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PERIODIC SOLUTIONS IN
A DELAYED PREDATOR-PREY MODEL
WITH NONMONOTONIC FUNCTIONAL RESPONSE

LIN-LIN WANG, YONG-HONG FAN AND WEI-GAO GE

ABSTRACT. By using the continuation theorem of coinci-
dence degree theory, the existence of a positive periodic so-
lution for a delayed predator-prey model with nonmonotonic
functional response

{ @/ (t) = e(t)(a(t) — b(1)z(t) — (@(t)y(1)/(m® + ca(t) + «(1)),
¥’ (1) = y()(u()z(t — 7))/ (m® + ce(t — 7) + 23(t — 7)) — d(1)),

is established, where a(t), b(t), u(t) and d(t) are all positive
periodic continuous functions with period w > 0,¢ >0, m > 0
and 7 is a nonnegative constant. In particular, our result
improves one former conclusion.

1. Introduction. In microbial dynamics or chemical kinetics, the
functional response describes the uptake of substrate by the microor-
ganisms. In general the response function f(x) is monotone. However,
there are experiments that indicate that nonmonotonic responses oc-
cur at the microbial level: when the nutrient concentration reaches a
high level an inhibitory effect on the specific growth rate may occur.
This is often seen when microoganisms are used for waste decomposi-
tion or for water purification, see Bush and Cook [3]. The so-called
Monod-Haldane function

fz) =

cx
m2 + bx + x2

has been proposed and used to model the inhibitory effect at high
concentrations, see Andrews [1]. In experiments on the uptake of
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phenol by pure culture of Pseudomonas putida growing on phenol in
continuous culture, Sokol and Howell [14] proposed a simplified Monod-
Haldane function of the form

fz) =

cx
m2 4 x2

and found that it fits their experimental data significantly better than
the Monod-Haldane function and is simpler since it involves only two
parameters.

Ruan and Xiao [12] studied the system with this simplified Monod-
Haldane functional response:

(1.1) {w’(t)=r(t)[ (z(t)/K)] = (z(t)y(t))/(m? + 23 (t)),
y'(t) = y()[(ux(t))/(m? + 2*(t)) — d].

And, for the standard Holling type IV function, i.e., the Monod-
Haldane function, Zhu, Campbell and Wolkowicz [19] gave a detailed
analysis of the system
(1.2)

{w’(t)=7‘ z(t)[1 = (z(t)/K)] = (2(t)y(t))/(az?(t) + ba(t) + 1),
y()[(na(t))/(az?(t) + ba(t) + 1) — d].

Based on some experimental data, Caperson [14] observed that there
is a time delay between the changes in substrate concentration and
the corresponding changes in the bacterial growth rate. Following
Caperson’s observation, Bush and Cook [3] modified system (1.1)
to allow the growth rate of the microorganism to depend upon the
substrate concentration 7 unit of time earlier. Their model is a system
of two delay differential equations of the form

(1.3) {””'(t) = ra(t)[1 — (z(t)/K)] — (z(t)y(t))/(m* + (1)),
V(1) = y(0) (ualt — 7))/ (m? +22(t — 7)) — d,

where r, K, u, 7 and d are positive constants and m is a real constant.
We remark that there are many different kinds of delayed predator-prey
models in the literature, for more details we can refer to [6, 10, 17].
For some systems with monotonic function response, we refer to [9, 11,
16].
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In the real world, the variation of the environment plays an important
role in many biological and ecological systems. Thus, the assumption
of periodicity of the parameters in the way (in a way) incorporates
the periodicity of the environment (e.g., food supplies, mating habits,
seasonal effects of weather, etc.). Motivated by such considerations, in
the next section of this paper, we consider the existence of periodic
solution of the corresponding nonautonomous periodic system with
Monod-Haldane function response
(1.4)

{ a'(t) = z(t)[a(t) — b(t)z(t)] — (z(t)y(t))/(m? + ca(t) + 2*(t)),

y'(t) = y()[(p(t)x(t — 7))/ (m* + cx(t — 7) + a®(t — 7)) — d(¢)],

where z(t) and y(t) represent predator and prey densities, respectively;
a(t) stands for the intrinsic growth rate of the prey population, a(t)/b(t)
stands for the carrying capacity, u(t) stands for the rate of conversion
of prey captured to predator and d(t) stands for the natural death rate
of the predators. They are all positive periodic continuous functions
with period w > 0, ¢ > 0, m > 0 and 7 > 0 all constants. By using
the coincidence degree theory developed by Gaines and Mawhin [8], we
will establish the existence of at least one positive w-periodic solution of
system (1.4). For work concerning the existence of periodic solutions
of delay differential equations, we refer to [7, 13, 15, 18] and the
references cited therein.

2. Existence of periodic solution. In order to obtain the
existence of a positive periodic solution of system (1.4), we first make
the following preparations.

Let Q@ C R"” be an open bounded set with closure Q and f €
CYHQRY) N C(QR™). For x € Q, let Js(z) denote the Jacobian
determinant of f at x and Sy be the set of all critical points of f,
ie, Sy ={r € Q:Js(x) =0}. Fory € R"\ f(OQU Sy), ie., y is a
regular point of f, define the degree of f at y as

deg {f,Qy} = > sgnJs(x)
zef~(y)
with the agreement that »_, = 0.

Let X and Z be two Banach spaces, Dom L C X a subspace and
L : DomL — Z a linear mapping. The kernel of L is defined by
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Ker L = L71(0) and its range by ImL = L(Dom L). Let Coker L =
Z/ITm L be the quotient space of Z under the equivalence relation
2’2 & z—2 € ImL. Thus, CokerL = {z +ImL : z € Z}. So
dim Coker L = codim Im L.

The linear mapping L is called a Fredholm mapping if (i) Im L is
closed in Z and (ii) Ker L and Coker L are finitely dimensional. The
index of L is defined by

Ind L =dimker L — codimIm L.

If Ind L = 0, then L is called a Fredholm mapping of index zero.
If L is a Fredholm mapping of index zero, then there exist continuous
projections P: X — X and @ : Z — Z such that

ImP=KerL and ImL =Ker@Q =1Im (I — Q).

Define Lp : Dom LNKer P — Im L as the restriction Lpom r.nKer P Of
L to Dom LNKer P. Then Lp is an isomorphism. Define Kp : Im L —
Dom L by

Kp =Ly

Then (a) Kp is one-to-one and PKp = 0; (b) On ImL, LKp = I;
(¢) On Dom L, KpL =1 - P.

_Let N: X — Z be a continuous mapping. [V is called L-compact on
Qif QN(RQ) is bounded and Kp(I — Q)N : 2 — X is compact. Since
Im @ is isomorphic to Ker L, there is an isomorphism

J:Im@Q — Ker L.

Theorem A [2]. Let X and Z be two Banach spaces, and let L be a
Fredholm mapping of index zero. Suppose that N : Q@ — Z is L-compact
on Q0 with Q0 open bounded in X. Furthermore, assume that

(a) for each A € (0,1), z € 9NDom L,
Lz # ANz;

(b) for each x € 9Q N Ker L,
QN # 0,
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and
deg{JQNz,QNKer L,0} # 0, where JQN : Ker L — Ker L.

Then the equation Lz = Nz has at least one solution in Q N Dom L.

In what follows we shall use the notation

_ 1 « .
g [ rman 1t = min i) = max 150)

te[0,w] te0,w]

where f is a continuous periodic function with period w.

We are now in a position to state some lemmas which are useful in
proving our main result.

Lemma 2.1. If system (1.4) has an w-periodic solution, then the
following inequality holds:

(HO) &> (2m+ c)d.
The proof is obvious and we will omit it.

For the sake of convenience, in the rest of this section, we denote

k= (@ — cd)® — 4(dm)?.

Theorem 2.1. Assume that

(H1) i —cd+Vk > 2da/b, i — cd — Vk < 2da /b,
and
(H2) ap® > bM(m? + cexp{B*} + exp{2B*})d,

hold true, where

B*=1In <%> + aw.

Then system (1.4) has at least one positive w-periodic solution.
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Proof. Since

2(t) = 2(0) exp { /0 t {a(t) — b{e)e(t) - —— cj((tt))Jr - (t)] dt},
o0 =y ep{ [ [ BT )] ),

the solution of system (1.4) remains positive for ¢ > 0; let

(2.1) z(t) = exp{z1(t)}, y(t) = exp{z2(t)},
and derive that

1(t) = a(t) — b(t) exp{z1(t)}
B exp{zs(t)}
(2.2) m? + cexp{z1(t)} + exp{2z1(t)}’
z! (t) _ /J,(t) eXp{.Z'l(t - T)}
2 m? + cexp{z1(t — 7)} + exp{2z1(t — 7)}

—d(t).

In order to use Theorem A to system (1.4), we take
X = Z = {a(t) = (x1(t), z2(t))" € C(R,R?) : z(t + w) = x(t)},
and denote

o] = ea(2), 22(0)" 1) = max [ea(6)] + max foa()].

Then X and Z are Banach spaces when they are endowed with the
norms || - ||.

Set
o expl2(0)
. (1) = b(t) explas ()} = o T + e (0]
p(t) exp{a(t — 1)} —d(t)
m? + cexp{zy(t — 7)} + exp{2x1(t — 7)}
and

1 [¢ 1 /¢
Lz =2, Pz = —/ z(t)dt, x € X, Qz= —/ z(t)dt, z € Z.
wJo w Jo
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Evidently, Ker L = {z | z € X,z = R?}, ImL = {2 | z €
Z, [, 2(t)dt = 0} is closed in Z and dimKerL = codimImL = 2.
Hence, L is a Fredholm mapping of index zero. Furthermore, the
generalized inverse (to L) K, : Im L — Ker P N dom L has the form

K,(z) = /Ot z(s)ds — %/Ow /Otz(s) ds dt.

Thus,
QNz
) % /0 i [a(t) — b{t) exp{ar ()} — — +Cexp§zf({;;i(i)ixp o (t)}] dt
% /0 m? 1 cexp?itl)(:)?fj;]l»(—T-;X;){}2z1(t . d(t)] dt
and
K,(I- Q)N
[ o snewtenon - S
= ¢
/0 m? + cexpl{tx)(:}?fﬁ(i ;x;){];xl(s Oy d(s)} ds
B / ’ / [ - o) expar (o)
o Jo L
B . T mrt cexpzzll)({tgﬁ(i)ixpﬂxl(s)}:| ds dt
L /0 /0 | m2 + cexpfii)(:}ipia)c]l-(j ;x;){}le(s Oy d(s)] ds dt

/ a(s) — b(s) exp{z1(s)}
0

_ exp{wa (s)} ] s

) -~ m2 + cexp{w1(t)} + exp{2z1(s)}
t 1\ [7 u(s) exp{z1(s —7)} —d(s
L (w 2> /0 | m? + cexp{z1(s — 7)} + exp{2z1(s — 7)} « )]

Clearly, QN and K,(I — Q)N are continuous and, moreover, QN (Q),

K,(I-Q)N(Q) are relatively compact for any open bounded set 2 C X.
Hence, N is L-compact on €; here Q is any open bounded set in X.
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Now we reach the position to search for an appropriate open bounded
subset € for the application of Theorem A. Corresponding to equation
Lz = ANz, X € (0,1), we have
(2.3)

N TP exp{as (1)}
@y (t) = /\[ (t) —b(t) exp{ea (t)} — 5 coplz (D] 1 exp{%l(t)}] :
’iE) — w(t) exp{e1(t — )} _ _
z2(t) = A |:7n2 + cexp{z1(t — 7)} + exp{2z1(t — 7)} d(t):| dt=0.

Suppose that z(t) = (x1,22) € X is a solution of system (2.3) for
a certain A € (0,1). By integrating (2.3) over the interval [0,w], we

obtain
“ b(E) exolan ()1 exp{za(t)} B
/0 |:a(t) b(t) exp{z1(t)} Y +exp{2m1(t)}] dt =0,
’ p(t) expfes (t — 1)} _ _
/0 m? + cexp{z1(t — 7)} + exp{2z1(t — 7)} d(t):| dt = 0.
Hence,
(2.4)
i exp{z,(t)} } o
/0 [b(t) exp{z1(t)} + 7 T coxplai (D)} + expl2a1 (0] dt = aw,
and
¢ u(t) exp{z1(t —7)} ] -
(25) /0 [mQ +cexp{zi(t — 7)} + exp{2z1(t — 7)} dt = dw.

From (2.3), (2.4) and (2.5), we obtain

/0 0] dt < /0 " Ib(t) explan ()}] dt

(2.6) " / [m2 m cexp{eszﬁ(f ixp{m(t)}} o
+ /0 "t dt

= 2aw,
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and
(2.7)
- ¢ p(t) exp{ay (t —7)}
/0 |z ()] dt < /0 [mz +cexp{zi(t — 7)} +exp{2z,(t — 7)} &
+ dw = 2dw.

Notice that (z1(t), z2(t))? € X. Then there exist &, n; € [0,w], i = 1,2,
such that

2.8 (&) = min z;(t), x;(n) = i(t), i=12.
(2.8) zi(&) = min @i(t),  @i(n) = max a:(t),

By (2.4) and (2.8), we have

aw > bw exp{z1(£1)},

z1(&1) <In (%)

From the first equation of (2.3), we have

that is,

(2.9) z)(t) < Aa(t) < a(t),
and

exp{z2(t)}

(2:10) —2(t) < b(t) exp{a1 ()} + m? + cexp{z1(t)} + exp{2z1(t)}

Then . .
/ z1(t) dt < / a(t)dt, fort>¢&;.
1

1

This implies that
(2.11) z1(t) < In (%) +aw, fort> ¢,

and

/ * o)

< /t ; [b(t) exp{z1(£)} +

exp{z2(t)}
m? + cexp{z1(t)} + exp{2z1(¢)}
for t < &.

dt,
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By (2.4), we obtain

(2.12) z1(t) < Iln (%) +aw, fort<é&;.
Hence,
(2.13) z1(t) < In (%) + aw.

By virtue of (2.5) and (2.8), we also have

pexp{zi(m)} > dw

m2

and so 27
z1(m) >1n (mT>
m

Then

© o, m2d B

. I = 1\ ) — xr Zm| — | — zaw.

(2.14) 02 oa(m) [ i @) de =1 2

0 14

It follows from (2.13) and (2.14) that
(2.15)
5 2
In <g> + 2aw|, | In <m_d> — 2aw } := Bj.
b Iz
By (2.4), we have

z2(&2) < In(a(m? + cexp{B*} + exp{2B*}) := H,

7

max |z1(t)] < max{
te[0,w]

and by a similar analysis as above, we can obtain
l‘z(t) < H,+ dw.
From (2.5) we may conclude that

/“ [ pu(t) exp{zi(t — 1)}

m? + cexp{z1(t — 7)} + exp{2z(t — T)}} @

L w
1
= t— dt
~ m? + cexp{B*} + exp{2B*} /0 exp{z(t — )}
put w
- t)} dt
m? + cexp{B*} + exp{2B*} /0 exp{z1(t)} dt,
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which implies that

(m? + cexp{B*} + exp{2B*})dw
= .
©

/0 " expla ()} dt <

Notice that

[ { exp{a(t)} ] i< [ ewaat)a

m? + cexp{z1(t)} + exp{2z:(t)}

and

/Ow b(t) exp{z(t)} dt < bM /Ow exp{z1(t)} dt

< oM (m? + cexp{B*} + exp{2B*}) dw
— L )
W

also in view of (H2) and (2.4), we have

’ apt — bM (m? B! 2B,1)d
/ exp{za(t)} dt < ar (m +cexpL{ } + exp{2B1}) m2w
0 7
:= exp{Hs }w,
which implies that
IZ(UZ) 2 H27
and so y
2a(0) 2 2a() = [ o (0] dt > Hy — 2o
0

Thus,
(2.16) max_|z3(t)| < max{|H; + dw|,|Hy — 2dw|} := Bs.

te[0,w]

Clearly, B;, ¢ = 1,2, are independent of A\. Under the assumptions in
Theorem 2.1, it is easy to show that the system of algebraic equations
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has a unique solution (u*,v*)T € int R?% with u*,v* > 0. Denote
B = By + By + Bs,
where B3 > 0 is taken sufficiently large such that
[(In{v*}, In{w" })|| = [In{v"}| + | In{u"} < Bs,

and define
Q={z(t)e X : ||z|| < B}.

It is clear that (2 satisfies condition (a) of Theorem A. When
z = (z1,22)" € 92N Ker L = 00N R?,

T is a constant vector in R? with ||z|| = B. Then

o exp{z2}
—-b -
a eXp{wl} m2 + cexp{xl} + eXp{le}
QN = exp{z1} -
—d+ ———

m? + cexp{z1} + exp{2z:}

Furthermore, let J : Im@Q — Ker L, x — z; in view of the assumptions
in Theorem 2.1, it is easy to see

deg {JQNz,QNKer L,0} #0.

By now we know that Q verifies all the requirements of Theorem A
and then system (2.2) has at least one w-periodic solution. By the
medium of (2.1), we derive that (1.4) has at least one positive w-periodic
solution. The proof is complete. ]

Remarks. A recent paper [15] discussed a periodic predator-prey
system with a type IV functional response, a sufficient condition for the
system has at least two positive periodic solutions was given. When we
propose a model

z'(t) = z(t) [% - %COS(ﬂ't) - (; + ésin(wt)) x(t)}
z(t)y(t)
1+ z(t) + 22(t)

S (26 — cos(27t))x(t — 1) 1.
o) =y [ B (14 Lt )]
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periodicsolution

0.7
0.6
Y 0.5

0.4

0.3
0.07 0075 0.08 0.085 0.09 0.095

FIGURE 1. z(0) = 0.08401, y(0) = 0.705 and stepsize = 0.002.

We should point out that this system does not satisfy the condition of
Chen’s, while the sufficient condition we conclude here is actionable. It
is easy to verify that all the conditions in Theorem 2.1 hold true. Then
the above equation has at least one positive solution of period 1. We
sketch the periodic solution in Figure 1.

3. Discussion. The existence of the positive periodic solution
for system (1.4) in biology indicates that, under some reasonable
conditions, the prey species and the predator species will coexist in
the long run. In fact, conditions (HO) and (H1) imply the existence
and uniqueness of positive equilibrium for the following system

20 = a(t)[a - ba(t)] -

px(t—T)
m24cx(t—71)+22(t—1)

y'(t) =y(t) —dj.

Furthermore, condition (H2) along with (HO) and (H1) assure the
existence of positive periodic solutions for system (1.4). And our result
show that the common period w for the coefficient functions (i.e., the
intrinsic growth rate of the prey population, the rate of conversion of
prey captured to predator and the natural death rate of the predators
etc.) cannot be very large; enumeration examples show that when their
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common period is large enough, the positive periodic solution of the
system will disappear. Therefore we conclude that there must be a
critical value for this common period. What should this value be?
This will be an interesting problem for us to study later.
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