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ON A MODEL FOR PHASE TRANSITIONS
WITH VECTOR HYSTERESIS EFFECT

EMIL MINCHEV

ABSTRACT. The paper deals with a system of nonlinear
PDEs which describes a phase transition model with vector
hysteresis and diffusion effect. Existence of solutions for the
system under consideration is proved by the method of Yosida
agproximation, L -estimates and energy type inequalities in
L=,

1. Introduction. The present paper deals with a system of
nonlinear PDEs which is a model of a class of phase transitions where
the hysteresis and diffusive effects are taken into account:

(1) aw; — KAW + 0l g,y (w) > F(w,u) in Q,

(2) c-w;+duy — Au=h(w,u) in Q.

Here N and m are positive integers, w = (w1, ... ,wy,), T > 0,2 C RY
is a bounded domain with smooth boundary 09, @ = (0,7) x Q;
a, K, ¢ = (c1,...,¢m), d are given constants; F : R™ x R — R™,
h: R"xR — R, fi,,fi : R - R, i = 1,...,m, are given
functions. We assume that f;,,f;" € C?(R), fi, < fi* on R and
there exist constants k; > 0 such that f;, = f;* on (—oo, —k;]U[k;, 00),
1=1,...,m.

For each u € R we denote by 8[3)(-) the subdifferential of the
indicator function L(f)(-) of the interval [f;, (u), fF(u)], 4 = 1,...,m,
namely,

19 (w;) = {0 if fi*(@ <w; < fi(u)
400 otherwise
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and 1%) if w; > f*( ) or w; < fi,(u)
[07 +OO) if w; = i ( ) > fz*(u)
OI{) (w;) = § {0} if fi,(u) <w; < f (u)
(_0070] ifwl fz*( ) (u)
R if w; = f7(u) = fz*(u)'

Define K(u) ={w € R™: f;,(u) <w; < f;"(u),i=1,...,m}.

We denote by Ix(y,)() the indicator function of the set K(u) and
Olk (u)(-) denotes the subdifferential of I (,)(-). The subdifferential
Ol k () (W) is a set-valued mapping and in our statement of the problem
Ol (uy(w) = {0} if w € int K, and 0l (,)(W) coincides with the cone
of normals to K at the point w if w € K. In our statement of the
problem it is easy to see that

Mg (uy(w) = (OI) (w1), ... , OI{™ (wyn)).

In this paper we study the system (1), (2), together with the following
boundary and initial conditions

ow ou
(3) E—O, 5—0 on Z—(O,T) XaQ,

(4) w(0,z) = wo(z), u(0,2) =wup(z) in Q,

where v is the unit outward normal vector on 92, wg, ug are given
initial data.

The system (1), (2) is a model for solid-liquid phase transition of a
multi-component substance where we take into account the hysteresis
effect in the evolution of the interface. Equations (1) and (2) correspond
respectively to the kinetics of the vector order parameter w and
the balance of the internal energy; w is the relative temperature of
the physical system under consideration. The righthand sides of the
equations of system (1), (2) describe possible nonlinearities respectively
in the kinetics of the order parameter and the external energy supply.

The hysteresis effect is described by the term 0l (,) (W) in differential
inclusion (1). It is known that some types of hysteresis operators can
be represented by ordinary (or partial) differential inclusion containing
subdifferential of the indicator function of a closed set (whose shape
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could possibly depend on the unknown variables). Let us note that this
characterization of hysteresis operators was used for analysis of many
nonlinear phenomena, for example, a real-time control problems, see
[9], solid-liquid phase transitions, see [7, 19], shape memory alloys, see
[1], filtration problems, see [14]. Very recently this approach has been
used to study the phenomena of hysteresis in processes in population
dynamics, see [2, 21].

Differential inclusion (1) describes the relaxation dynamics of the
vector order parameter. The relation assigning to a function wu(t)
the solution w(t) of differential inclusion (1) corresponds to general-
ized vector play hysteresis operator which is often used to describe
solid-liquid phase transitions with supercooling effect and martensite-
austenite phase transitions in shape memory allows. Let us note that
models with hysteresis are the object of active recent investigations,
see papers [8, 10, 12, 13] as well as the monographs [5, 11, 18, 22].

Various special cases of the system (1), (2) have been already studied.
In [7], Colli et al. studied the following system

aw; — kAw + 0@, (w) > F(w,u) in @,
cwy + duy — Au = g(z,t) in Q

as a model for the Stefan problem with phase relaxation and tempera-
ture dependent constraint for the scalar order parameter. Later, Kubo
in [14] studied filtration problems with hysteresis described by similar
systems with convective term (we refer the reader also to the papers
[8-10], the monograph [5] as well as the references therein).

Very recently, in [21], Otani studied the following nonlinear parabolic
system with hysteresis effect

wy — V- (Vw + Aw)) + 0y (w) 3 F(w,U) in Q,

uiy — V- (Vu; + fli(w;)) = hij(w,U) in Q, i=1,...,m,

which is a model for population interaction with hysteresis effect of
1 4+ m biological species with densities (w,U), U = (uy,... ,um). To
this end in [21], a further extension of the recently proposed L*°-
energy method is developed. It should be noted that the L*-energy
method (proposed in [20, 21] and the references therein) was found to
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be an effective tool applicable to various types of parabolic equations
and systems including doubly nonlinear parabolic equations, porous
medium equations, strongly nonlinear parabolic equations governed by
the co-Laplacian, complicated parabolic systems from applied sciences,
etc.

In mathematical aspects the present paper has been influenced mainly
by the papers [7, 21]. Using the L°-energy method we will obtain
results for boundedness and existence of solutions of the system (1)—(4).
As concerns for uniqueness, the result presented here is based on the
method of L!-semigroups proposed in [8], and later developed in [7].

2. Preliminary notes. Denote by H the Hilbert space L?(Q)
with the usual scalar product (-, )y and norm |- |g, and by H the
product space H X --- x H (m-times). Denote by V the Sobolev

space H1(2) equipped with the norm |uly = (u, u)%//z, where (u,v)y =
(u,v) g +a(u,v), a(u,v) = [ Vu(z)-Vu(z)dz, u,v € V, and by V the
product space V X --- x V (m-times).

We give the definition of solutions in a weak (variational) sense for
the system (1)—(4).

Definition 2.1. Let x > 0. A pair of functions {w,u}, (w =
(w1,...,Wy)) is called a solution of the system (1)—(4) if:

(i) wy, u € L=(0,T;V NL>®(Q)) N L*(0,T; H*(2)) n WH2(0,T; H),
1=1,...,m.

(ii) a
0, 7).
(iif)
(iv) (8w1/31/) =0, (Ou/dv) = 0 in L?(0f2), almost everywhere in
1), i

, ,m.

aw; — KAW + 0l g () (W) > F(w,u) in H, almost everywhere in

c-wy +dus — Au = h(w,u) in H, almost everywhere in (0,T).

N2

(0
(v) W() wo, u(0) = uo.

For simplicity of notation we will denote in the sequel by w’ and v’
the time-derivatives w; and u; of w and u, respectively.

Note that the inclusion (ii) is equivalent to the following conditions:
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(ii)-(a) w € K(u) almost everywhere in Q.

(ii)-(b) (aw'(t) — kAW(t) — F(w(t),u(t)),w(t) —z) <O forallz e H
with z € K (u(t)) almost everywhere in  for almost every t € (0,T).

Throughout the paper we suppose that the following assumptions
hold:

H1. a >0, ¢; #0, d > 0 are given constants, i = 1,... ,m.

H2. f;,,f;" € C?(R) are such that f;, < f;" on R and there exist
constants k; > 0 such that f;,(u) = f;"(u) = ryu+ s; on (—oo, —k;]
and fi,(u) = fi"(u) = piu+ g; on [k;,00), where r;, si, pi, ¢; are
given constants, ¢ = 1,... ,m. Moreover, if ¢; > 0, ¢; < 0, then f;,,
f# are assumed to be nondecreasing (nonincreasing) functions on R,
1=1,...,m.

H3. w,up € L¥Q)NV, i =1,...,m and wog € K(up) almost
everywhere in Q, wo = (wp1,... , Wom)-

HA4. F and h are locally Lipschitz continuous functions from R™ x R
into R™ and R, respectively.

HS5. There exist positive constants Cr and Cj, such that F;(w, u)w; <
Cr(lwi]> +ul?2+1),i=1,... ,m, and h(w,u)u < Cp(|w|? + |u|? + 1),
w € R™, u € R.

3. Auxiliary problems. Let M > 0 be a constant large enough
which is to be fixed later in the sequel. For simplicity of the notation
we will denote in the sequel by C, C,, various positive constants whose
value can vary from line to line (and possibly depend on the index
quantity «).

Consider the following cut-off function:

-M ifr<-M
Xm(r)=<r if—-M<r<M
M ifr>M

and define the auxiliary functions

XM(wi)(tax) :XM(’LUZ'(t,LL')), (t,l‘) € Qa i=1...,m,
XM(W)(ta :E) = (XM(wl)(t) :E), s aXM(wm)(ta :E)), (ta CC) €Q,
Xm (u)(t, @) = Xum (u(t, ), (tz)€Q.
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In this section we introduce an approximate system with approxima-
tion parameters M and g > 0. To this end for (w,u) € R™ X R we
denote

Oy (W) = 012,V (wy), ..., 01\, ™ (wn))
= (= a0 = o) = il
[wm — Fipd (W] [ e () — wm]+>,

and

Juuw = (J( MWL ,Jy}v)lwm)

= (max{min{wy, f7 pr (W)}, from(w)} -,
max{min{wm, fr, (W)}, fmne(w)}),
where f7\(u) = fi(Xm(w)), fiom(u) = fis(Xm(u)), i = 1,...,m.
Moreover, denote
Jow = (JPwy,..., J™w,,)
(max{mm{wh fl( b fr(w)hs
max{min{wm, f;,(u)}, fm.(u)}).

Note that 61’;( () is the Yosida regularization of the subdifferential
graph of the indicator function I, (4 of the set Kjs(u) = {w € R™:
fi*,M(u) S w; S f:M(u), 1= ]., ey M

Consider the following approximate system of PDEs

(5) aw' — KAw + 8IIIL(M(u)(W) =Fpy(w,u) in Q,

(6) ¢ (Juw) +du' — Au=hpg3(w,u) in Q,
ow Ou

(7) E_O’ %—0 on 3,

(8) w(0,z) = wo(z), u(0,2) =wup(z) in Q,
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where

Fuy(w,u) = F(Xp(w), Xar(u)), har,y(W,w) = h(Ju, 0w, Xas(w)).

4. Main results.
4.1 System (1)—(4) with « > 0.

Theorem 4.1. Suppose that assumptions H1-H5 are satisfied. Then
there ezists a constant kg > 0 such that for each 0 < k < Ko the system
(1)—(4) possesses at least one solution.

Proof. Consider the approximate system (5)—(8). By [6] it follows
that there exists a unique solution {w s, u, a} of the system (5)—(8).
For simplicity of the notation the solution of the approximate system
(5)—(8) will be denoted by {w,u} in the sequel.

We will prove estimates for w,u which are independent of M and
p. Denote kg = max{ki,...,kn}. Without loss of generality it can
supposed that M > kg + 1.

First we prove the estimate for u. To this end we follow [21].
Multiplying equation (6) by |u — ko|" 2[u — ko] ™ (where [u — ko] is the
positive part of u — ky) and integrating over Q we have that

(9) c / (Tuw)|u — kol 2[u — ko] * do
Q
+ d/ u'lu — ko|" "2 [u — ko] " dz
o
- / Aulu — ko|"2[u — ko] dx
Q

— [ hasalw wlu kol fu ko] da
Q
a.e. in (0,7).

Integration by parts gives that

7/ Aulu — ko|" 2u — ko| T dz = (r — 1)/ |Vau|?|[u — ko) T|" 2 dux.
Q Q
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Since J{w; = p;u + q; almost everywhere on the set {[u = ko™ > 0},
i=1,...,m, we have for the lefthand side (LHS) of (9) that

Z:; cpi+dd r
==l —— —lu— ko] [y ae. on (0,7).

1 LHS >
(10) Sz r dt

Note that
(11) / Bty (W, )| — kol ~[u — ko] * der
Q

:/Qh(Ju,MW,XM(u))XM(u)Wfk0|r 2 [u — ko] * i

X (w)

+
<o /Q<|Ju,Mw\2+|xM<u>|2+1>\ kol %

SCh/Q <§;|fi*(XM(U))2+|XM( )|2+1>|u—k "= 2% da

[’U, k‘o]+
X (u)

<Ouy [ o=l a0 [kl
Q Q: u>ko}

< Ch,f ko,

dzr

< Cos [ (P (@P + Dlu— o2 da
Q

[ = ko] [7+ () (Il = kol Tl zr (@) +1).

Rearranging the terms of (9) in view of estimates (10), (11), and

dividing both sides by |[u — k0]+|’;(19), we get that

d
(12) 2= ko] " lor) < Culllw = kol [y + 1),

where Cy = Ch, ko, 0,¢,p,a- Integrating (12) with respect to ¢ on [0, T]
and letting r tend to oo, we deduce that

t
|[u(t)=ko] "o () < |[u0_k0]+|L°°(Q)+C*/ (Ifu(r)—ko] " | poo () +1) dr
0

and therefore |[u(t) — ko|T[pe(q) < Ci, t € [0,T], where C; =
Ch,f ko,Qe,p,d,Tyug- Analogously it can be proved that |[—u(t) —
ko]t |Le(q) < C1, t € [0,T], and thus we obtain the required estimate

(13) |u(t)|pe(o) < C1, t€](0,T].



VECTOR HYSTERESIS EFFECT PHASE TRANSITIONS 553

Suppose further that M > max{ky + 1,C;}. To prove the estimates
for w we follow the approach of [21] and consider the auxiliary function

(14)  w;,(t) = max < sup  fi, pr(u(s, ), 1> , i=1,...,m.
zeQ, 0<s<t

Multiplying the ith component of (5) by |w; (s, z) —ui, (t)|" 2[wi(s, z) —
ui,(t)]T and integrating over 2, we have that

(1) a%diusi(s) i (O oy + 5 — 1)

yAWm@mmerMMH“wx
+ /Q O 1" (wi(5))|wi(s) —wi ()]~ 2[wi(s) ~ws, (O] da (:= I)

< /QFi,M(W(S),U(S))\wi(é’)—Ui*(t)\r’z[wi(é’)—uz'*(t)]+dm (= L).

Note that, cf. [21],

1 x (5) — w (£)|T—2
<w>n=;£mw—nmwmmmm (8)
wm@—%mﬁm—igmem—m@ﬁ

x Jwi(s) = uin ()] [wi(s) — uin ()] " da.

The first term on the righthand side of (16) is nonnegative, while
to estimate the second term note that if [w;(s) — u;,(t)]T > 0 then

wi(s) > uin(t) = fi.p(u(s)) and thus [fi, p(u(s)) — wi(s)]* = 0.
Therefore,

(17) I, >0.
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‘We have also that
(18)

I = / Fipr(w(s), u(s))Xar (wi(s))wi(s) — i (8)|"2

Q
[wi(s) — ug, (t)]F
T X (wils))

< Cr /Q(IXM(wi(S))I2 + [Xar (u(9)|* + 1)wi(s) — s (6)"

[wz( ) — Ujx (t
T X (wi(s))

SCF/Q(|XM(wi(S))|2+|U(S)|2+1)|wi(5)*ui ()2
% [wi((s) — wi *)(

Xar (w;(s

<C* /(‘XM(U)Z( N2+ 1)|wi(s) — u*(t)|“2[ i(s)
/'wZ Mwi(s) — i (O] dae

+C*/Q o [[wi(s) — wiy ()] 7"t dz

< O () e i (5) — wea (O] [y
+cﬂmx>—m4n\Lm

< O (jwi(s) — wia (1) ey + [ (1) o) i) — i (D] 57y

+ C*[fwi(s) = uen (][5 oy

< O |[wi(s) — wsa (O] [y (lwi(s) — s (O] gy + 1),

dzr

).

)"

t
)
—u (8)]T

ix (
Xar(wi(s))

dx

where C* = Ch ¥ f ko, Qc,p,d,T,up- Thus, we have from (15) in view of
(17), (18) that

(19) a%l[wi(S) —uin ()] L) < C*([wils) — win (O] |r@) +1).

Integrating (19) with respect to s on [0, t] and letting r tends to oo, we
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deduce that
[[wi(s) = win (O] (@) < |[wi(0) = i (8)] |1 ()
a0 [ () = e (O iy + Dy
0
and therefore |[w;(s) — ;. (£)] 7| Lo () < Ca, s € [0,¢] for each t € [0,T7,
where Ca = Cp, ¥, #,ko,Q,0,¢,p,d,T,u - COnsequently, |[wi(t)]+|Lw(Q) < Oy,

€ [0,T]. Analogously, it can be proved that |[—w;(t)]*|L=(q) < O,
t € [0,7], and thus we obtain the required estimate

(20) |wl(t)‘L°°(Q) < 027 te [07T]7 i= 17 cee M.
Now, in view of the estimates (13) and (20), taking M > max{ko

+ 1,C1,Cs}, we conclude that the solution of the problem (5)—(8)
coincides with the solution of the following problem (without cut-off)

(21) aw' — kAw + 0%, (W) =F(w,u) in Q,
(22) c-(J,w) +du' — Au=h(IJ,w,u) in Q,
ow Ou

(23) E = 0, % =0 on E,
(24) w(O,ac) = WO(x)v U(O,LL‘) = uO(x) in Q,
where

81’1}‘(('@ (W) = (8‘[5(1)(1”1)7 v aanlj(m)(wm))
= ; ([wl - fik(u)]—i_ - [fl*(u) - ’11)1]+,. B
(Wi — o (W]~ [frm(w) — wim]T).

—

Due to the bounds (13) and (20) all functions in the approximate
problem (21)—(24) are globally Lipschitz continuous and the righthand
sides are bounded.
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Note that the function (J,w)(¢) belongs to the class W12(0,T; H)
and:
(25)

e (Fuw) (Ol < V20el (W' (Ol + Cpld'(D)]a), ae. te(0,1),

where Cpr = max{|fi\|cos | F oo i = 1,... ,m};
(26) (c(Juw)'(t),u' (1)) = —V2lel|W' () ulu'(t) |, ae. te(0,T).
The estimates (25), (26) can be proved using that

S i w; < o (u)
(JPw;) = { ) if fi,(w) <w; < fi(u)
£ () if w; > 7 (u),
i=1,...,m, and that ¢;f;’ (u) >0, c; f'(u) > 0.
In order to take the limit 4 — 0 in problem (21)—(24), we calculate:
(i) multiply (22) by «’,
(ii) multiply (22) by —Au,
(iii) multiply (21) by w’,
(iv) multiply (21) by —Aw,
(v) multiply (21) by 81,;((@'
Now, we multiply equation (22) by «’, using (26) and applying Young
inequality, we obtain that

d
(27) dlu'[f + 2| Vulfy < Cs(s*| AW + 1),

where C3 = Cj ¢4, |F|o |h]; |2 is the Lebesgue measure of the set
Q.

Next we multiply (22) by —Auw; using (25) and the Young inequality,
we conclude that

d
(28) aS1Vull + |Auffy < Cullw' i+ o' +1),

where C4 = Cc7‘h‘007m|70f,.
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Denote by I ;‘((u) (w) the Yosida regularization of the indicator func-
tion I (y)(w) of the set K (u). Then

(18 oy ( i}j W + ([ (0) — w] )
=1

is absolutely continuous on [0, 7] and
(29)

d .
dtIu y (W) < (0T ) (W), W) +Cp/| 005y (W)[u|u' |z, ae. in (0, 7).
See [7, 9, 19] for the proof of (29).

Next, we compute (iii). Multiplying (21) by w' and using (29), we
obtain that

d
(30) alw'[f + H—WW'H +2 5 Ty (W)
<, (\u 12 + k2| Awl3 + 1) , a.e. on (0,7,
where 05 = Ca,cfl,lF‘cov‘Ql'

Now we proceed with (iv). To this end we note that since f;, (u), £ (u)

€ H?*(Q) almost everywhere in (0,7), i = 1,...,m, the following
estimate, cf. [7, 19], is valid

(31) (0, (W), ~Aw)ir

1 m
2 Iy W5 D (A%l + 127 1)
Also
(32) (F(w,u), —Aw)u < Cp(|Vulf +[Vwlg),
where Cp = max{C},, i = 1,... ,m},

Cr, = i < sup

j=1 (w,u)eR™ xR

OF;
B

o))

+ sup
(w,u)ER™XR

, t=1...,m.
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Now, multiplying (21) by —Aw, we get in view of (31) and (32) that
ad

< 10 W+ 5 D (AF Wl + 1S ()

1=

1
+ Cr(IVulf + [Vwli).

Finally, we perform (v). Multiplying (21) by alﬁ(u)(w) and using
estimate (29), we have that

d 1 1
(34) a0 (W) + 51005 (Wl < 5aCp(aCpr+ Dy

\51K(u( W)l + Z(\Af (W)l7 + | Afi(u)|) + C1(F),

i=1
where Cy(F) = (aCy + 1)|F|% |©2|. Note that
|Afin(w)ly < Co(IVulps+|Auly),  [Af (W) < Co(|Vulzs+|Auly),

i = 1,...,m, where Cs = 2max{|fi}|%, |fit|%, £ %, 1fF%, @ =
1,...,m}. By the Gagliardo-Nirenberg 1nequa11ty, cf. [7], we have that

Vulps < Calulfre(g)luli < Callulf +Aulf)|ul?, < Cr(1+|Aulg),
where the constant C; depends on Cy. Thus, we obtain that
(35) (1AL @) + A () < Cs(1+|Aulf),

i=1

with Cg = ’l’)’LCﬁ(C7 + 1)
Adding (33) and (34), we get in view of (35) that

d a 1—&
(36) = {alliq) (W) + 5IVwlt | + k| AwlE + — oL, (w)lh

< Co (14 |Vulfy + VWi + |05 + (24 &) (1 + |AulF)),

where Cg CC1(F) Cia 7Cf, Cg*
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Let €1, €2, €3 be positive numbers to be specified later. We calculate
(27) 4+ 1 x (28) + €2 x (30) + 3 x (36).
We have that
(37)  (d—e1Cy — e2C5 — £3C0) |3
+ (e2a — 1C4)|W' |31 + (61 — €3C9(2 + k))|Aul%

1-—
+ H(Eg — C3k — EzC5KZ)|AW|H 43— ‘aIK(u ( )|%I

d
dt{(1+51d)|Vu|H (2K + €3 )|Vw|H (222 + ae3) I, (W)}
< Cho +€309 (3+k+ Vulf + |VW|H) )

where C1g = C3 + ¢1C4 + €2C5. Now, we will fix ¢;, 1 = 1, 2,3, as well
the constant k¢ in the statement of Theorem 4.1, so that the coefficients
in the first three lines of (37), i.e

d—¢e1Cy — e5C5 — e3CY9,
eoa —£1Cy, €1 —e3C9(2 + k),
11—k
4

H(Eg — Cg/ﬁ? — EzC5K?), €3

are all positive whenever « € (0, xg). For instance, we can take

d 1
Eo = 4—05, g1 = Emin{d,?sga},
and then
c 1 . d 281
= —— Imin D —
3 409 ’ 2+ RO
with

1
Ko = mln{2 Gy min {d, 51}—03+8205}.

We note that in this case

(38) d—8104—8205 —8309 Z %l,
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(39) 52&—6104 Z Ezg
along with
(40) g1 —e3Co(2+ k) > %1 for all x € (0, ko),

so that the above coefficients are all bounded from below uniformly
with respect to k. Moreover, concerning the coefficients in the third
line of (37), we have that
€3 1—& €3
— C3k — e2C5K) > k— > =2
Ii(63 3K — &2 5&) Z K 97 4 =
for all k € (0,k¢). Moreover, it is easily checked that

€3

£3a
By 1= (1+ &1 Vully + (ear + =7) [Vwliy + (222 + asa) I (W)

> |Vulfy + k2| VWt > eo(|Vuliy + [Vwli),
where g9 = min{1, ez }. Therefore, from (37) it follows that

Ciigo

Eﬂ(t) < e(CIOES/EO)TEM(O) + (e(clgEg/Eg)T _ 1)

Croes
for all ¢ € [0,7], where Ci1; = Cig + 4e3Cy. Since E,(0) = (1 +
£1d)|Vug|% +(e2k+e3(a/2))|Vwo |3, we conclude uniform estimates for
the approximate solutions {w,, u,}, that is, there is a positive constant
Ry, depending only on the initial data and the quantities in assumptions
H1-H5, such that

|u:1,‘L2(0,T;H) + |W:L|L2(0,T;H) + [Auy|r20,7;m5) + H1/2|AWM|L2(0,T;H)
(41) + |aIl;((uu)(Wu)|L2(0,T;H) +
+ VWl peoo,r5m) + L () (We) Lo (0,17)

<Ry

Vg |peo,1:m)

for all 4 € (0,1] and all & € (0, Ko].

On account of the uniform estimates (41) for the approximate solu-
tions {w,,, u,}, it follows that there is a subsequence {,, } with p, 0
such that
(42) w,, — w weakly in W'2(0,7;H) N L*(0,T; H*(Q))

and weakly star in  L°°(0,T;V),
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(43) w,, — u weakly in  WY2(0,T; H) N L*(0,T; H*(2))
and weakly star in  L°°(0,T;V)

and
(44) oL, y(Wp,) — 2z weakly in L*(0,T; H)
for some functions w, u, z, and moreover

(45) {1t \(wp,)} is bounded in L*(0,T);

K(up,)
in these cases, by Ascoli-Arzela’s theorem it follows that
(46) w,, —w in C(0,T;H), wu,, —u in C([0,T]; H),
and

(47) Ju,., (Wp,) —w in C([0,77]; H),
(Ju,, (Wp,)) — W' weakly in L*(0,T;H),
which show that

z € Olg(y(w) in L*(0,T;H), we K(u) ae in Q.
Now, taking p = p,, in (21)—(24) and passing to the limit in n, we see
easily from (42)—(47), that the pair {w,u} is a solution of the system

(1)—(4). o

4.2 System (1)—(4) with x = 0. In this section consider the system
(1)—(4) with k = 0, namely, the following system

(48) aw; + Ol (uy (W) > F(w,u) in Q,

(49) c-wi+dus — Au=h(w,u) in Q.
ou

(50) — =0 on X =(0,T) x 09,

ov
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(51) w(0,z) = wo(z), u(0,2)=wup(z) in Q.

Definition 4.2. A pair of functions {w, u} is called a solution of the
system (48)—(51) if:

(i) w; € L®(0,T; L= (Q)) N W12(0,T; H),i=1,... ,m.

(i) w € L®(0,T;V N L>(2)) N L0, T; H2(2)) N WH2(0,T; H).
(iii) aw; + 0Lk (4)(W) > F(w, u) in H, almost everywhere in (0, T').
(iv) ¢ - w¢ + duy — Au = h(w,u) in H, almost everywhere in (0, 7).
(v) (Bu/dv) = 0 in L?(09), almost everywhere in (0,T).
(vi) w(0) = wyo, u(0) = ug.

Theorem 4.3. Suppose that assumptions H1-Hb are satisfied.

Then the system (48)—(51) possesses a unique solution. Moreover,
w € L®(0,T; V).

Proof. (i) Uniqueness of solutions. The uniqueness proof is similar
to the proof of [7, Theorem 2.3]. We present the details below.

Suppose that {w® u(®}, i = 1,2, are two different solutions of
the system (48)—(51) in the sense of Definition 4.2, and denote w =
w) — w® y = u® — 4@, Let us test the difference between the
respective equations by any measurable selection s, € sign (u(l) - u(2)).
Noting that —(A(u® —u?),s,) > 0 almost everywhere in (0,T), we
obtain that

m

S = w®) @)@ + @V —u@))(t)m)},

i=1

(_z ei(w® — w®Y (1), su<t>) (@ — u®Y (1), 5,(1))
(52) {

a.e. te(0,1),

where we denote by L > 0 the common Lipschitz constant of F and h.
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Put Fj(i) =Fj(w® u®) i=1,2; j=1,...,m. We claim that there

exist s,,; € L*°(Q) such that s, € sign (w§-1) (2)) j=1,...,mand
1 2 1 2
a(w;- ) w;- ))'swj — (F]( ) _ F]( ))swj
(53) < sign (¢;) (a(wg-l) - w§-2))'su - (Fj(l) - FJ.(Z))su> ,
a.e. in Q.

In view of assumptions H1, H2, there are two cases to be considered
here:

Case 1. ¢j >0 and f;,, f7 are nondecreasing functions on R.
Case 2. ¢j <0 and f; , fi are nonincreasing functions on R.

For Case 1, we directly refer to Theorem 2.3 of [7]. Case 2 is similar
to the method presented in Theorem 2.3 of [7]. We give details for this
case below.

We can take s,,, = —s, on the subsets of (¢,z) € @ where {wg-l) <
w§2), u® > u@} or {wj(.l) > w§-2), u < u@}. Let us check
the case when {wg.l) < wg-z), u(l) < u®}. In this case we have

that wg-l) < ;) (otherwise w = f®) > frw®) > wgz),

which yields a Contradlctlon) and wj2 > f;,(u®) (otherwise w( ) =

fi (@) < £ (u) < w(l) which is a contradiction). Since

(aw§i)/ _ F(i))(w§i) —2;) <0 forall z;€lf;, (u(z ), ff(u(i))],

J
i=1,2, ae. in Q,

by suitably chosen test numbers z;, we conclude that

a(wj(-l)—wj(-z))'—(Fj(l)—Fj(z)) >0 ae. in {wj(-l) < wJ(?), uV <o},

Therefore (53) is fulfilled since —s,,;, = 1 > s, € [-1,1] in {wj(.l)
wJ(,2)7 u(l) S u(2)}
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In the set {w] > w§ ) u® > u(®} we obtain the reverse inequalities
and again conclude that (53) holds true.

Multiplying inequality (53) by c; and noting that |s,| < 1, [sy,;| < 1,
we have that

1 2 |C| 1 2 1 2
cj(wj(. ) w§- )Y 5y > —2TJ|FJ-( ) _ Fj( |+ \cj\(wj(- ) wJ(- ))'swj
ae. in @, j=1,...,m
Therefore,
(54)
<ZC]'(U)J(. ) _ wg( ))” 3u> > — E(Z |Cj||w]'|L1(Q) + |u|L1(Q)>
j=1 J=1
(2
(Z el ~ w0, )
]:
a.e. in (0,7).

In view of (52), we conclude from (54) that

m

d
55) 5] S lelluslui + dulie |

Jj=1

2 m
<L(1+4 - iy o .
= < + a> ]z:; |C]||wJ‘L1(Q) + ‘U|L1(Q) , ae. in (0,7)

Integrating (55) with respect to ¢ we obtain the uniqueness of solutions.

(ii) FEwistence of solutions. Let us note that the validity of the
estimates for the approximate solutions from subsection 4.1 extends to
the constructed solution {w*), u(®)} of the system (1)-(4) whenever
0 < Kk < Ko, cf. (37)—(40). Therefore, in view of the uniqueness part
and arguing as in [9] it could be shown that {w(*), u(*)} converges in a
suitable sense to the unique solution {w, u} of the system (1)—(4) with
k = 0. Moreover, w satisfies w € L>(0,T; V). o
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4.3 Local solutions.

Remark 1. If we suppose in Theorems 4.1 and 4.3 that the functions
F,h are locally Lipschitz continuous functions on R™ x R (without
any growth conditions), existence of local solutions of the respective
systems can be proved, namely reasoning analogously as above, the
following theorems hold true:

Theorem 4.4. Suppose that assumptions H1-H4 are satisfied. Then
there exist a positive number Ty (depending only on [Wo|s and |ug|so)
as well as a constant kg > 0 such that for each 0 < k < Ky the system
(1)—(4) possesses at least one solution on [0,Ty] x Q.

Theorem 4.5. Suppose that assumptions H1-H4 are satisfied. Then
there exists a positive number Ty (depending only on |Wol|oo and |ug|so)
such that the system (48)—(51) possesses a unique solution on [0, Ty x 2.
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