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STABILITY AND BIFURCATION IN
A BEDDINGTON-DEANGELIS TYPE
PREDATOR-PREY MODEL
WITH PREY DISPERSAL

RUI XU, ZHIEN MA AND QINTAO GAN

ABSTRACT. A time delayed predator-prey model with
prey dispersal and Beddington-DeAngelis type functional re-
sponse is investigated. By analyzing the corresponding char-
acteristic equations, the local stability of a positive equilib-
rium and each of the boundary equilibria is discussed. The
existence of Hopf bifurcations at the positive equilibrium is
established. By using an iteration technique, sufficient con-
ditions are derived for the global attractiveness of the posi-
tive equilibrium of the proposed model. By comparison argu-
ments, sufficient conditions are obtained for the global stabil-
ity of each of the boundary equilibria of the model. Numerical
simulations are carried out to illustrate some main results.

1. Introduction. The traditional mathematical model describing
predator-prey interactions consists of the following system of differen-
tial equations

&(t) = a(z) - F(z,y),

(L) eF(z,y) — cly),

<.

—~
~

~—
I

where x(t) and y(t) represent densities of the prey and the predator
at time ¢, respectively. The functions a(z) and c(y) are the intrin-
sic growth rate of the prey and the mortality rate of the predator,
respectively. The function F(z,y) is called the “response function”
representing the prey consumption per unit of time. The most popu-
lar response functions used in the modeling of predator-prey systems
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are of Michaelis-Menten type (also called Holling type-II) F(z,y) =
fry/(c + =) and the ratio-dependent type F(z,y) = fzy/(my + z).
However, it is believed that the Michaelis-Menten type response func-
tion does not account for mutual competition among predators (see,
for example, [13]), while the ratio-dependent type response func-
tion allows unrealistic positive growth rate of the predator at low
densities [2, 10, 12]. The Beddington-DeAngelis response function
F(z,y) = fzy/(a+by+ cx) was introduced independently by Bedding-
ton [1] and DeAngelis [7] as a solution of the observed problems in clas-
sical predator-prey theory. It has a term by in the denominator model-
ing mutual interference between predators and avoids the “low densi-
ties problem” of the ratio-dependent type functional response. In [3],
Cantrell and Cosner discussed system (1.1) when a(z) = ra(1 — z/K),
c(y) = —py, F(z,y) = fzy/(1+ by + cx), where b, ¢, f,r, K, u are posi-
tive constants. They presented some qualitative analysis of solutions of
system (1.1) from the viewpoint of permanence (uniform persistence).

Dispersal is a ubiquitous phenomenon in the natural world. Its im-
portance in understanding the ecological and evolutionary dynamics
of populations was mirrored by a large number of mathematical mod-
els devoted to it in the scientific literature. Some of the mathemat-
ical models dealt with a single population dispersing among patches.
Some of them dealt with competition and predator-prey interactions in
patchy environments (see, for example, [6, 8, 17, 18] and the refer-
ences cited therein). We note that many authors always assumed that
intrinsic growth rates are all continuous and bounded above and below
by positive constants. This means that every species lives in a suitable
environment. However, the actual living environments of endangered
species are not always like this. Because of the ecological effects of
human activities and industry, e.g., the location of manufacturing in-
dustries and pollution of the atmosphere, rivers and soil, more and
more habitats have been broken into patches and some of the patches
have been polluted. In some of these patches, and sometimes even
in every patch, species will become extinct without contributions from
other patches, and hence the species live in a weak patchy environment.
In [4, 5], Cui and Chen proposed and studied population models with
weak patchy environment. In a different way from the former studies
(see, for example, [8, 17, 18]), they considered the important situ-
ation in conservation biology in which species live in a weak patchy
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environment, in the sense that species will become extinct in some of
the isolated patches without contribution from other patches. In [6],
Cui et al. proposed and studied diffusive stage structured single-species
population models. A conservation strategy was put forward by ana-
lyzing the asymptotic behavior of solutions of the proposed models.

In this paper, motivated by the work of Cantrell and Cosner [3] on
a Beddington-DeAngelis type predator-prey model and Cui et al. [6]
on diffusive stage-structured single-species population models, we are
concerned with the effect of prey dispersal between two patches, the
Beddington-DeAngelis type functional response and time delay due
to the gestation of the predator on the dynamics of a predator-prey
system. To this end, we study the following delayed differential system

. B a12y(t)
£1(t) = z1(2) (7’1 —anzy(t) - 5 + Bz (t) + C'y(t)>

+ ngg(t) — Dlxl(t),
:i?g(t) = —T‘ng(t) + Dlwl(t) — ngg(t),

y(t) - azl.l'l(t T)y(t 7') _ ry(t).

+ Bzy(t— 1)+ Cy(t — 1)
In system (1.2), it is assumed that the ecosystem is composed of two
isolated patches and the breeding area in patch 2 is damaged. z1(¢)
and xs(t) represent densities of the prey at time ¢ in patches 1 and
2, respectively; y(t) represents the density of predator population in
patch 1 at time t. The parameters a1, ai2, a1, r1, 72, 7, B, C, D1
and D5 are positive constants, where r; is the intrinsic growth rate of
prey in patch 1, a;; is the intra-specific competition rate of prey in
patch 1, a;2 is the capturing rate of the predator in patch 1, ro is the
death rate of prey in patch 2, Dy and D- are dispersal rates of the prey
between the two patches, as;/a;2 is the conversion rate of nutrients into
the reproduction of the predator, r is the death rate of the predator
and 7 > 0 is a constant delay due to the gestation of the predator, that
is, mature adult predators can only contribute to the reproduction of
predator biomass.

(1.2)

The initial conditions for system (1.2) take the form
21(0) = 6:1(0),  x2(0) = ¢2(0),  y(0) = ¥(0),
(13) ¢1(0) > 07 ¢2(9) > 05 1/’(9) > 0) NS [77-7 O]a
¢1(0) > 07 ¢72(0) > 07 w(o) > 07
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where ® = (¢1(0), ¢2(0),¥(0)) € C([—7,0],R3,), is the Banach space
of continuous functions mapping the interval [—,0] into R‘:’_O, where
R, = {(z1,22,23) 1 2; > 0,i = 1,2,3}.

It is well known by the fundamental theory of functional differential
equations [9], system (1.2) has a unique solution (z1(¢),z2(t),y(t))
satisfying initial conditions (1.3). It is easy to show that all solutions
of system (1.2) with initial conditions (1.3) are defined on [0, 4+00) and
remain positive for all ¢ > 0.

The organization of this paper is as follows. In the next section,
by analyzing the corresponding characteristic equations, we discuss
the local stability of a positive equilibrium and each of the boundary
equilibria of system (1.2). The existence of Hopf bifurcations at the
positive equilibrium is proved. Numerical simulations are carried out to
illustrate the results above. In Section 3, using an iteration technique,
we establish the global attractiveness of a positive equilibrium of system
(1.2). By comparison arguments, we discuss the global stability of each
of the boundary equilibria of system (1.2). A brief discussion is given
in Section 4 to conclude this work.

2. Local stability. In this section, we discuss the local stability of
a positive equilibrium and each of boundary equilibria of system (1.2)
by analyzing the corresponding characteristic equations. We also study
the existence of Hopf bifurcation at the positive equilibrium.

System (1.2) always has a trivial equilibrium FEy(0,0,0). If the
following holds:

(H1) r1(D2 +r2) — Dyiry > 0,

then system (1.2) has a semi-trivial (boundary) equilibrium FE;(z?, z9,
0), where

20 r1(D2 +72) — Dy7 20 D;[r1 (D2 + re) — Dyrg)
! a11(Da +12) 2 a11(Dg + 12)?

Further, if (H1) and the following hold:

D7y

(H?) (a21 — BT) <’I“1 — m

> —air > 0,
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then system (1.2) has a unique positive equilibrium E*(z7,z3,y*),
where

. —A+VA Dy

*
. . . (azy — Br)z} —r
1 — ) 2
2a11a2:C Dy + 7o

* p—
Ty, Y = Cr )

here oD
a2172 1
A= — Br) — C+==2="1
a12(a21 7“) a21mC + Dy + 1
A = A2 + 4ay1a12a217C.

The characteristic equation of system (1.2) at the equilibrium Ey(0, 0,
0) is of the form

(2.1) (A+7)[A\% + (D1 + Dy + 73 — 71)A + Dyry — 11 (Da + 72)] = 0.

If r1 (D2 + r2) — Dire > 0, then (0,0,0) is unstable; if 71 (D2 + r2) —
Dqre < 0, then we have r; < D1. In this case, Dy + Dy + 75 — 11 > 0,
hence, (0,0, 0) is stable.

The characteristic equation of system (1.2) at the equilibrium E; (9,
x3,0) takes the form

0
aglml

2) (A4 BRI
(22) (A+r o he

67)\7’> [)\2 + (D2 + To —T1 + 2(111%? + Dl)
A+ T‘l(DQ + 7‘2) - D1T2] =0.
Noting that

DDy + 11(D2 + 1r2) — Dyrg

-7 + 2a112% + Dy =
1 112 1 Dy + 1

>0,

it is easy to show that the equation
A2 =+ (D2 =+ o —T1 =+ 2@11I(1) + Dl))\ + T‘l(Dz + 7‘2) — D11"2 = 0

always has two negative real roots. All other roots are given by roots
of equation

0
a21%q

— AT
- ———e€ =0.
1+ Ba!

(2.3) A+
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Let f(A) = A+ 7 — (a2129)/(1 + Bzy)e=*". If (H2) holds, it follows
that for A real,

allT(D2 + 7‘2) — (a21 — BT‘)[Tl(DQ + 7’2) — DlT‘z]
CL11(D2 + 7‘2)(1 + B:E(l))

f(0) = <0,

lim f(\) = +oo.

A—+oco

Hence, f(\) = 0 has a positive real root. Accordingly, the equilibrium
E;(29,235,0) is unstable.

If the following holds:

Dyry
Dy + 1o

(H3) (a21 — Br) (7“1 ) < apr,

we claim that the roots of f(A) = 0 have only negative real parts.
Suppose that Re A > 0. Then we derive from (2.3) that

azlx(l) a21x(1]
1+ Baf 1+ Bl
_ 7@111"(D2 + 1"2) — (a21 — B’I‘)[’I"l(DQ + 7‘2) — Dl’f‘z]
a11(D2 + 72)(1 + BxY)

Red=—-r+ e"™ReX cos(rIm \) < —7r +

<0,

a contradiction. Hence, we have Re A < 0. Thus, if (H3) holds, then
Eq1(29,29,0) is locally asymptotically stable.

The characteristic equation of system (1.2) at the positive equilibrium
E* is of the form

(2.4) A3+ p2A? + oA+ po + (@A + @+ qo)e ™ =0,
where

Po = T‘[K(DQ +7“2) — DlDQ],
p1=K(Dz +r3) = D1Dy + (D2 + 72 + K),
p2=Dy+rs+r+ K,
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2.5
( ) _a21K$I(D2 + 7‘2)(1 + B.I"f) angngwI(l + BII)
(1+ Bz + Cy*)? (14 Bz + Cy*)?
N a12a21 (D + ro)zty*(1 4+ Bzt)(1+ Cy*)
(14 Bzt + Cy*)4 ’
a1 (D2+r2+K)ai(1+Bai) | azanziy*(l+ Bai)(l + Cy*)

qdo =

o= (1+Bat +Cy*)? (1+ Bz} + Cy*)? ’
_ anzi (1l + Bzxy)
2= "1+ Bay + Oy
Baty* DD
K — a11$I _ a12bx1Y 12

(1+ Bz} +Cy*)2  Dy+ry’

If iw(w > 0) is a solution of (2.4), separating real and imaginary parts,
we have the following:

—w? 4+ prw = (go — qew?) sinwT — qw cos wr,

paw? — po = (qo — qaw?) cos wT + qw sin w.

(2.6)
Squaring and adding the two equations of (2.6), it follows that

(2.7) w°+(p3—2p1—a3)w* + (pT —2pop2 +2q0¢2 — 63 )w* + Py — @5 = 0.
Letting z = w? and

(28) p=p3—2p1— a3, q=Dpi—2pop2+2q042— a3, T =Dp5—dp,

then equation (2.7) becomes

(2.9) 2 4ptrqz+r=0.
Define
(2.10) h(z) = 2% + p2® + gz + .

When 7 = 0, equation (2.4) becomes

(2.11) N+ (p2 + @2)A* + (p1+ q1) A +po + g0 = 0.
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Hence, if ps + g2 > 0, (p2 + g2)(p1 +q1) > po + go > 0, then the positive
equilibrium E* of system (1.2) is locally stable when 7 = 0.

In order to discuss the local stability of the positive equilibrium E*
of system (1.2), we introduce the following results developed by Ruan
and Wei [14] and Song and Yuan [16], respectively.

Lemma 2.1. Consider the exponential polynomial
P\ e, ... e )
= A" 4+ pOaAn-1 o0
+ A A+ pP]e A
+ ™A 4 A e A

)1)‘+p510)

where 7; > 0,1 =1,2,... ,m, andpg-i), 1=0,1,...,m;3=1,2,... ,n,
are constants. As (T1,7T2,... ,Tm) vary, the sum of the order of the
zeroes of P(\,e™>™,... ,e"*™) on the right half plane can change

only if a zero appears on or crosses the imaginary aris.

Lemma 2.2. For equation (2.9), we have the following results.
(i) If r < 0, then equation (2.9) admits at least one positive root.
(ii) If r > 0 and A = p* —3q < 0, then equation (2.9) has no positive
T00tS.
(i) If r > 0 and A > 0, then equation (2.9) has positive roots if and
only if 2t = (—p++V/A)/3 >0, and h(z}) < 0.

Lemma 2.3. For equation (2.4), we have the following results.

(i) If r > 0 and A = p?—3q < 0, then all roots of equation (2.4) with
positive Teal parts have the same sum of the order as those of equation
(2.11) for all T > 0;

(iii) If either r < 0 orr >0, A > 0, 25 = (—=p+ VA)/3 > 0 and
h(z7) < 0, then all roots of equation (2.4) with positive real parts have
the same sum of the order as those of equation (2.11) for T € [0, 7).

Clearly, If py < qo, then equation (2.7) has positive roots. Without
loss of generality, we assume that (2.7) has three positive roots, namely,
Wi, W2, W3-
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Define
(2.12)
1 _ 2 2 _ 2(,,2 _ 2
Thn = — arccos (90 = g2 ) (Pawi 2po2) . q21u12k Wi —p1) + _mr’
W (90 — q2wi)? + qiw} Wk

n=0,1,2,....

Then +iwy are a pair of purely imaginary roots of the characteristic
equation (2.4) with a sequence of critical values Txy,.

Denote

(2.13) TO = Thoo = kerﬁi,g,s}{TkO}’ wWo 1= W, -

Let A(1) = o(7) + iw(7) be a root of equation (2.4) near 7 = 7,
satisfying

0(Tkn) =0, w(Tkn) =wg, k=1,2,3; n=0,1,2,....

In the following we claim that

LD

b = sea (1),

T=Tkn

If h'(w?) > 0, then there exists at least one eigenvalue with positive
real part for 7 > 9. Moreover, the conditions for the existence of a
Hopf bifurcation [9] are then satisfied yielding a periodic solution. To
this end, differentiating (2.4) with respect to 7, it follows that

e dA _ardA
+(2g2A+q1)e E_T(CI2)\2+Q1)\+CI0)6 g dr

= )\(qz/\2 + ql)\ + qO)eiAT.

d\
(3A2 4+ 2pa A +p1) 7

T

Hence, we derive that

(d)\>_1 B 3AZ 4+ 2p2 X + 1 2q2\ + 1 T

dr AN E A2 oA+ o) A(@A2 @)+ qo) Y
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Letting A\ = 1wy, it follows that

!
Re <E>

2
w
= (g0 — qzw,{;Q ¥ Pu? [Bwi +2(p3 — 2p1 — g3)wi
T=Tkn

+ pi — 2pop2 + 2q0q2 — Gi)

wih! (@)

(90 — 2w3)? + qfwi’

Therefore, we obtain that

{15 Sl ()

By the general theory on characteristic equations of delay differential
equations from [11], we obtain the following result.

} — sgn {W'(w)}.

T=Tkn

Theorem 2.1. Let (H1) hold and Tip,wo, 7o be defined by (2.12) and
(2.13), respectively. Assume further that pa+qa > 0, (p2+¢2)(p1+4q1) >
po + qo > 0 hold.

(i) If r > 0 and A = p?> — 3q < 0, then the positive equilibrium E*
of system (1.2) is asymptotically stable for all T > 0.

(ii) If either r < 0 orr >0, A > 0, 2§ > 0 and h(zf) < 0, then
the positive equilibrium E* of system (1.2) are asymptotically stable for
T E [0,7’0).

(iii) If the conditions in (ii) are satisfied, and h'(w?) > 0, then system
(1.2) undergoes a Hopf bifurcation at the positive equilibrium E* when
T = Tkn-

We now give an example to illustrate the above results.

Example. In system (1.2), let a3 = 1, a1z = 1.5, ag; = 1.2,
rn =3,1r0 =05 r=05 B=1,C =01, D; = Dy, = 1. Tt is
easy to show that system (1.2) admits a unique positive equilibrium
E*(0.8956,0.5970,2.5378). Let 79 = 1.0638. By Theorem 2.1, we see
that if 7 < 79, the positive equilibrium E* is locally asymptotically
stable; if 7 > 79, E* becomes unstable; system (1.2) undergoes a Hopf
bifurcation at E* when 7 = 75. We take 7 = 0.95 and 7 = 1.1,
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35 35
- - x sl
3 -] 3 T
—y y
25 W 25

solution
solution

I
3
I

I
ATTEe.
R RRIN
|(ﬂf\\\1\,”n\ ATATAIA
U 4 UV G VIR A Tt Be B B B
L N i IR Wy
0.5yl 1 os P L

VA LOA P v vy

NS AITIATA
Y Y

)

0 200 400 600 800 1000 0 100 200 300 400 500
time t time t

FIGURE 1. The temporal solution found by numerical integration of system (1.2)
with a11 = 1, a12 = 1.5, a21 = 1.2, 11 = 3,72 =05, r =05, B=1, C = 0.1,
Dy =Dy =1, 7 =0.95 and T = 1.1, respectively, (¢1,¢2,%) = (1,1,1).

respectively. Numerical simulations illustrate the observations above,
see Figure 1.

3. Global stability. In this section, we discuss global attractiveness
of the positive equilibrium and each of the boundary equilibria of
system (1.2). The technique of proofs is to use an iteration scheme
and comparison arguments, respectively. To this end, we need the
following lemmas.

Consider the following differential equations

(3 1) U1 (t) =u (t)(a — allul(t)) + Dg’u,g(t) — Dijuy (t),
' ’1.1,2 (t) = —7‘2U2(t) + D1u1 (t) — DzUz(t).

System (3.1) always has a trivial equilibrium (0,0). If a(Ds + r2) —
D7y > 0, then (3.1) has a unique positive equilibrium (u}, u}), where

D - D
ul = a(Dy + r3) 17“2, ul =

D1 [a(Dg + 7‘2) — Dl’l"g]
a11(Ds +12) '

ai1(Dy +12)?2

The following result for system (3.1) was developed by Xu and Ma in
[19].

Lemma 3.1. If a(Ds + r2) > Dire, then the positive equilibrium
(uf,us) is globally stable; if a(Dy + re) < Dirg, then the trivial
equilibrium (0,0) is globally stable.



1772 RUI XU, ZHIEN MA AND QINTAO GAN

We now consider the following equation with time delay

u(t) _ aglAlu(t — T)
(3.2) 1+ BA; + Cu(t — )
u(e) = ¢(0) 2 0) NS [77-7 0)7 ¢(0) > 07

— ru(t),

where as1, A1, B, C, r are positive constants and 7 > 0. Using similar
arguments as those in the proof of Lemma 3.1 in Song and Chen [15],
we can prove the following result.

Lemma 3.2. If Ai(az1 — Br) > r, then equation (3.2) admits a
unique positive equilibrium u* = [A1(a21 — Br) — r]/(Cr) which is
globally asymptotically stable. If Ay (a1 — Br) < r, then the equilibrium
ug = 0 is globally stable.

We are now in a position to state and prove a result on the global
attractiveness of the positive equilibrium E* of system (1.2).

Theorem 3.1. Let (H1)-(H2) hold. Then the positive equilibrium
E*(x7,x3,y*) is globally attractive provided that one of the following
assumptions holds:

(H4) C(CL21 — 2B7‘)(7‘1 — Dl’r‘z/(Dz + 7‘2)) > alz(azl — B’I‘),
(H5) as1 < 2Br, C(Tl — D1T2/(D2 + 7“2)) > ap2-

Proof. Let (z1(t),z2(t),y(t)) be any positive solution of system (1.2)
with initial conditions (1.3).

Let
U; = lim sup z;(t), V; =liminfz,(t), i=1,2,
t—+o0 t—+oo
U =1 t V=1 f
i sup y(t), lim inf y(t).

We now claim that Uy = Vi =2, Us =Vo =23, U=V = y*.
It follows from the first and the second equations of system (1.2) that

xl(t) S xl(t)(rl - auxl(t)) + DzIQ(t) - Dlxl(t),

(33) x'g(t) = —ToZ9 (t) + Dlxl(t) — D2l’2(t).
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Consider the following auxiliary equations

U1 (t) = U (t)(?“l — a11u (t)) + DQUQ(t) — Diuq (t),

(34) ﬂg(t) = —TolUsg (t) + Dqiuq (t) — D2u2(t).

By Lemma 3.1 we derive from (3.4) that

_ r1(Dy+12) — Dyry

lim w(t) = ,
t—+00 1(®) a11(D2 + r2)

. D;[r1(D2 + r2) — Dyra)

1 t) = .
t—gl-noo ’LL2( ) au(Dg =+ 7‘2)2

By comparison it follows that

7’1(D2 + 7‘2) — D17‘2

limsup z(t) < = M7,
t—H—oop 1(t) < a1 (D2 +12) !

D D - D
lim sup z»(t) < 1lr(Ds £ r2) 172] = M2,

t—+o0 a11(D2 +12)?

1773

Hence, for ¢ > 0 sufficiently small, there is a 77 > 0 such that if ¢ > T7,
z;i(t) < M7* + ¢, i =1,2. We therefore derive from the third equation

of system (1.2) that, for ¢t > T} + 7,

agy (M7* +e)y(t —7)

3.5 y(t) < — t).
(35) y()_l+B(Mf1+6)+Cy(th) ry(?)
Consider the following auxiliary equation

M t—
(3.6) a(t) oM Hejult=7) g

T 1+ B(M? +¢)+ Cult —7)
By Lemma 3.2 it follows from (3.6) that

. (agl—Br)(Mfl—i—E)—r
1 t) = .
Jm u(?) Cr

By comparison, we obtain that

— Br)(M{* +¢) —
U = limsupy(t) < (021 r) (M + ) -
t——+o00 Cr
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Since this is true for arbitrary ¢ > 0 sufficiently small, it follows that
U < MY, where
(a1 — Br)M;* —r

Cr '
Hence, for € > 0 sufficiently small, there is a T5 > T} + 7 such that, if
t> Ty, y(t) < MY +e.

For € > 0 sufficiently small, we derive from the first and the second
equations of system (1.2) that, for t > T,

MY =

_ alz(Mil +€)
1+ C(Mf + 6)
x'g(t) = —ToZ9 (t) + Dlxl(t) — D2l’2(t).

&1(t) > 21(t)(r1 — annz1(t) ) 4+ Daozo(t) — Dy (t),

By Lemma 3.1 and a comparison argument, it follows that

. . 1 alg(Mi] + E) D11"2
1 fxi(t) > — — —
tlglﬁgo xl( ) T oan |:T1 1+ C(Mf + &') D2 + 7o ’
D1 [T _ alg(M%—i-&') _ D1T2 :|
Y1+ OMY +e) Datrol

lim inf z5(t) >
t—r+00 2(t) 2 a11(D2 + r2)

Since these inequalities hold true for arbitrary € > 0 sufficiently small,
we conclude that Vi > Ny*, Vo > N2, where

- 1 alef/ D17‘2
Nll =— |- y )
a1 1+CM1 Do + 7o
- D1 alng DlT'Q
N12 = L — 7 .
au(Dg + 7“2) 1+ CMl Dz + 79

Therefore, for € > 0 sufficiently small, there is a T3 > T5 such that if
t > Tg, Iz(t) 2 Nf:' — &, = ].,2

For ¢ > 0 sufficiently small, it follows from the third equation of
system (1.2) that for ¢t > T5 + 7,

) a1 (NT* —e)y(t — )
90 2 TN o) + Oyt — 1)

—ry(t).

By Lemma 3.2, a comparison argument shows that

.. (agl—B’I")(lel —6)—7"
V=1 fy(t) > .
lim infy(t) > Cr
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Since this is true for arbitrary € > 0 sufficiently small, we conclude that
V > NY, where
(a1 — Br)Ny* —r

Cr '
Therefore, for € > 0 sufficiently small, there exists a Ty > T3 + 7 such
that if ¢ > Ty, y(t) > NY —e.

Again, for £ > 0 sufficiently small, it follows from the first and the
second equations of system (1.2) that, for ¢t > Ty,

. alz(N{’ —E)
@1 (t) < @ (2) <7“1 —anz(t) — 1+ B(M? +¢) + C(NY — 6))

+ ngg(t) — Dlxl(t),
Z‘Q(t) = —T2$2(t) + Dlxl(t) — DQ.Z‘Q(t).

NY =

By Lemma 3.1 and a comparison argument, we derive that

I ) < 1 [ a12(NY —¢) Dyry |

imsup z —|r — — ,

b= ™ T I BT t o)t C(NY —¢)  Dat o)

. D1 alg(Nf —6)

limsupzs(t) < ———— |1y —

t—>+oop 2()_ all(D2+’I‘2)|: ! 1+B(Mfl+5)+C(Nil*€)
Dyry |
Dy +ra]’

Since these inequalities are true for arbitrary € > 0 sufficiently small,
it follows that U; < M3* and Uy < M3?, where

T ]. alsz’ D17‘2
M = —|r — >  — ,
ail 1+BM11 +CN1 D2+7"2
z D, aja Ny Do
Mg2 = - > 7 - :
all(Dg—l-Tg) 1+BM11 +CN1 D2+’I‘2

Hence, for £ > 0 sufficiently small, there is a T5 > T, such that if
t>Ts, 2;(t) < My +¢,i=1,2. We derive from the third equation of
system (1.2) that, for t > T5 + 7,

. az1(M3* +e)y(t — 1)
W0 < TTBOE 1o + Cylt—7)

(3.7) —ry(t).



1776 RUI XU, ZHIEN MA AND QINTAO GAN

By Lemma 3.2 and a standard comparison argument, it follows that

— Br)(MF +¢) —
U = limsupy(t) < (021 r)(My" +¢) =
t——+o0 Cr

Since this is true for arbitrary € > 0 sufficiently small, we conclude that
U < MY, where
(a1 — Br)My* —r

Cr '
Hence, for € > 0 sufficiently small, there is a Ty > T5 + 7 such that if
t>Ts, y(t) < Mj +e.

For € > 0 sufficiently small, it follows from the first and the second
equations of system (1.2) that, for ¢t > Tg,

MY =

+ Dzl‘g(t) — Dlxl(t),
Iz(t) = 7’/‘2I2(t) + Dlxl(t) - ngg(t).

By Lemma 3.1 and a comparison argument, we derive that, for ¢ > Tg,

o 1 alg(Mg—FE) Dy ]

lim inf 2, (t) > — |r; — B

im0 > oL | - e g e B

o D, a12(Mj +¢)

liminfzy(t) > ——— 1 —

lim inf a5(¢) > a11(D2+T2)[ YT1IH BN —e) + C(MY +e)
Dy ]

D2+7'2_‘

Since these inequalities hold true for arbitrary € > 0 sufficiently small,
we conclude that Vi > N3*, Vo > N32, where

z 1 (ngMéy D11"2
Nyt = —|r — z T )
all 1+BN11 +CM2 D2+T‘2
N2 — Dl |:r _ a12M2y _ D17‘2 :|
2 an(D2+r2) ! 1+BN{E1+CM;J D2+7"2 )

Therefore, for € > 0 sufficiently small, there is a 77 > Ty such that, if
t>1Tx, :Ei(t) > N;’ —&,1=1,2
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For ¢ > 0 sufficiently small, it follows from the third equation of
system (1.2) that, for t > Ty + 7

. az1 (Ny* —¢e)y(t — )
(38) Y2 N e+ oy Y

By Lemma 3.2 and a standard comparison argument, we obtain from
(3.8) that

.. (ag1 — Br)(N3* —¢e) —r
=1 f > .
v =lmintv) 2 Cr

Since this holds true for arbitrary ¢ > 0 sufficiently small, we conclude
that V' > NY, where

(agy — Br)N3* —r

Ng = Cr

Continuing this process, we derive six sequences M, M2, MY, N,
NP2 N¥Y n=1,2,..., such that for n > 2,

Me _i[r _ a1aNy_y ~ Dirg }
" T an| ' 14BMP,+CNY, Dy+ry|
M2 — D, [r _ a12N571 _ Dyry ]
" a11(D2 + 72) ! 1+ BM*, +CNY_, Ds+ry]’
MY — (agy — Br)M?* —r
3.9 Cr
NT— 1 I aja MY _ Durg
" an ' 1+BNIL +CM{ Dy+tr
Nwz _ Dl — algMg _ DlT‘z
" an(Datra)| ' 14BN, +CMY Dyt

(agy — Br)N* —r

NY =
" Cr

Clearly, we have

(310) NI <V, <Ui< M, i=1,2  NYSVSUS<MY.
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It is easy to see that the sequences M, MZ>? and MY are nonincreas-
ing, N>, N7 and N? are nondecreasing. Hence, we let

lim MM =z, lim M2 = Zo,
n—-+00 n—-+o0o
. y_ o . o1 _
(3.11) pam M=, pim Nt =2y,
lim N2 =z, lim NY =y.
n——+00 n—+00 =
We therefore derive from (3.9) and (3.11) that
I i o aizy B D7y
! ai1 ! 1+Bfl+0g D2+’I‘2 ’
1 [ a2y Dyry }
Ty = — | — — )
(312) aii 1+ Bﬁl + Cy Dy +1rg
_ Dy _ _ (a21 — BT’)fl -7
To = z = ’
2 Dz + T2 4 C’f‘
D, (ag1 — Br)z, —r
Loy = ———X = .
2T Doty Y Y Cr

It follows from (3.12) that
(313) (LllBC’f‘f% + auC(agl - Br)ilgl

D7y _
=C — 1+ B
r(rl D2+r2>( + BT)

D
+ [C (7“1 - D, 1_:27“2> — a12] [(a21 — Br)zy — 1],

and

(314) anBCrg% + anC(a21 — Br):i‘lgl

:C’I‘(T‘l _ _Darz >(1+Bg1)

Dsy + 7o

D
+ |:C (7“1 — D, 1_:27“2> — a12:| [(a21 — BT’)fl — T].

(3.13) minus (3.14),
(3.15)

D
auBCr(j:f — gf) = BCr (Tl — 172

D5 + 7q

)@ -

D
+ (@21 — Br) [C <7’1 D, 1_:27_2> - a12] (z; — 21).
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If Z; # z,, then we derive from (3.15) that
(3.16)

D
a11BCr(Z1 + z,) = C(2Br —az) <7“1 - L

D2+’I‘2

> + alz(agl — BT).

Hence, if (H4) holds, a contradiction occurs. Therefore, If (H4) holds,
then z; = z;.

Further, (3.13) plus (3.14),

(317) anBCr(:i‘f + l?) + 2(1110((121 — Br):ilgl
Dyro
Dy + 1y

= BCr <T1 — >(51 +z;) + 2a197

D
+ (a21 — Br) {C(h - D, 1_:27‘2> - a12} (Z1 + z9)-

If (H5) holds, on substituting (3.16) into (3.17), we derive that

_ D17‘2
C - 2B =|C — _
a1l (a21 7‘)1‘1% [ (7“1 Dy + r2> (112:|

- [(a21 — Br)(Z1 + z,)] + ayar.

Hence, if Br < ag; < 2Br, C(ry — Dir2/(Ds + r3)) > a12, a contradic-
tion occurs. Hence, if (H5) holds, Z; = z;.

We therefore derive from (3.12) that if (H1), (H2), (H4) or (H1),
(H2), (H5) hold, then Zo = x5,y = y. Accordingly, we have that

U=V =zj, U = Vo = a3, U=V =y"

It therefore follows that

. o . . . o
tll+moo xl(t) =Ty, tl}Iquoo :Eg(t) = T2, til+moo y(t) =Y.
The proof is complete. |

Theorem 3.2. If (H1) and (H3) hold, then the boundary equilibrium
E1(29,29,0) is globally stable, i.c., the prey species is permanent and
the predator species goes to extinction.



1780 RUI XU, ZHIEN MA AND QINTAO GAN

Proof. Let (z1(t),z2(t),y(t)) be any positive solution of system (1.2)
with initial conditions (1.3). It follows from the first and the second
equations of system (1.2) that

:'vl(t) < xl(t)(rl — anxl(t)) + Dgwg(t) — Dlml(t),

(3.18) do(t) = —rama(t) + Dyzy(t) — Doza(t).

By comparison we derive that

r1(D2 + r2) — Dirg

limsup z(t) < = M,
(3.19) t%Jroop 1(t) < a1 (D2 +72) !
’ . Dy[r1(D2 4 r2) — Dirs] z
lim sup 22 (t) < = M2
t—>+oop 2(t) < ai1(Dy +12)?2 !
Hence, for € > 0 sufficiently small satisfying
r1(Dy +13) — Dyirg >
3.20 as1 — Br +e) —r<O,
(3.20) (4 )< a1 (D2 +12)

there is a Ty > 0 such that if ¢ > 17, x;(¢) < M +e,i=1,2.
It follows from the third equation of system (1.2) that, for t > T; + 7,

az (M +€)y(t — 1)

3.21 y(t) < —ry(t).
(3.21) W< T BOE o) + Oyt —m) VY
Consider the following auxiliary equation

M t —
(3.22) a(t) = — Mt Feult=r)

1+ B(M7 +¢)+ Cult— 1)

By Lemma 3.2 it follows from (3.20) and (3.22) that

lim wu(t) =0.
t—+oo
By comparison, we have

Hence, for £ > 0 sufficiently small satisfying (3.20), there is a Tp, > T}
such that if ¢t > Ty, y(t) < e.
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For € > 0 sufficiently small satisfying (3.20), it follows from the first
and the second equations of system (1.2) that, for ¢ > Ty,

aj12€

Il(t) Z Il(t) (7‘1 — au:vl(t) — 1+ CE) + Dgxz(t) — Dlml(t),

:i?g(t) = —T‘ng(t) + Dlwl(t) — ngg(t).

By comparison we derive that

. . 1 a/lzs D1T2
1 fri(t) > —|r1 — B
iminf x4 (¢) > [7"1 1+ Ce D2+7“2}

t—+o0 ail

D
liminf zo(t) > — [7”1

a12€ D17‘2 :|
t——+o00 an(Dg + 7“2) )

" 1+Ce Dy+ro
Since € > 0 is arbitrarily small, we conclude that

r1(Dg +12) — Diro

\%

lim inf 24 (¢)

t——+o0 - an(Dz + 7‘2)

. . D1 [7‘1 (D2 + 7‘2) — D1T2]
1 fasy(t) >

oo z2(t) = a1 (D2 +1r2)? ’

which, together with (3.19), yields

r1(D2 4+ r2) — Diro 0

lim x,(t) = =,
t—+00 1(®) a11(D2 + 7r2) !
Dq[r1(D2 + r2) — D173] 0
1 t) = =29
t—}l—zloo 372( ) au(Dg =+ 7'2)2 372

This completes the proof. o

Using similar arguments as those in the proof of Theorem 3.2, we can
obtain the following result.

Theorem 3.3. Ifryi(Da+rg) < Dyrg, then the equilibrium Ey(0,0,0)
is globally stable, i.e., both the prey and the predator population go to
extinction.

4. Discussion. In this paper, we discussed the global dynamics
of a two species predator-prey model with Beddington-DeAngelis type
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functional response and prey dispersal between two patches in which
the breeding area in one of the patches is damaged. By using the
iteration technique and by comparison arguments, respectively, we
established sufficient conditions for the global attractiveness of the
positive equilibrium and the global stability of each of the boundary
equilibria of system (1.2). By Theorems 3.1, 3.2 and 3.3, we see that,
if (H1)—(H2) hold, then both the prey and the predator of system (1.2)
are permanent if (H4) or (H5) holds; the predator species is extinct
and the prey species is permanent if (H3) holds; both the prey and the
predator of system (1.2) go to extinction if ri (D3 + re) — D7y < 0.
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