? are respectively the first and second
derivative operators with respect to ¥ and a®? = aa’ for any vector
a.

For the complete data log-likelihood function of ), the first and
second derivatives can be given by the following theorem.

Theorem 2.1. According to (1), (2) and (4), we obtain the first and
second derivatives with respect to 1 of L.(v | Y.),

) ) —¢;D?ei,

any B IX —¢§h£lei,

e ¢Z {[e7](W.] + DTV.D,},
e 63 D Vi,

i=1
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L. (¥ | Y. !
(14) % =—¢ ; {hfy e + hiy Vihig, |
where ¢ = 1/(20°), D; = 0f(X;,8)/0B", e = 9d(yi, pi)/Opi, Ou, t =
L.,k l=1,...,t, and 05, s = 1,... ;k, 7 = 1,... ,s, are the ele-
ments (t,1) and (s,r) of matriz C, respectively, C(tl) = 0C /00y, hiyy =
ZTC(th)b;, Vi = 0%d(yi; pi)/0piOpnl, W; = 0*f(X;,8)/08798,
C(tl,sr) = 02C/00400s,, hiy sr = Zfé(tl, sr)b; and [-][] is the mul-
tiplication of two cubic matrizes.

The proofs of Theorem 2.1 are sketched in the Appendix.

3. The stochastic approximation algorithm. Gu and Kong
[5] developed a stochastic approximation-Markov chain Monte Carlo
(SA-MCMC) procedure for maximum likelihood estimation of general
statistical models with incomplete data. Subsequently, Zhu and Lee
[21] proposed the SA-MCMC procedure to analyze generalized linear
mixed models (GLMMs) and Zhang et al. [19, 20] proposed the SA-
MCMC procedure to analyze nonlinear reproductive dispersion mixed
models (NRDMMs). Here, we propose the SA-MCMC procedure to
analyze simplex distribution nonlinear mixed models (SDNMMs).

Let ©(") be the rth estimate of v, and let T', be the rth estimate of
—V2Lo(+ | Yo). Given an initial point ¥(*) and an initial matrix T,
the r + 1th improved estimate can be obtained by

Fr-l—l = Fr + ’YT(H(QZJ(T)) - Fr)a

¢(r+1) — qp(r) + %I‘;LS(U;(’")),

where {7, } is a sequence of positive values such that

o0 o0
Z'yr = 00 and Z’yf < 00.
r=1 r=1

The choice for {7, } and 'y are usually {1/k} and 0, respectively, where
0 is a zero matrix.

S(2(") and H((")) are given by

(15)

1 « 5
S(") = > VL3 Yo, BY),
=1
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and
(%) =H(y") -6, H(u"),
where
— 1 & _
") = 37 [~V LYo, b))
=1
H(4") = Hy (") — Ha(3"),
1 & _, 1 ®2
Hi(p) = — > {VL") | Yo, b))}
=1
1 S F
Hy (") = {—ZVLC <")Y0,bi)} ,
eyt
and 6, € {0,1}, bl = (b} ,,...,b} ), b}, = {b”,.. b" } are
observations from the conditional dlstrlbutlon p(b; | yi, T)) In
practice, we can set §, = 0 at the beginning and change 4, from 0

to 1 as (™ is closed to . Zhang et al. [19] suggested setting 6, = 0
and v, = L if max1{|1pgr b_ ir 2)|} > 6, or else to set 6, = 1 and
v = 1/k, where ¢ is a predetermined small value.

According to Bayes’s theorem, we can obtain

p(ys, bs)

p(b; | yi, %) = To(ys, by) by’

It can be readily seen that [ p(y;, b b;)db; is an constant. So the
conditional distribution of p(b; | y:,) is proportional to

1 O 1o
(16) exp{ Gyl ; d(yijs tij) — §bi bi}-

It can be seen from (16) that it is fairly difficult to simulate observa-
tions from p(b; | y;, %) which is nonstandard and complex. The M-H
algorithm [4, 8, 13, 17] is a well-known MCMC method which has
been widely used to simulate observations from target density via the
help of a proposal distribution from which it is easy to sample.
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Following the methods of [5, 21], we choose multivariate normal
distribution as the proposal distribution. The following algorithm is
implemented to simulate observations from the target density p(b; |
Vi, ¥): At the rth iteration of the M-H algorithm with a current value
552 at the tth, a new candidate b}, is generated from N(bth,T I,
and the probability of accepting this new candidate is

p(b}, | yi,'llf(”)}
p(b{}) | yi, ) )

where 7 is an unknown parameter and applied to control the accepted

rate of candidates from the proposal distribution in the entirely itera-

tive process. Empirically, it can lead to a good result if the accepted
rate is between 0.25 and 0.34, see [3].

a:min{l

Under some mild conditions, it follows from the reasoning in [5],
which considered a problem with very similar nature, that I'y and
™) converge to —02L (1/1 | Yo)/0¥0¥T and the ML estimate P,
respectively. So, at convergence, I', ! can be regarded as an estimate

of the covariance matrix of U, see [21].

According to the above discussion, we propose the following strategy
for finding the maximum likelihood estimate of 1.

Step 1. Choose initial values 9(*) € ¥;

Step 2. Given the rth iterative values 1", simulate {b}
from p(b; | yi, %), i =1,...,1, via the M-H algorithm;

Step 3. Update %) to ¢("*1) and Ly to T'(,41) by (15);

-5 b}

17"

Step 4. Repeat (2) and (3) until finding r satisfies maxi{|¢§r_1) -
1/)1(T_2)|} < 6 (6 is a predetermined small value). Then set 9 = ("1,
Finally, the estimate of ¥ can be obtained via ¥ = C(0)C(6)7.

4. Illustration: The ophthalmology study. In this section,
we reanalyze the longitudinal proportional data from a prospective
ophthalmology study on the use of intraocular gas (C3Fs) in retinal
repair surgeries [14], with a special focus on random effect. The
outcome variable was the percent of gas left in the eye. The gas was
injected into the eye before surgery for a total of 31 patients. The
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patients were then followed three to eight (an average of five) times
over a three-month period, and the volume of the gas in the eye at the
follow-up times was recorded as a percentage of the initial gas volume
in that eye. An important issue was to estimate the kinetics of the
disappearance of the gas, e.g., decay rate of the gas.

To begin with, the population-averaged, i.e., fixed, effects models in
both [16] and [18, page 4] is

logit (p1i;) = Bo + log(wij1)B1 + log” (zij1)B2 + ij2Ps,
—1 gas concentration level 15,
gas;; — 20 o

5 0 gas concentration level 20,

Tij2 =
1 gas concentration level 25,
where x;;; is the time covariate of days after the gas injection and gas;;
is the covariate of gas concentration levels.

In our model, suppose that the patients have individual difference.
The variable b; denotes the ith patient’s random effect, and b; ~
N(0,0%). Let b; = b;/01, where o7 is the square root of o3.

Our model form is given by
logit (i) = Bo + log(zj1)B1 + log” (z:j1)B2 + Tij2Bs + 01bi.

We replace y;; with

a yij = 0,
Uij =< Yij —a Yij =1,
Yij else,

where a > 0 is a small number to avoid zero denominators.

We choose ¢ = 0.001 and run the SA-MCMC algorithm with
m = 20, 02 = 14.2 [16] and 7 = 4 (which leads to the accepted
rate of candidates 0.294), which started from the starting value ﬁ =
(2.6850,0.0648, —0.3354,0.3250)" [16] and o7 = 0.01. The results of
the model are listed in Table 1; meanwhile, the results of Song and
Tan’s [16] model with independent correlation structure are added for
ease of comparison. The behaviors of 1(") and the accepted rates w
are displayed in Figure 1.
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FIGURE 1. ’l/J(T) and the accepted rate w at each iteration.

TABLE 1. Results of the eye surgery data.

Parameter Estimate SE  SE [16]

Bo 2.6766  0.0180 0.3002
B1 0.0784  0.0221 0.2491
B2 -0.3385  0.0057 0.0662
Bs 0.3326  0.0122 0.1945
o1 0.0144  0.0000 —
APPENDIX

A. Proof of Theorem 2.1. (1) Differentiating (6) with respect to
3, we obtain

OLo(¥ | Yo N (O \ T 0d(yig; i !
0§ () ) oo
i=1 Lj=1 v i=1
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(2) Differentiating (6) with respect to 8, we obtain

(1/’ | Y [ 3#2; yzga,u'zj):|
961 ‘1’; Z 00 O

:_¢Z [Z 2L E(U)b 3d(yij?.#ij)]

Opij
= _d) Z hztlel

(3) Differentiating (10) with respect to 3, we obtain

8%L.(¢ | Y.) —¢Z d {<6f xl,m)%d(yi;m)
oBopT oBT BT i

[l

n <3f(Xz,B)> (yz,ul)}
0BT Opi0B8T

0%d(yi; pi) pi

= — i+ DT—_

¢ Z { pi BT
quz ]+ DIV, Ops
topT
o3 (1w + DI VID,).

(4) Differentiating (10) with respect to 6, we obtain
L(¥ | Ye) 7 0%d(yi; pi)
FLW1 2 - 43 D!

6,889)5{ ¢ Z 6”zaetl

0%d(yi; ,uz) op;
B DT
¢Z Opiopl 00y

=—¢ Z D V;hiy.

i=1

}

|
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(5) Differentiating (11) with respect to 6, we obtain

PL(|Ye) N~ [( b\, pr 8%dlyiipm)
39tl395r N _¢ ; |:< esr > e + hitl a“iaosr

I
-9 Z{hg;l,srei +h}, V;h;,, }.
i—1
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