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THE ANALYSIS OF AN HIV/AIDS MODEL
WITH VACCINATION

LIU MAOXING AND JIN ZHEN

ABSTRACT. In this paper an ordinary differential equation
mathematical model for the HIV/AIDS epidemic model with
vaccination is presented. The dynamic of this epidemic model
is analyzed, and an optional vaccine efficacy is put forward.
The reproductive number, R, is defined, which is the number
of secondary cases that one infected individual will cause
through the duration of the infectious period. The disease-free
equilibrium is globally asymptotically stable when R, < 1 and
unstable when R, > 1. The existence of at least one endemic
equilibrium point is proved for all R, > 1. Based on the center
manifold theory, the stability of the endemic equilibrium point
is given. Theoretical results show that under a planned control
the number of HIV infected and AIDS individuals will be
eliminated.

1. Introduction. The Human Immunodeficiency Virus (HIV) is
the causative agent of Acquired Inexpediency Syndrome in humans
(AIDS). The transmission of HIV/AIDS is a serious problem to human
health. It is largely transmitted by the homosexual, IV drug user, or
through blood transfusion and mother-to-child transmission [4]. The
main objective is to control them and prevent their transmission [3].
It is significant to study these infectious diseases theoretically through
dynamic methods.

It is important to conduct widespread programs in which this disease
is controlled in people who are infected with it. Candidate vaccines
are on trial in several places to obtain definitive information about
their efficacy in inducing protection against infection. It is hoped that
these vaccines will reduce susceptibility to infection as well as reduce
the level of infections of the vaccinated individuals who subsequently
become infected. The application of vaccination programs has the likely
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effect of inducing behavioral change in those individuals subjected to it.
Blower and McLean [1] have pointed that a mass vaccination campaign
can increase the severity of the disease if the vaccine being supplied
resulted in only 50 percent coverage and 60 percent efficacy. If the
campaign is not accompanied by a change in behavior, Kribs-Zaleta
and Velasco-Hernandez [7] have found that a vaccination campaign
could fail to control the disease.

Mathematical models have been used to determine the ability of
an imperfect vaccine to control other infectious diseases, and some
of the findings have been corroborated by clinical studies (see [2, 5,
6, 8, 9] for general references). In this paper, HIV/AIDS infectious
disease dynamic models with vaccination have been established firstly
according to the properties of these infectious diseases. And, secondly,
the dynamic of this epidemic model is analyzed, including the stability
of an infection-free equilibrium and an endemic equilibrium. At last,
an optional vaccine efficacy is put forward.

2. The HIV/AIDS model with vaccination. In this paper, we
analyze the dynamics of the STA model that is based on subdividing
the whole population of an area or a country into five compartments,
namely: unvaccinated susceptible individuals (S1(t)), vaccinated sus-
ceptible individuals (S2(t)) and the HIV-infected individuals in primary
(I1(t)), secondary (I2(t)) and AIDS (A(t)) populations, so that the to-
tal population size is

(2.1) N(t) = S1(t) + Sa(t) + Ii(t) + Ia(t) + A(t).

2.1. The unvaccinated susceptible. The susceptible population
is increased by recruitment of individuals (either by birth or immigra-
tion), and reduced by infected, which may be acquired via contact with
infected individuals in either of the three infected classes (with effective
contact rate (), by vaccination (at a rate £) and by natural death (at
a rate ). The parameters 1; and 72 account for the assumed reduced
infectivity of infected individuals in the infected stage. This gives:

B(mIy + n212)

[— —
(2.2) S| = bN ~

Sl - 651 — #Sl.

2.2. Vaccinated susceptible individuals. The population of
vaccinated individuals is increased by vaccination of the susceptible.
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Since the vaccine does not confer immunity to all vaccine recipients,
vaccinated individuals may become infected but at a lower rate than
unvaccinated. The vaccinated class is thus diminished by this infection
and by natural death (at a rate ). Here, € accounts for the efficacy of
the vaccine-induced protection against infection. It is assumed that the
vaccine does not offer 100 percent protection against infection. This
gives:

By +m212)(1 —¢€)
N

(23) Sé = 651 - Sy — ,LLSQ.

2.3. HIV-infected individuals in primary. HIV-infected indi-
viduals in primary is increased by infection of unvaccinated susceptible
individuals and diminished by natural death (at a rate u) and by pro-
gression to the AIDS stage (at a rate o). This gives

B(mIi + nelz)

2.4 I =
(24) 1 <

Sl - 0’1]1 - ,uIl.

2.4. HIV-infected individuals in secondary. HIV-infected
individuals in secondary is increased by progression to the secondary
infection stage, and diminished by natural death (at a rate p) and by
progression to the AIDS stage (at a rate o3). This gives

B(mIi + n2l2)(1 —¢)

1 _
(2.5) I, = 2

Sz - 0'2I2 - [I,IQ

2.5. Individuals in the AIDS stage. The population is generated
by progression to the AIDS stage (at rates oy and o2), and diminished
by natural death (at a rate ) and disease-induced death (at a rate §).
This gives

(26) AI = 0'1_[1 + 0'2]2 —0A — /JA.

The model is governed by the following system of ordinary differential
equations:
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S} =bN — M& —&51 — pSi,

Sy =£51 — Blmly + 7;\2[[2)(1 —¢) Sy — uSs,
(27) I = 6—(771[1;7_ 772]2)51 —o1ly — ply,

I = B(mI + 7]7\2[12)(1 —¢) Sy — oaly — pul,

A =011 + o2l — §A — pA.

It is assumed that all state variables and parameters of the model are
nonnegative. The rate of change of the total population, obtained by
adding equations, is given by

(2.8) N'=bN — puN — §A.

Introducing nondimensional variables z; = S1/N, 2o = S2/N, 23 =
I;/N and z4 = I3/N, the variable A does not appear in the first four
equations of (2.7). To make the problem solvable while retaining the
broad features of the model, we make the assumption 03 = o5 = 0. This
assumption eliminates the AIDS class and leads to a reduced system

zh =b— B(mexs + naws)z — xy — by,

zh =&z — B(1 —e)(mas + nexa)zs — b,
r3 = B(mes + nazg)zr — bas,

zy = B(L —€)(mzs + mxs)rs — bay.

(2.9)

Our model is still a variable population model, and our original objec-
tive of investigating the effects of vaccinating susceptible individuals
can be undertaken and is not affected by the simplifying assumption
that leads to (2.9).

To simplify the calculation of steady states, we let y =1 —¢. A de-
tailed analysis concerning the existence and stability of the equilibrium
points will be done in the following section.
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3. Existence and stability of equilibria.

3.1. Disease-free equilibrium (DFE). This model has a disease-
free equilibrium, obtained by setting the righthand sides of (2.1) to
zero, given by

b £
EO : (x(f,acg,acg,mg) = (mama()aO)

Following [11], the linear stability of E° is obtained using the next
generation matrix for the system (2.9) as follows. Using the notation
n [11], the nonnegative matrix F' and the singular matrix V, the new
infection terms and the remaining transfer terms respectively, are given

by

(0B /(b+E)  bBna/(b+€)
(3.1) F_<§/37n1/(b+£) £ﬁvn2/(b+§)>’

(3.2) V:<8 2)

The vaccination reproduction number of infection, denoted by R,,, is
then given by R, = p(FV ~!), where p is the spectral radius. It follows
that

_ bBm +EByn2
(3.3) R, = T

From the above we draw a conclusion as follows:

Theorem 3.1. If R, < 1, the disease-free equilibrium E° is globally
asymptotically stable.

The threshold R, is known as the vaccinated reproduction number of
infection. It measures the average number of new HIV cases generated
by a single HIV infected individual during the course of his or her
infection in the presence of a vaccination program. A similar threshold,
known as the basic reproduction number, is obtained by setting £ = 0
and v =1 in R, giving
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(3.4) Ry =M.

b
The Ry is the average number of secondary cases generated by a single
infected individual in a completely susceptible population. And the
reproduction number,

(3.5) Ry =22

defines the number of secondary infections due to the infective, who as
susceptibles were vaccinated against the disease.

3.2. Existence of the endemic equilibrium. Using the repro-
duction numbers defined above, we can now examine the existence of
the equilibrium. In terms of model parameters, equation (2.9) for =}
can be written as

(3.6) z3{(Ro — YR0)(23)* — 2(R, — R*)z§ + (R, — 1)} = 0,
where R° is given by

b(yRo + 1;1)_ yb+8) %’Y(Ro _ %) 41

(3.7) R =

From (3.6) we see that either 2% = 0, a solution which gives the disease-
free equilibrium, z° = ((b/b+ &), (£/b+ €),0,0), or

(3-8) (Ry — yRo)(5)* — 2(Ry — R)aj + (Ry — 1) =0,
which gives the endemic equilibrium z* = (x}, 23, 3, z}). From (3.8),

we obtain
2} = Fy(Ry — YRo, Ry — 1) = Fi ("),

where
Fy()= (R”R_v RC)V;;/B
F_() — (Rv — Rc) — \/5’

Rv — ’)/Ro
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and
D= (Rv - RC)2 - (Rv - 'YRO)(Rv - 1)

It is evident that, as R, tends to yRg for R, > 1, the solution
x5 = F1(-) is unbounded, while the solution zj = F_(-) is bounded
since limpy g, F—(-) = (vRo — 1)/(7Ro — 1+ 7), where Ro +7 # 1
and 7 = (y(b+&))/b. We can see that only x5 = F_(-) is a solution
for R, > 1. For R, < 1, only zj = 0 is a solution. These results can
be summarized as follows:

Theorem 3.2. Consider system (2.9). If R, > 1, then for all
YRy > 0, there exists a unique endemic equilibrium point corresponding
to x5 = F_(-) while if R, < 1, then the disease free equilibrium point
1s the only feasible solution, and the two solutions coalesce at R, = 1.

3.3. Stability of the endemic equilibrium. We use the theory of
center manifolds to establish the stability of the endemic equilibrium
point 5 = F_(-). Consider system (2.9) which can be decomposed into
linear and nonlinear parts as follows:

(3.9) y=[f=Ay+Gy)

where y= (yh Y2,Y3, y4)T = ($3,$4,x1, m2)T7

bBm b3n2
B
Y Y72
N bb—E c +b gb o 0
m 12
Tbre pee  0FO0
_ Bymé _ Bm€ ¢ b
b+ ¢ b+ &
5?/3(2713/1 + 172?/2))
| Brya(myr + n2y2
Gly) = —Bys(my1 + m2y2)

—Byya(myr + 1n2y2)

The disease-free equilibrium is the line (z°,0), and the local stability
of the disease-free equilibrium changes at the point (z°,0). We use
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the results of center manifold theory in [11] to show that there are
nontrivial equilibria near the bifurcation point (z°,0). The procedure
requires the evaluation of the following constants:

(3.10)
- 1 2%fi = fi o
= 7 70 o 70 )
@ Z ijwk<2 0x;0xy, (27,0) + Z O‘”“28x]ax,( )
i,5,k=1 l=m+1

and
(3.11) b= i v;w; 0} (z°,0)

. . ]:1 (3 J 8xjamk b b}
of the normal form equation
(3.12) @ = au® + bpu + o(3),

where f; are given by (3.9), and 0(3) denotes terms of third order and
higher in v and p. It is easy to show that the righthand side of (2.12)
satisfies the conditions stated in [11]. At the disease free equilibrium,
p = R, — 1 =0, the matrix [oyx] = —Q~1P is given by

__bBm __bBme
p_ (b+¢)? (b+¢)?

B3 Q= feb—rb+8) pmeb—a0b+8) |
b(b+ £)? b(b+£)?

resulting in ¢ < 0 and b > 0. We can get the following theorem by
applying the theorem which is given in [11].

Theorem 3.3. Ifa and b are defined by (3.10) and (3.11), then there
exists a 0 > 0 such that

(i) If a < 0, then there are locally asymptotically stable endemic
equilibria near z° for 0 < p < €.

(ii) If a > 0, then there are unstable endemic equilibria near z° for
- < p<O.

Clearly, the solution F_(-) which exists for R, > 1 is locally asymp-
totically stable. A branch of super-threshold endemic equilibrium
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FIGURE 1. When b = 0.02, 8 = 0.1, n1 = 0.19, n2 = 0.1, £ = 0.01; v = 0.6,
v = 0.733 < 1, S1(t) and S2(t) approach their steady state values while if Iy (t)
and I>(t) approach zero as time goes to infinity, the disease dies out.

points exists near the disease-free equilibrium point at R, = 1; this
bifurcation is said to be supercritical. It is clear from Theorem 3.3
that, provided R, > 1, the disease cannot clear from the population.
The simulations are as in Figures 1 and 2.

4. Optional vaccine efficacy. The long-term expectation is that
vaccination will be the major control strategy for HIV/AIDS. In this
section, we address the problem in which vaccination is available to
a proportion of the population: We seek to derive conditions under
which vaccination alone can slow down or eradicate the disease. The
reproduction number in the presence of a vaccination strategy & is
obtained by setting

b vé
4.1 R, R + R,
( ) b g 0 b £ 1

which is a decreasing function of £ with R, (0) = Ry, R,(o0) = yR; and
hence Ry > vR;. When Ry < 1, the disease cannot develop into an
epidemic; hence, in this case, vaccination is not necessary. If Ry > 1,
we want to consider the following problem: What vaccination strategy
reduces the reproduction number R, below the threshold of one? We
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FIGURE 2. When b = 0.02, 8 = 0.15, g1 = 0.3, n2 = 0.2, £ = 0.01; v = 0.6,
» = 1.8 > 1, all the components Sy(t), S2(t), I1(t) and I3(t) approach their
steady state values as time goes to infinity; the disease becomes endemic.

formulate this as a problem for finding the critical value £* for which
a vaccination program succeeds in slowing down or in eradicating the
disease. This involves the following steps. First, the difference between
the reproduction numbers Ry and R, satisfies the Hsu Schmitz [10]
condition

(4.2) Ry — R, = &(Ro — ’le) > 0,

and secondly, differentiating R, with respect to £ gives

dRU o _b(Ro - ’}/Rl)
¢ (b+¢)
Lastly, we determine the critical fraction £* for which the vaccination

program succeeds in reducing R,, below the threshold of one. It is easy
to show that £* is given by

< 0.

(4.3)

b(1 — Ry)
4.4 >0
(4.4 ]
and that it exists for Ry > 1 > vR;. Note that, for Ry > vR; > 1,
there is no ¢ for which R, < 1. Hence, for Ry > yR; > 1 the disease
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will remain endemic in the population. Thus, we have the theorem as
follows:

Theorem 4.1. The disease can be eliminated if € > £* when

Ry > vRy; > 1, and the disease will remain endemic in the population
if Ro > vR1 > 1.

5. Discussion. In this paper, we analyze the SIA model of
HIV/AIDS with vaccination. We first examine the SIA model of
disease under the vaccination. And then the dynamics of this epidemic
model is analyzed. We find that the disease-free equilibrium is globally
asymptotically stable when R, < 1 and unstable when R, > 1. We
prove the existence of at least one endemic equilibrium point for all
R, > 1. In this paper, based on the center manifold theory, we
give the stability of the endemic equilibrium point. Last, an optional
vaccine efficacy is put forward. We have obtained a condition under
which vaccination would succeed in slowing down the disease, which
is Ry > vR; > 1; thus, under a planned control, the number of the
HIV/AIDS individuals will be eliminated.
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