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THE EFFECT OF CONSTANT AND
MIXED IMPULSIVE VACCINATION ON SIS EPIDEMIC
MODELS INCORPORATING MEDIA COVERAGE

YONGFENG LI, CHAOQUN MA AND JINGAN CUI

ABSTRACT. An SIS epidemic model incorporating media
coverage is presented in this paper. Impulsive vaccination
to susceptible individuals is considered. In general, impul-
sive vaccination is a proportional vaccination, but when the
number of susceptible individuals is very large, the number
of people who need to be vaccinated is also proportionally
increasing, considering limited vaccination ability of an area.
So we first investigate constant impulsive vaccination. Using
the discrete dynamical system determined by the stroboscopic
map, we obtain the exact periodic infection-free solution and
show that it is globally asymptotically stable if some condi-
tions are satisfied. After constant impulsive vaccination to a
large number of susceptible individuals, the number of sus-
ceptible individuals will gradually decrease; if the number of
susceptible individuals decreases below the above constant,
we will not use the above vaccination strategy. In that case
we will use a common proportional impulsive vaccination. So,
we consider mixed impulsive vaccination, and we also obtain
the exact periodic infection-free solution and show that it is
globally asymptotically stable.

1. Introduction. Vaccination is a commonly used method for con-
trolling disease: the study of vaccines against infectious disease has
been a boon to mankind. Many authors have investigated constant
vaccination and impulsive vaccination to susceptible individuals, see
[5, 6, 9, 14, 15], and the difference between constant vaccination and
impulsive vaccination has also been studied in [14], where impulsive
vaccination is a proportional vaccination. However, when the number
of susceptible individuals is very large, the number of people who need
to be vaccinated is also proportionally increasing, considering limited
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vaccination ability in an area. So, we consider constant impulsive vac-
cination when the number of susceptible individuals is very large. After
constant impulsive vaccination to a large number of susceptible indi-
viduals, the number of susceptible individuals will gradually decrease;
if the number of susceptible individuals decreases below the above con-
stant, the above constant impulsive vaccination is not reasonable. At
this time, we consider proportional impulsive vaccination if the number
of susceptible individuals is smaller than the constant.

In real life, many infectious diseases transmit through both horizontal
and vertical ways. These include such human diseases as rubella,
herpes simplex, hepatitis B, and AIDS, etc. For human and animal
disease, horizontal transmission typically occurs through direct or
indirect physical contact with infectious hosts, or through disease
vectors such as mosquitos, ticks, or other biting insects. Vertical
transmission can be accomplished through transplacental transfer of
disease agents; [1-3, 7, 8] considered this phenomenon. In our paper,
we assume a fraction of the offsprings of infected hosts are infected
at birth; hence, the infected birth flux will enter class I and vaccine
treatment is only taken to a proportion of newborns who haven’t been
infected at birth.

In classical epidemic models, the incidence rate is assumed to be
a mass action incidence rate with bilinear interactions given by £SI,
where  is the probability of transmission per contact, and S and I rep-
resent the susceptible and infected populations, respectively. However,
some factors such as media coverage, manner of life and density of popu-
lation, may affect the incidence rate directly or indirectly, nonlinear in-
cidence rate can be approximated by a variety of forms, such as 1759,
B(1 —cD)IS (¢ > 0), (kI'S)/(1+ aI?) (k,I,a,h > 0) which were dis-
cussed in [11, 12, 16], respectively. In this paper, we suggest a general
nonlinear incidence rate (81 — B2I/(m+1))SI (81 > B2 > 0,m > 0)
which reflects some characters of media coverage, where 81 = pcy,
B2 = pce (p is the transmission probability under contacts in unit
time), ¢; is the usual contact rate, ¢z is the maximum reduced con-
tact rate through actual media coverage, that is, 8; is the usual valid
contact rate, B2 is the maximum reduced valid contact rate through
actual media coverage and m is the rate of reflection on the disease.
Again, media coverage cannot totally interrupt disease transmission,
so we have 31 > (2. We use 821 /(m + I) to reflect the amount of con-
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tact rate reduced through media coverage. When infective individuals
appear in a region, people reduce their contact with others to avoid
being infected, and the more infective individuals being reported the
less contact with others; hence, we take the above form. Few studies
have appeared on this aspect [4, 13].

The paper is arranged as follows. In Section 2, an SIS model
incorporating media coverage and vertical transmission is given. We
consider constant impulsive vaccination of an SIS model in Section 3.
Using the discrete dynamical system determined by the stroboscopic
map, we obtain the exact periodic infection-free solution and show that
it is globally asymptotically stable if some conditions are satisfied. In
Section 4, we consider mixed impulsive vaccination. We also obtain
the exact periodic infection-free solution and show that it is globally
asymptotically stable if some conditions are satisfied.

2. An SIS model incorporating media coverage. In this
section, we give an SIS model incorporating media coverage and we
study a population which is composed of two groups of individuals
who are susceptible and infected with sizes denoted by S(t), I(t),
respectively. The sum S(¢) 4+ I(t) is the total population of N(t). The
natural birth and death rates are assumed to be identical and denoted
by b > 0; we assume that a fraction p (0 < p < 1) of the offspring from
the infectious class are born into the infected I, the offspring from
the susceptible and vaccinated classes are all susceptible individuals,
the infective individuals recover and reenter into the susceptible class
with rate A, the incidence rate is (81 — B2f/(m + I))(SI/N) and the
definitions of 31, B2 and m are the same as in Section 1. Influenza is
among the diseases for which our model is an approximation. Based
on the above assumptions, we have the following SIS epidemic model:

2.1) { §=bN — pbI +XI (1 — B2l /(m + D))(SI/N) - bS,
I=pbl 4+ (81 — B2I/(m+1I))(SI/N)— (b+ N)I.

In general ways, we should discuss constant vaccination and impulsive

vaccination on the SIS model. The models are the following:

S = (1—a)(bN — pbl) + X 4+ 6V

=By = BeI/(m + 1))ST = (b +q)S,

I =pbl + (B = B2I/(m +I))SI — (b+ NI,

V = a(bN —pbl) + ¢S — (b+0)V,

(2.2)
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and
(2.3)
S = (1—a)(bN —pbl) + A + 0V — (By — B2I/(m + I))(SI/N) — bS,

I =pbl+ (81 — B2I/(m +I))(SI/N) — (b+ NI, t # nr,
V = a(bN — pbl) — (b +6)V,
S(n7'+) =(1-gq)S(nt7),

I(ntt) = I(nT7), t =nr,

\V(n7F) = V(n77) +¢S(n77),

where a fraction a € [0,1] of newborns are vaccinated at birth and
the susceptible class is vaccinated with rate ¢. From models (2.2) and
(2.3), we have obtained some interesting results.

3. Constant impulsive vaccination. In general, we should dis-
cuss proportional impulsive vaccination to susceptible individuals, but
when the number of susceptible individuals is very large, the number of
people who need to vaccinate is also proportionally increasing. In fact,
the ability to vaccinate is limited in an area and the number of vacci-
nations can’t always increase with the increasing number of susceptible
individuals, but it can be controlled by the special vaccination ability
of the area’s medical personnel and other objective factors. Accord-
ing to this, we will modify the proportional impulsive vaccination to a
constant impulsive vaccination, and this constant should not be more
than the maximum vaccination number which vaccination personnel
can accept.

In this section, we investigate the effect of constant impulsive vac-
cination to control epidemic disease. Based on (2.2), subject to the
restriction S(¢) + I(t) + V() = N(t), without loss of generality, we let
N(t) = 1. Then we only need to consider the following model:

V =a(b—pbl) — (b+6)V,
(3.1) I(tT) = I1(t7),

VEt)=V(ET) + h,} .
1(0%) > 0,V (0%) > 0,

1—pb1+(,31—,321/(m+1))(1—I—V)I—(b+A)1,} ,
t £ nT,
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where h is the amount of constant impulsive vaccination; obviously, we
have 0 < h < 1.

Lemma 3.1. Suppose x(t) = (I(t),V(t)) is the solution of system
(3.1) with initial values I(0T) > 0 and V(0*) > 0. Then z(t) > 0,
that is, I(t) > 0 and V(t) > 0; and if [(0T) > 0 and V(0T) > 0, then
z(t) > 0 holds for all t > 0.

Proof. From (3.1), we have
Ij= =0, Vlrso,v=o = ab(l — pI) > 0,

and V(tT) > V(t), so the results are obviously true. The proof is
complete. ]

Theorem 3.1. If pb — A+ 60 > 0, then the system (3.1) is uniformly
ultimately bounded, that is, there exists a constant M > 0, such that
for any solution x(t) = (I(t),V(t)), we have I(t) < M and V(t) < M
when t large enough.

Proof. Let 8 = apb/(pb— A +6) and L(t) = BI(t) + V(t). We can
calculate DT L(t) along the lines of system (3.1),

DTL(t) < BB (1 —I)I — (b+ 0)L(t) + ba,

when I > 0; since 881 (1 — I)I can obtain the maximum at I = 1/2, we

have { DHL(t) < (1/4)8B1 — (b+ 0)L(t) + ba t # nr,

L(tT) <L(t)+h t =nr.
From Theorem 1.4.1 of [10], we obtain

L(t) < (L(0+) T W)e—(wm

b+46
h 1 — e~ (b+0)n7 (O 1nr) (1/4)Bp1 + ba
1 — ¢ (0+0)T b+0 ’

for t € (n7, (n+1)7]. Obviously, L(t) is uniformly ultimately bounded,
that is, there exists an M > 0, such that when ¢ is large enough we
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have L(t) < M, i.e., system (3.1) is uniformly ultimately bounded. The
proof is complete. o

In the following, we consider the subsystem of system (3.1),

(3.2) {V—bOz—(b—i-@)V t # nr,

V(tt)=V(t~)+h t=nr.
This subsystem is obtained by letting I = 0 in the system (3.1), that
is, this subsystem represents infection-free system of system (3.1).

Regarding system (3.2), we have the following lemma.

Lemma 3.2. System (3.2) has a globally attractive periodic solution
V(t) =ba/(b+ ) + he OFOCE7) /(1 — =G+ "t € (nr, (n + 1)7].

Proof. Suppose V(t) is any solution of system (3.2) and V(t) is a
periodic solution of system (3.2). From [10, Theorem 1.4.1], we have
(3.3)

V(#)

_ ba N h ba \ (pray  he” OTOUTnT)
= b+9+<v(0 )1e<b+0>rb+9>e T e

t € [n1, (n+1)7), where V(01) = ba/(b+ ) +h/(1 — e~ 07, In the
time interval nT < t < (n+1)7, system (3.2) has the following solution:

ba ba
(3.4) V() = b1 o + (V(m—) — b-l-—@> exp(—(b+ 0)(t — n1)),

nr <t<(n+1)r.

Using the second equation of system (3.2), we deduce the stroboscopic
map such that

Viln+1)7) = blil—_aﬁ + <V(n7’) — bi—_a9> exp(—(b+0)7) 2 g(V(nT)).

The map g has a unique positive fixed point:

bo h

Vi= b+9+ 1 —exp(—(b+0)7)
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The fixed point V* implies that there is a corresponding cycle of
period 7 in the vaccination population. So we obtain the complete
expression for the periodic infection-free solution over the mth time
interval nT <t < (n+1)7:

- ba he~ (b+0)(t—nT)
V“):b+9+ 1—e=(+0)7 ’

t € (nr,(n+ 1)7],

so we have

h ba
1—e 0tOT b1 9

V(t) = (V(0) - >e—@+”ﬂ+?@)

and limy_,, |V (£) — V(t)| = 0. The proof is complete. O

Theorem 3.2. The solution (0, V(t)) of system (3.1) is an infection-
free periodic solution and it is locally asymptotically stable if (pb — b —
A + 61 — ﬂlba/(b + 0))7’ < ﬁlh/(b + 0)

Proof. We let z(t) = I(t) and y(t) = V(t) — V(t). Then system (3.1)
can be reduced to
&= (pb—b- N+ (B~ Bz/(m+2)(1 -y V(D)
t # nr,
¥ = —pbaz — (b+ 0)y,
za+>—za—x}
t =nT,
y(t™) = y(t7),
its zero solution corresponding to the infection-free periodic solution
(0,V(t)) of system (3.1) and its linear system at zero is
&= (pb—b— A+ B1 — BV (),
t # nr,
y = —pbaz — (b+0)y,
x@*)—wux}
t =nT.

y(t*) = y(t7),

Using Floquet theory, we can calculate its zero solution to be asymp-
totically stable if the condition of theorem is satisfied. The proof is
complete. ]
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Theorem 3.3. If (pb —b— A+ B1)7 < B1h/(b+0), for any solution
z(t) = (I(t), V(t)) of system (3.1) with positive initial values, we have
lim; o0 I(t) = 0 and lim;—,oo |V () — V(¢)] = 0.

Proof. Suppose z(t) = (I(t), (t)) is any solution of system (3.1)
with initial values 7(0") > 0,V (0%) > 0. From system (3.1), we have
V > —(b+6)V. Then

{ -(b+0)V t # nr,
V) =V({t~)+h t=nr,

and assume that V(¢) is any solution of the above system. We can
choose a sufficiently small £ > 0 such that

o = ePO-0"AB1+B1e)T—L1h/(b+0) 1

We consider the following impulsive differential equation:

t=—(b+0)u t # nt,
{ (tY)=u(t")+h t=nr

From Lemma 3.2 and the comparison theorem of the impulsive differen-
tial equation, we have lim; o, |u(t) — u(t)| = 0 and V(t) > u(t), where

u(t) = heOHOE=nT) /(1 — e=(O+0T) ¢ € (n7,(n + 1)7]. Without loss
of generality, we assume that V(t) > wu(t) > u(t) — e for any t > 0.
From system (3.1), we obtain

I <I(pb—0b— X+ B —Bia(t) + Bie)

and integrate it on (n1, (n + 1)7]. Using the comparison theorem, we
have

(DT = s

I((n+ 1)7) < I(nr)®P P ATAFAETM I = I(nT)o,

and we have I(n7) < I(0")o™, so lim; ,oo I(n7) = 0. On the other
hand, when ¢ # nt, we have I < (pb+ 31)I, so

I(t) < I(n7)e®PHPEnT) < [(n7)ePPHPIT ¢ e (nr, (n+ 1)7].

From the above discussion, we have lim;_,, I(t) = 0.
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In the following we will prove lim; o |V(t) — V(£)] = 0. Since
lim;_, o I(t) = 0, we have for any sufficiently small ¢; > 0 that there
exists a t; > 0 such that I(t) < e for ¢ > t;. Then we have

ba — pbag; — (b+ )V (t) <V < ba — (b+6)V,

for t € (n1,(n+1)7] and ¢t > ¢;.

Consider the following two systems:
Vi=ba— (b+60)Vi t#nr,
(3.3) Vitt)=WVi(t™)+h t=nr,
Vi(0%) = V1(07),
and
Va =ba — pbaeg; — (b+0)Va t#nr,
(3.4) Vo(tT) =Va(t™) +h t =nr,
Va(0) = V2(07).

From Lemma 3.2, the solution V;(t) of system (3.3) satisfies lim;
[Vi(t) — V(t)| = 0 and the solution Va(t) of system (3.4) is

h ba — pbaey\ _
— +) _ _ (b+6)t
‘/Q(t) - <‘/2(0 ) 1 _ e,(b+9)7— b"‘f‘ 6 >€
ba — pbag;  he=(b+0)(E=n7)
b+ 46 1— e (o) °

so we have lim;_, ., |Va(t) — V(¢) + pbae1 /(b + 6)| = 0.

From the comparison theorem of the impulsive differential equation,
we have V2(t) < V(t) < Vi(t).

Now according to the above discussion, we obtain for any sufficiently
small e5 > 0 that there exists a to > t; such that

pbae
b+6’

~ b
V(t) — ep — 251

b+ o < Va(t) V() < Vi(t) < I7(t) +eg+

for all £ > t;. From the arbitrary properties of €; and e2, we have
lim;, o |V (t) — V(t)| = 0. The proof is complete. o
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From Theorems 3.2 and 3.3, we have the following theorem.

Theorem 3.4. If the condition of Theorem 3.3 is satisfied, then the
solution (0,V (t)) of system (3.1) is globally asymptotically stable.

Remark 3.1. From the point of view of biological meaning, we assume
S(t) > h, t >0, and do not consider the case: S(t~) < h, t = nr, since
S(t*) < 0 after the impulsive effect in this case. But this does not
agree with the natural meaning.

4. Mixed impulsive vaccination. In this section we will modify
constant vaccination. Constant vaccination at fixed time not only has
a good natural background but also has been well controlled. So
we consider using constant impulsive vaccination strategy when the
number of susceptible individuals is very large, while we consider using
proportional impulsive vaccination when the number of susceptible
individuals is small. Thus, we can ensure positivity of the system,
and this is a very good utility. Considering S(¢) + I(¢) + V(t) = N(t)
and letting N(¢) = 1, then the modified model is the following

S=(1—a)(b—pbl) +A\[+0(1—S—1T)

—(B1 — B2I/(m+1I))SI —bS, t # nr,
(4.1) I =pbl + (B1 — B2I/(m+1))ST — (b+ NI,
0 S(t~) < h,
S@itt) = {
Sit~)—h St")>h, p t=nr,
1) = 1(t7),

where h is the amount of impulsive vaccination, initial value S(07) > 0
and I(0") > 0; when the number of susceptible individuals is less than
this constant h, we take the proportional impulsive vaccination AS(t) =
—S(t7), that is, all susceptible individuals are vaccinated. This is
because medical personnel in this area have the ability to vaccinate all
susceptible individuals, but when the number of susceptible individuals
is more than this constant h, considering the maximum vaccination
ability is h, we take constant impulsive vaccination AS(t) = —h.
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Lemma 4.1. Suppose z(t) = (S(t),1(t)) is the solution of system
(4.1) with initial values S(0%) > 0 and I(0") > 0. Then z(t) > 0, i.e.,
S(t) >0 and I(t) > 0; and if S(0") > 0 and I(0T) > 0, then z(t) > 0
for allt > 0.

The proof of Lemma 4.1 is similar to Lemma 3.1, so we omit it.

Obviously, system (4.1) has an invariant set {(S,I)|S > 0,I >
0,S+1<1}.

Consider the two following impulsive systems:

(4.2) {52(1a)b+9(b+9)5 t # nr,
Sitt)y=0 t=nr.

and

(4.3) {5:(1—a>b+9—(b+9)5 t £ nr,
S@tt)=8(t")—h b

Regarding these two systems, we have the following lemmas.

Lemma 4.2. System (4.2) has a globally asymptotically stable T-
periodic solution:

Sy L—a)pb+0 o 1=a)b+0\ _(i0)tnn)
Sr(t)—7b+0 + (S, 310 J° ,
t € (n1,(n+1)7],

where S0 = 0, that is,

~ (1-—a)b+0

Sr(t) = b1 0 (1 - e*(b+9)(t7”7)>, t € (nt, (n+1)7].

Lemma 4.3. System (4.3) has a globally asymptotically stable 7-
periodic solution:

Sy L—a)p+d o (1—=a)b+0\ _hio)tnr)
Se(t) = I + | S¢ TR ,
t € (nt, (n+ 1)7],
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where SO = ((1 — a)b+60/(b+0) — h/(1 — e~ ®+O7) that is,

. _ —(b+6)(t—nT)
() = (1—a)p+60 he i ,
b+ 0 1— e—(+0)T

t € (nt,(n+1)7].

Specifically, S.(t) will be a nonnegative periodic solution if (((1 — a)b
+60)/(b+6))(1 — e~y > .

The proof of Lemmas 4.2 and 4.3 is similar to Lemma 3.2. Here we
omit it.

If T = 0 in the system (4.1), we have the infection-free subsystem:

S=(1-a)b+0—(b+06)S, t#nr,
(4.4) St = {0 S(t™) < h, t =nr.
S(E")—h SEt7)=h,

We have the following lemma about this system.

Lemma 4.4. System (4.4) has a periodic solution:

(45) 5(t) = Si(t) (1= a)b+8)/(b+6))(1—e 7)< b,
' Se(®) (1~ a)b+0/b+0)(1 e +07) > b,
which is asymptotically stable.

Proof. We will show the following two cases for convenience.

Case I. (1 —a)b+8)/(b+80)(1 — e tDT) < h. In this case
Se((n+1)77) < h. If there is a k € Z such that S(t7) = 0 (t =
kr), then we claim that S(t*) = 0,5(t) = S,(t), t > kr for all
t = nt,n > k. Otherwise, if there does not exist a k such that
S(tt) = 0 (t = k7), then S(t*) = S(t7) — h for all t = n7, and
from the condition (((1 — a)b+8)/(b+ 6))(1 — e~®+)7) < h, we have
(1—a)b+0/b+0) — (h/1 — e~ D7) < 0, that is, S° < 0. From
Lemma 4.3 we know that S(¢) will be negative at some time, which
is a contradiction to the positivity of the system, so all solutions will
tend to S, (t) ultimately, and the stability of S,(t) can be proved by
the same method as the above discussion.
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Case ILI. (((1 — )b+ 60)/(b+6))(1 — e ®*+)7) > h. In this case
Se((n+1)77) > h and S(t*) = 0 cannot hold when t = nr(n > 1),
that is, we have S(¢t*) = S(t~) — h for all nT(n > 1). The conclusion
is true from Lemma 4.3.

Define

B1 1/T~
Ri=—2" 2 [ Sma,
' b(1—p)+AT Jo Q

B B1 1 T
Rz = b(l—p)—i—)\r/o S (t) dt.

Theorem 4.1. Suppose ((1 — a)b+0)/(b+8) > h/(1 — e O+OT),
Then the periodic solution (S(t),0) is locally asymptotically stable if
Ry < 1. Suppose (1 —a)b+8)/(b+6) < h/(1— e~ O+OT). Then the

periodic solution (S(t),0) is locally asymptotically stable if Ry < 1.

Using the comparison theorem in impulsive differential equations, we
can prove Theorem 4.1, because S,(t) and S.(t) cannot exist at the
same time.

Theorem 4.2. Under the conditions of Theorem 4.1, if A — 0 —
(1 —a)pb < 0, then the solution (S(t),1(t)) of system (4.1) from region
{(S,D)|S > 0,I >0, +1 < 1} must have limy_, |S(t) — S(t)| = 0
and lim;_,o I(t) = 0.

Proof. Suppose (S(t),I(t)) is the solution of system (4.1), where
0<S(t)<land0 < I(t) <1. We will show the following three cases.

Case I. ((1—a)b+8)/(b+6))(1 —e D7) < h. From R, < 1,
we can choose a sufficiently small €; > 0 such that

Bi((l—a)b+0)[ 1—ebtOT
b+ <T_ b+6 >><1'

01 = exp <(pb—b—)\+ﬂ151)7'+

From the first equation of system (4.1), we have

S<(1—a)b+6—(0+0)S.
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From Lemma 4.4 and the comparison theorem, for sufficiently small
g1 > 0, there exists a t; > 0, such that when ¢ > ¢; we have

(4.6) S(t) < 8.(t) + &1

Without loss of generality, we can assume that the above inequality
holds for all ¢ > 0, then from the second equation of (4.1) we have

(4.7) I<(pb—b—A+Bu(SH(t) + 1)) £ (1)1

For ¢(t) continuous and bounded on (nr,(n + 1)7], there exists a
constant M’ > 0 such that |p(t)] < M’'. Integrating (4.7) on (0,t),
where t € (n7, (n + 1)7], yields

= I(0)o} exp(M'T) — 0,

as n — oo. Therefore, I(t) — 0, as t — co. So, for sufficiently small
gg > 0, there exists a t2 > t; such that I(t) < 5. Then from the first
equation of system (4.1), we have

S>1—a)+60—(b+6)S— (b+0+Bi)es,
for t > ty, where we can choose e2 sufficiently small such that
(L=a)b+6)/(b+0) — (b+0+Br)ea/(b+0))(1 — e~ CFOT) < p.

Similar to Lemma 4.4, the comparison system

S=(1—a)b+0—(b+0)S—(b+60+pB1)e2 t#nm,

0 S(t™) < h,
S@itT) = { } t =nr,
S(Et7)—h S(t7)>h,
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has a globally stable periodic solution: (((1 — a)b+6 — (b + 6 +

Br)e2)/(b+0))(1—e” CTOE) = S (1) —((b+ 0 + Br)ez/(b+6)) (1
e +0)(t=nT) 't ¢ (nr, (n+1)7], and we have

s bHO+ (40t
Sr(t)*Teﬂl@(l*@ (b+0)(t ))
~ b+ 6+ 51 _
> TR (] e (00T
> T(t) b1 o 62( e )
é r(t)_637

where 3 = ((b+ 0+ B1)/(b + 0))ez(1 — e~ 7). From the compari-
son theorem, we have

(4.8) S(t) > S, (t) — 5.

From (4.6) and (4.8) we have limy_,, |S(t) — S(¢)| = 0.

Case IL. (((1—a)b+8)/(b+6))(1—e ®t97) > h, From R, < 1,
we can choose a sufficiently small £; > 0 such that

B o (1-a)b+6  h
Uz—exp((pb b )‘+515)T+/81( b+ 0 T b+6 <L

From the first equation of system (4.1), we have
S<(1—a)b+6—(8+0)S.

From Lemma 4.4 and the comparison theorem, for £; > 0, there exists
a t; > 0, such that when t > t; we also have

(4.9) S(t) < Se(t) + €.

Without loss of generality, we can assume that the above inequality
holds for all ¢ > 0. Then from the second equation of (4.1) we have

(4.10) I<(pb—b— X+ Bi(Se(t) + 1)) £ ()1

For v (t) continuous and bounded on (nt,(n 4+ 1)7], there exists a
constant M"” > 0 such that |¢(t)| < M". Integrating (4.10) on (0,t),
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n< /0 ") dt> + /n inH)T |1/)(t)|dt>
(/) vou)

+ M”T>

as n — oo. Therefore I(t) — 0 as t — oo. So, for sufficiently small
g9 > 0, there exists a to > t; such that

S>1—a)b+60—(b+0)S— (b+ 0+ B1)ea,
for t > t;, where we can choose €2 > 0 sufficiently small such that
(1= a)p+6)/(b+6) = (b+60+Pr)ea/(b+0))(1 — e *TIT) > h,

Similar to Lemma 4.4, the comparison system

S=1-a)p+0—(b+0)S—(b+6+p1)ez t#nT,

0 S(t™) < h,
S(tt) = { } t =nr,
S(t7)—h S(t7)=h,

has a globally stable periodic solution:

<~ . b+
S broth

(t) b+o %
Thus, we obtain for ¢ > ¢,
~ b+6+ 5
) > S.(t) - ——— ey,
(4.11) S(t) > Se(t) b6 €

From (4.9) and (4.11) we have lim;_,, |S(t) — g(t)| =0.
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Case ITI. (((1 — a)b+6)/(b+80))(1 — e ®+0)7) = h. Similar to
Case II, we can prove I(t) — 0. So for sufficiently small €5 > 0, there
exists a to > t; such that

$>(1—a)b+0—(b+6)S—(b+06+p)es.

For t > t9, we have

<(1a)b+0_b+0+ﬂ16

b1 o b+o 2>(1_€(b+9)7)<h

for
(1—a)b+6

b+0

From Lemma 4.4, we obtain

(1— e CFOTy — p,

S(t) > gr(t) — b—i_bi_i_zﬂlsz(l o 6*(b+9)(t7n7'))
5 b+0+ 51 _
> _ -~ 7 1— (b+0)T
> Sr(t) b1 o ea( e )
= T(t) — €3,

and at this time we have S,.(t) = S.(t), so we obtain S(t) > S.(t) —es,
and we have lim;_, , |S(¢) — S(t)| = 0. The proof is complete. o

From Theorems 4.1 and 4.2, we can get the following theorem.

Theorem 4.3. Suppose A — 6§ — (1 — a)pb < 0. Then the periodic
solution (S(t),0) of system (4.1) is globally asymptotically stable in the
invariant set {(S,I)|S > 0,I >0,S+I <1} if (1 —a)b+0)/(b+6) >
h/(1—e ®+7) and Ry < 1 hold or (1—a)b+8)/(b+6) < h/
(1— e+ and Ry < 1 hold.

5. Conclusion. In this paper, we considered a vaccinated SIS
model with vertical transmission and media coverage. In general
ways, we discussed constant vaccination and impulsive vaccination to
susceptible individuals in another paper, that is, models (2.2) and
(2.3), and compared the effectiveness of this two vaccination policy.
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We obtained the result that impulsive vaccination is more effective.
But, when the number of susceptible individuals is very large, the
number of people who need to be vaccinated is also proportionally
increasing; in addition, vaccination ability in an area is limited, so,
in Section 3, we consider constant impulsive vaccination when the
number of susceptible individuals is very large, that is, we consider
system (3.1). From Theorem 3.1 we know that system (3.1) is uniformly
ultimately bounded if pb — A + 6 > 0. Using the discrete dynamical
system determined by the stroboscopic map, we also obtain the periodic
infection-free solution of system (3.1), which is globally asymptotically
stable if (pb— b — A + )7 < B1h/(b+ 0), see Theorem 3.4.

After constant impulsive vaccination to a large number of susceptible
individuals, the number of susceptible individuals will gradually de-
crease. When this constant impulsive vaccination is not reasonable, we
will consider using proportional impulsive vaccination. So, in Section
4, we consider using a constant impulsive vaccination strategy when
the amount of susceptible individuals is larger than the constant h,
while we consider using proportional impulsive vaccination when the
number of susceptible individuals is smaller than the constant h, that
is, system (4.1). Using the discrete dynamical system determined by
the stroboscopic map, we also obtain the exact periodic infection-free
solution and show that it is globally asymptotically stable under some
conditions, see Theorem 4.3.

In reality, the aim of using a vaccination policy is to reduce the
numbers of infected people, so we only consider the behavior of the
periodic infection-free solution of our model. But we do not consider
the existence and behavior dynamics of the positive periodic solution
of our model. We leave this to future work.
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