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SMOOTHNESS PROPERTIES OF QUASI-MEASURES

D.J. GRUBB AND TIM LABERGE

ABSTRACT. We construct several examples of simple
quasi-measures that show that the strong and weak smooth-
ness properties for quasi-measures proposed by Boardman are
distinct. These examples also show that in general, only the
obvious implications hold between these properties. We de-
scribe a general construction of product quasi-measures that
yields further examples that are not simple.

We also provide characterizations of the strong smooth-
ness properties in terms of the action of the induced Borel
quasi-measure on the Stone-Cech compactification and show
that the dimension of the Stone-Cech remainder influences the
smoothness properties of the Baire quasi-measures on X. Fi-
nally, we explore the effects of different topological properties
on the various classes of smooth quasi-measures.

1. Introduction. Quasi-measures were first studied by Johan
Aarnes [1] on compact spaces as set functions that represent functionals
which are linear on singly generated subalgebras of the collection of real-
valued continuous functions. They are generalizations of the regular
measures which appear in the Riesz representation theorem. Later,
Boardman [5, 6], generalized Aarnes’ results to the case where the
underlying space is completely regular and asked several questions
relating to the smoothness properties of quasi-measures in this context.
The goal of this paper is to answer those questions. Further information
about quasi-measures in this setting can be found in [4] where the
representation theorem of Boardman is proved in a cleaner way and in
[9] where some topological properties of the collection of quasi-measures
are addressed.

All spaces X under consideration are assumed to be completely
regular. A Baire quasi-measure on X is a real-valued, finite, non-
negative set function p defined on 4 = {A C X : A is either a zero set
or cozero set of X} that satisfies the following axioms:
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1. If A€ A, then p(A) + u(X\A4) = p(X).

2. If Ay, Az € A and A; C A, then p(41) < p(A4s).

3. If Ay, A, ¢ A, AiN Ay = @, and A; U Ay € A, then
(A1 U Az) = p(Ar) + p(Az).

4. If U is a cozero set of X, then u(U) = sup{u(Z): Z C U and 7 is
a zero set}.

Similarly, a Borel quasi-measure is a set function defined on {A C X : A
is a closed or open subset of X} that satisfies the same properties
for open and closed sets. As described in [13], every Baire quasi-
measure p on X induces a Borel quasi-measure 7 on X, the Stone-
Cech compactification of X. A quasi-measure is said to be simple if it
takes only the values 0 and 1.

It is crucial to note that a Baire quasi-measure need not be the
restriction of a Baire measure to \A. Indeed, as shown in [13], a Baire
quasi-measure u extends to a Baire measure on A if and only if y is
subadditive on A. Moreover, if p is not subadditive, then it cannot
be extended to a monotone additive set function on the collection of
differences of elements of .A.

These classes of quasi-measures were introduced by Boardman in [5,
6], and studied further by Wheeler in [13]. Boardman also generalized
the notions of o-smoothness, T-smoothness, and tightness for measures
as in Varadarajan [12].

Definition 1.1. Let p be a Baire quasi-measure on X.

1. p is o-smooth if whenever {Z,} is a sequence of zero sets with
Zn \( D, then u(Z,) — 0.

2. p is strongly o-smooth if whenever {Z,,} is a sequence of zero sets,
Z is a zero set, and Z, \, Z, then u(Z,) = u(Z2).

3. wis T-smooth if whenever {Z,} is a net of zero sets with Z, \, &,
then p(Zy) — 0.

4. p is strongly T-smooth if whenever {Z,} is a net of zero sets, Z is
a zero set, and Z, \, Z, then u(Z,) — p(Z).

5. w is tight if for every € > 0 there is a compact K C X such that
P(K) > p(X)—e.
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6. u is strongly tight if for every cozero U C X and € > 0, there is a
compact K C U such that #(K) > u(U) —e.

There is an equivalent internal definition of tight quasi-measure. We
use the external version because its connection with 6 (which Boardman
did not consider) is more apparent. Notice that 6 = 4 = 2 and that
5=3=1. Also, 2 = 1,4 = 3 and 6 = 5. For measures, we have
12,3&4and b < 6.

In this paper we first construct several examples that show that the
“weak” smoothness properties (1), (3) and (5) are distinct from the
corresponding strong versions and that, moreover, only the above im-
plications hold in general. We provide additional examples by estab-
lishing a general technique for constructing product quasi-measures.
We then prove theorems that characterize the strong smoothness prop-
erties in terms of the action of the corresponding Borel measure on the
Stone-Cech compactification and (for strong 7-smoothness) in terms of
the behavior of the corresponding quasi-linear functional on C'(X) (this
proof makes use of an interesting generalization of the Monotone Con-
vergence Theorem). We also show that the dimension of the Stone-Cech
remainder influences the smoothness properties of the quasi-measures
on X. Finally, we explore the effects of different topological properties
on the various classes of smooth quasi-measures.

We will need the following characterizations of o- and 7-smoothness,
which are due to Boardman and generalize the results for measures
obtained by Knowles in [10].

Theorem 1.2. Let p be a Baire quasi-measure on X and v the
induced Borel quasi-measure on 8X.

1. u is o-smooth if and only if whenever Z is a zero set of BX and
ZNX =0, then v(Z) = 0.

2. p is T-smooth if and only if whenever F is a compact subset of BX
and FNX =&, then (F) = 0.

In Theorem 3.1 below, we will provide similar characterizations of
the strong smoothness properties.
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2. Examples. Most of our examples will make use of the long line
L or its one-point compactification L & 1. Recall that w; is the least
uncountable ordinal number and that L is the connected space obtained
by inserting a copy of the unit interval (0,1) between each a € wy and
its successor. In the natural way, L is also linearly ordered, so we can
use interval notation to describe subsets of L.

The first examples we construct below will be simple quasi-measures.
To construct a simple Baire quasi-measure p in a given space X, we
generally use Aarnes’ method of solid set functions, with which we
assume that the reader is familiar (otherwise, see [3]). We will begin
by defining a solid set function v on a closed, connected and locally
connected subset of 5X. This extends to a quasi-measure on the closed
set, which we construe as a Borel quasi-measure 7 on all of 3X. We
then take p to be the Baire quasi-measure induced by 7.

We will also take advantage of the compactness of the space of all
simple Borel quasi-measures on SX to obtain a Borel quasi-measure
7 on BX (and the corresponding Baire quasi-measure g on X) as a
w*-limit point of a net of quasi-measures {7,} defined in the above
manner. Explicitly, let 5X* denote the collection of all simple Borel
quasi-measures on SX. The w*-topology on 8X* can be described as
follows. For each open U C X, let U* = {v € gX* : v(U) = 1}.
Topologize 3X* by using the U*’s as subbasic open sets. Thus, if {7, }
is a net in SX*, then 7 is a w*-limit of {7,} if and only if whenever
Ui,...,U, are open in X and 7(U;) =1 for i = 1,...,n, then there
is an o such that 7g(U;) =1 for all 8 > o and 4 = 1,...,n. See the
paper of Aarnes [2] for more details.

These procedures are described in some detail in our first example.

Example 2.1. A Baire quasi-measure p that is not o-smooth.
This is essentially Example 7.3 of [6]. Let X = [0,1] x (0,1]. For
each n > 2, define a Borel quasi-measure 7, on X as follows. Set
F, = [0,1] x {1/n} and p = (1/2,1). Define a solid set function
v, on the closed solid, i.e., connected and co-connected, subsets A
of X, =[0,1] x [1/n,1] by

0 ifANF, =g,
v(A)=< 1 if F, C A,
1 ifpeAdand ANF, #@.
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Then v,, determines a Borel quasi-measure on X,, (see [3]) and hence
a Borel quasi-measure 7, on 8X (defined by 7,(F) = v,(F N X,,)).
Let 7 be a w*-limit of the family {7, : n > 2}, and let p be the
Baire quasi-measure on X corresponding to ¥. For each n € N, let
Zn =[0,1] x (0,1/n]. Then each Z, is a zero set and u(Z,) = 1, but
NZ, = <, so p is not o-smooth.

Alternatively, notice that since SX\X is a compact G5 in 8X, it is
a zero set in BX. We claim that 7(8X\X) = 1. Otherwise, there is a
compact K contained in X with 7(K) = 1, hence an open U C X with
clgxU C X and #(U) = 1. But eventually #,(U) = 0, contradicting
the fact that 7 is a w*-limit of the {7,}. Thus, by Theorem 1.2, p is
not o-smooth.

In the above example, we call 7,, the Aarnes measure determined by
p and F,. In the sequel, we will define Aarnes measures by simply
giving the appropriate point and closed subset of the space in question.
The reader should note that it is not the case that in every space every
combination of point and closed set can be used to define an Aarnes
measure; there are definite topological restrictions that apply. All of
the spaces on which we define Aarnes measures will have the property
that the union of disjoint closed co-connected sets is co-connected; this
condition suffices for the construction of Aarnes measures. For example,
the square of the unit interval has this property, while the one-holed
annulus does not. For more details and examples of the topological
difficulties that can arise (and methods for avoiding them), see [8].

Example 2.2. A Baire quasi-measure p that is o-smooth, but
neither 7- nor strongly o-smooth. Let X = L x (0,1]. Notice that,
because the restriction of every real-valued continuous function to a
zero set of the form L x {r} is eventually constant, we can consider
{w1} x (0,1] to be a subset of SX in the natural way.

For n > 2, set X, = (L ® 1) x [1/n,1], and define a Borel quasi-
measure v, on X, by using p = (0,1) and F,, = (L& 1) x {1/n}) U
({w1} x [1/m,1]). As before, this gives a net {#,} of Borel quasi-
measures on SX; let 7 be a w*-limit of this net, and take u to be
the corresponding Baire quasi-measure on X.

Now, X is locally compact, so 8X\ X is closed in X and 7(8X\X) =
1, so p is not 7-smooth. On the other hand, any zero set contained
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in SX\X is disjoint from {w;} x (0,1], and hence gets P-measure
0, so p is o-smooth. Set Z = [l,w;) x (0,1] and (for n > 2)
Zn = ([0,1] x (0,1/n]) U Z. Then Z, \, Z, each u(Z,) = 1, but
w(Z) =0, so p is not strongly o-smooth.

Example 2.3. A Baire quasi-measure g that is tight but not strongly
o-smooth. Let X = (L x (0,1]) U {(w1,1)}. Since X and the space
from the previous example have the same Stone-Cech compactification,
we can use the 7 from the previous example to induce a Baire quasi-
measure g on X. For the same reasons as before, p is not strongly
o-smooth. Since (L@ 1) x {1} is a compact subset of X with 7-measure
1, p is tight.

Example 2.4. A Baire quasi-measure p that is strongly o-smooth
but not 7-smooth. Let X = (L@®1) x L. Then X = (L&1)x (L1)is
connected and locally connected, so we can define an Aarnes measure
7 on BX by setting F = (L& 1) x {w1} and p = (0,0). Let p be the
induced quasi-measure on X. Because X is pseudo-compact, every
Baire quasi-measure on X is strongly o-smooth (see [6]); however,
v(BX\X) =v(F) =1, so p is not 7-smooth.

This repairs an error in Example 7.4 of [6]. Indeed, as our Theo-
rem 3.5 shows, every proper Baire quasi-measure on the space from
that example is strongly tight.

Example 2.5. A Baire quasi-measure that is tight and strongly o-
smooth, but not strongly 7-smooth. Set X = ((L& 1) x L) U {(0,w;)}.
As above, X = (L@ 1) x (L @ 1); we define 7 on X as above and
take p to be the induced Baire quasi-measure on X. Then {0} x (L& 1)
is a compact subset of X with 7-measure 1, so p is tight. The space
X is psuedo-compact, so y is strongly o-smooth. If Z = {0} x [1, wy]
and Z, = ZU[(L® 1) X [o,w1)], then Z, N\, Z, each u(Z,) = 1, but
w(Z) =0, so p is not strongly T-smooth.

The next two examples make use of a special pathological subset of
the plane.
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Definition 2.6. A set B C [0,1]? is a Bernstein set if whenever
K C [0,1]? is uncountable and compact, then B N K # & and
K\B # 2.

Under the assumption of the Axiom of Choice, Bernstein sets can
be constructed by an easy transfinite induction. By definition, every
compact subset of a Bernstein set is countable.

Example 2.7. A Baire quasi-measure y that is strongly 7-smooth
but not tight. Let B be a Bernstein set in [0,1]2. Since [0,1]*\B
is also Bernstein, we can assume that (1/2,1/2) ¢ B. Let X =
(L x [0,1]*) U ({w1} x B). Then X = (L® 1) x [0,1]>. Let ¥ be
an Aarnes measure on SX with p = (w1, (1/2,1/2)) and F = {w;} x 9,
where 0 is the boundary of [0,1]?. Let u be the induced Baire quasi-
measure on X.

Because SX\X is zero-dimensional, Theorem 3.5 shows that u is
strongly T-smooth. To see that u is not tight, suppose that K C X is
compact. Then because B is Bernstein, K N ({w1} x [0, 1]?) is at most
countable, so there is a compact connected H C {w;} x [0,1]? with
HNK =@,pe€ H,and HNO # @. Thus, v(H) =1, so 7(K) = 0,
hence p is not tight.

Example 2.8. A Baire quasi-measure g that is strongly 7-smooth
and tight but not strongly tight. Set X = (L x [0,1]*)U({w1} x B)UF.
Then as above, 3X = (L ® 1) x [0,1]2, so we can use the # from the
previous example to induce a Baire quasi-measure p on X. As before, u
is strongly 7-smooth. Because F C X and v(F') =1, p is tight. To see
that p is not strongly tight, set U = [(L&®1) x ([1/3,2/3]x[0,2/3])|NX.
Then U is cozero and p(U) = 1. If K C U is compact, then
KN ({w1} x[0,1]?) is again countable, so there is a compact connected
HC{wn}x[0,1?with HNK =@, p € H,and HNF # &. Again,
this gives 7(H) = 1 and #(K) = 0, so p is not strongly tight.

The next example requires a generalized Bernstein set in the square
of the long line.
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Example 2.9. A Baire quasi-measure g that is strongly o-smooth,
7-smooth, not strongly 7-smooth, and not tight. Let Y = (L x L) U
{(0,w;)}. We call a compact subset K CY thin if K N[0, a]? is always
countable. Notice that a thin subset of Y is zero-dimensional.

Lemma 2.10. There is a B C Y such that whenever K C Y is
compact and not thin, then BN K # & and K\B # O.

Proof. If K is not thin, then some K N [0,1]? is uncountable, and
hence has cardinality c (the cardinality of the set of real numbers). Let
K ={K CY : K is compact and not thin}. Then |K| = ¢, so we can
enumerate I as {K, : @ < ¢}. We construct B by transfinite induction
on o < c¢. Our induction hypothesis is that, for every 8 < «, we have
chosen ag and bg such that ag # bg and ag,bg € Kg. Given a < c,
take aq # by in Ko\({ag : B < a}U{bs: B < a}). Then {b, : a < c}
is as desired. o

Let B be as in the lemma; we can assume that (0,0) ¢ B and that
(0,w;) € B. Notice that any compact subset of B is thin. Let L’ be the
long line on ws, i.e., insert a copy of (0,1) between each ordinal a € ws
and its successor, and set X = [L' x (L®1)?]U({w2} x B). Then BX =
(L'®1)x (L®1)% Set p = (w2, (0,0)) and F = {wo} X [(L®1) x {w; }].
Let 7 be an Aarnes measure on X with p and F, and let p be the
induced Baire quasi-measure on X. Then p is 7-smooth because any
compact subset of SX\X gets v-measure 0. Let K C X be compact,
then K N ({w2} x Y) is thin (as a subset of Y') and does not contain p,
so we can find a compact connected H with p € H, H N F # &, and
HN K = @. As before, this implies that u is not tight. To see that
is not strongly 7-smooth, set Z = ((L' & 1) x ({0} x [1,w1]) N X and
Zopg = ZU[([B,w2] X (LB1) x [a, w1]) N X for each o < wy and B < wa.
Order the pairs (a,8) by (¢/,8") < («,p) if and only if o/ < « and
B < B. Then Z,g \( Z, each u(Z,p) = 1, but pu(Z) = 0, so p is not
strongly 7-smooth.

Because all of the examples constructed above are proper simple
quasi-measures, the following question is natural. (Recall that a Baire
(Borel) quasi-measure p is proper if whenever A is a Baire (Borel)
measure and A < g, then A =0.)
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Question 1. Suppose every proper simple Baire quasi-measure on
X satisfies a particular smoothness property. Does every proper Baire
quasi-measure satisfy the same property?

In many of the above situations, the space 8X is not locally con-
nected. As there is no construction theorem presently available for
spaces that are not locally connected, in these cases we have had to re-
sort to limit procedures to obtain the quasi-measures we are interested
in. However, it seems likely that these examples can be construed as
Aarnes measures.

Question 2. Under what conditions can Aarnes measures be defined
directly in compact spaces that are not locally compact?

Our next examples utilize a procedure for constructing product quasi-
measures that may be of independent interest. The procedure general-
izes the method of [7] and is applicable in the situations first considered
in [5]. The examples we obtain are alternatives for Examples 2.7 and
2.9 that are not simple.

We assume that the reader is familiar with [7]. Let x and v be Baire
quasi-measures on spaces X and Y, respectively, with either p a simple
quasi-measure or v a measure. Let p and 7 be the corresponding quasi-
linear functionals on C'(X) and C(Y). To define the desired product
quasi-measure pX;v on X XY, we show how to define the corresponding
quasi-linear functional ¢ on C(X X Y).

Fix y € Y and apply p to the function z — f(z,y) to obtain a
value T,(f)(y). If the function T,(f) : ¥ — R is continuous on Y,
we can then apply 1 to obtain the value of the product functional
¢ at f (quasi-linearity follows from the assumption that either p is
simple or v is a measure). Because integration with respect to a quasi-
measure is continuous, the continuity of T,(f) depends essentially on
the continuity of the map y — f(-,y) from Y to C(X). The following
well-known lemma gives a sufficient condition for this to occur.

Lemma 2.11. With notation as above, if the projection (x,y) — y is
a closed map from X XY to Y, then the map y — f(-,y) is continuous.
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Thus, if either X is compact or X is countably compact and Y is
first countable, then the conclusion of the lemma will hold. This is the
situation in the next two examples.

Example 2.12. A Baire quasi-measure y X; v that is strongly 7-
smooth but not tight. This is essentially Example 7.5 of [6]. Let
X =10,1]2, and let u be an Aarnes measure on X with p = (1/2,1/2)
and closed set 0, the boundary of X. Let Y = [0, 1] with the Sorgenfrey
topology (basic open neighborhoods of r € Y are half-open intervals
[r,7 + €)). Let v be Lebesgue measure on Y. We are in the situation
of Lemma 2.11, so we can construct u x; v.

By Theorem 3.7 below, to show that p X; v is strongly 7-smooth, it
suffices to show that u X; v is strongly o-smooth. This follows easily
from the facts that X is compact and that v satisfies the Lebesgue
dominated convergence theorem. To show that p x; v is not tight,
suppose that K C X X Y is compact. Then the projection mo(K)
of K onto Y is countable, so (u x; v)(K) < (u x; v)(X x my(K)) =
W(X)u(ma(K)) = 1-0 = 0.

Example 2.13. A Baire quasi-measure p X; v that is strongly o-
smooth and 7-smooth but neither tight nor strongly 7-smooth. Let X
and p be as in Example 2.5, and let Y and v be as in the previous
example. Because X is countably compact and Y is first countable,
Lemma 2.11 applies and we can construct g X; v. By considering the
functionals associated with ¢ and v and the definition of the product
quasi-measure, one sees that p x;v is strongly o-smooth and 7-smooth.
To see that p x; v is not strongly 7-smooth, let Z and Z, be as in
Example 2.5, set W = Z x [0,1] and W, = Z, x [0,1], then apply
@ Xy v. The fact that p x; v is not tight follows as in the previous
example.

As Boardman remarks, it is easy to see that a strongly o-smooth set
function that satisfies the first three quasi-measure axioms also satisfies
the fourth, and hence is a Baire quasi-measure. Our final example
shows that strong o-smoothness is essential for this result, even if the
underlying space is compact.
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Example 2.14. A simple o-smooth set function v on a compact
X that satisfies (1)—(3) of the definition of quasi-measure but not (4).
Let X = [0,1]%. Define v first on cozero sets by setting v(U) = 1 if
U contains a punctured neighborhood of p = (1/2,1/2) and v(U) = 0
otherwise. That is, »(U) = 1 if and only if UU{p} is a neighborhood of
p. Extend v to zero sets by setting v(Z) = 1—v(X\Z). Thus, v(Z) =1
if and only if X\Z doesn’t contain a punctured neighborhood of p.

It is easy to see that v is o-smooth and satisfies (1)—(3). However,
v(X\{p}) = 1, and every zero set Z C X\{p} gets v-measure 0, so v
does not satisfy (4).

3. Theorems. Our first result gives characterizations of the strong
o- and T-smoothness properties in terms of the action of the induced
Borel quasi-measure 7 on 8X.

Theorem 3.1. Let p be a Baire quasi-measure on X, with U the
corresponding Borel quasi-measure on BX.

1. p is strongly o-smooth if and only if whenever Z C X is a zero
set, we have p(Z N X) =0v(Z).

2. p 1is strongly T-smooth if and only if whenever FF C X is closed
and FN X is a zero set in X, we have u(FNX) =v(F).

Proof. To show (1), we first assume that p is strongly o-smooth.
Suppose f : BX — [0,1] is continuous and Z = f~1(0). Fix n € N,
and let H be any zero set in X such that H C X\f![0,1/n] =
fY(1/n, 1N X. Then (clsgxH) N f1[0,1/n] = @, so we have u(H) =
v(clpgxH) < 1—u(f1[0,1/n]). Taking the supremum over all such
zero sets of X contained in f~!(1/n,1]N X gives u(f~'(1/n,1]NX) <
1—w(f 1[0, 1/n)), 50 #(Z) < p(F~0,1/n]) < 1—u(f {1/, 1] X) =
pu(f710,1/n] N X). Now, because u is strongly o-smooth, we have
p(f7L0,1/nNX) = u(ZNX),sov(Z) < w(ZNX) < (Z) (the final
inequality is true in general), so 7(Z) = u(Z N X).

Now suppose that 7(Z) = p(Z N X) whenever Z is a zero set in
BX. Suppose we have a family {W,} of zero sets in X such that
Wy N\« W. Set Z, = clgxW, and Z = clgxW. Then u(W,) = v(Z,)
and 7(Z,) — v(NZ,), see [2]. But (NZ,)NX =2ZNX =W, so
v(NZy,) = w(W), and so p is o-smooth.
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To prove (2), we first assume that u is strongly 7-smooth. Suppose
F is closed in X and that Z = FN X is a zero set in X. Because
BX is completely regular, there is a directed family {Z,} of zero sets
in 8X such that F = NZ,. Because p is strongly o-smooth, the first
part of this theorem implies that pu(Z, N X) = 7(Z,). We also have
V(Zy) = v(F) and (NZy) N X = FNX = Z. Thus, by strong 7-
smoothness of p, we have u(Z, N X) — p(Z). Putting all of this
together yields 7(F) = u(Z2).

The proof of the converse is very similar to the proof of the converse
of part (1) and is left to the reader. o

We will next establish a characterization of strong 7-smoothness in
terms of the action of the corresponding quasi-linear functional on
C(X). Similar characterizations for o-, strong o-, and 7T-smoothness
were obtained by Boardman. We will require the following lemma,
which may be of independent interest. We say that a net {f,} is
monotone if o < B implies fg(z) < fo(z) for all = in the domain of f.

Lemma 3.2. Let {f,} be a monotone net of decreasing functions,
with each fo : [a,b] — [0,1]. Suppose that fo \, [ pointwise, with
f:la,b] = [0,1]. Then [ fadz — [ f da.

Proof. By monotonicity, f has only countably many points of dis-
continuity. By extending the interval [a,b] and the definitions of the
functions, we can assume that ¢ and b are points of continuity for f.
Let € > 0 be given, then there only finitely many points, say z1,. .., Zm,
for which f(z,) — f(z}) > €/2. Pick y1, 21,2, 22, - - - Ym, 2m points of
continuity for f such that y; <1 < 21 <yYys < T2 < 20 <+ <Yy <
T < Zm and 2z, — Yy < (¢/2m), for k=1,...,m.

For each k = 1,...,m, pick points zg,..., g, where [ depends on k
and zp = o < Ty < -+ - < Tgy = Yp41 and for each j,

f(wrs) — f(orgn)) < ﬁ.

Finally, fix o such that for all k and j, fa,(zkj) — f(zkj) <
(/4(b— a)). From now on, we assume o > p.
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Now, for k =1,...,m, we have f;:(fa(x) — f(z))dz <1-(g/2m), so
if A=U, Yk, 2x], then

€ €
/A(fa—f)dw<%-m:§.

If  is such that zp; <z < xy(j;1), then

fa(z) = f(2) < falmrs) — F(TRiig1))

< 4(b8— 2) + f(zrj) — f(@r(irr)
9 9

Sib-a) 10 —a

- 9

- 2(b—a)’

%0 Tr(i+1) €
/mkj (fo — f)dz < m(mk(]’+1) — Thj).

Thus, if B = UZ":_ll [2k, Yk+1], then

[ Do < = sb-a) =5,

Therefore,
b
/(;(faif):/A(fa*f)dx'f_/(fa*f)dxgg‘*‘g:é‘.
So [ fadz — [’ fdz. O

Theorem 3.3. Let p be a Baire quasi-measure on X with corre-
sponding quasi-linear functional p. Then p is strongly T-smooth if and
only if whenever fo N\, f pointwise in C(X), then p(fo) — p(f)-

Proof. Suppose first that p is strongly 7-smooth in the above sense,
and that Z, \, Z are zero sets. Let Z < g with g € C(X). Define
D ={feC(X):g< f and there is an oy with f,, < f}. Order D by
pointwise inequality, then D is a net with f N\, g, so p(f) — p(g)-
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Let € > 0 be given, and pick f € D so that p(f) < p(g) + €. Then
there is an ag such that Z,, < f, so u(Za,) < p(f) < p(g) +¢. Hence,
lim u(Zy) < p(g). Since g is arbitrary, lim u(Z,) = p(Z).

Conversely, suppose p is strongly 7-smooth and that g, Y\, g in
C’(X), where we may assume that g > 0. For each € R, jo(z) =
w(ga [z, +0)) — (g~ [z, +00)) = g(z). Since each §q is mono-
tone decreasmg and g, N\, g, by the lemma p(g,) = [ gu(z)dz —
Jo(@)dz=p(g). o

The next result gives easy to check conditions that guarantee that
every proper quasi-measure on a space satisfies the strong smoothness
properties. We will use the following lemma from [11].

Lemma 3.4. Let v be a proper Borel quasi-measure on a compact X .
Suppose F and W are closed subsets of X with W zero-dimensional.
Then v(F UW) = v(F).

Theorem 3.5. 1. If every zero set in BX that is disjoint from
X is zero-dimensional, then every proper Baire quasi-measure on X is
strongly o-smooth.

2. If every closed subset of BX that is disjoint from X 1is zero-
dimensional, then every proper Baire quasi-measure on X s strongly
T-smooth.

3. Ifclgx (BX\X) is zero-dimensional, then every proper Baire quasi-
measure on X s strongly tight.

Proof. We prove (2) first; the proof of (1) is similar and left to the
reader. Assume that compact subsets of SX\X are zero-dimensional,
and let p be a proper Baire quasi-measure on X with v the associated
proper Borel quasi-measure on SX. Suppose F is a closed subset of
BX and that Z = FN X is a zero set in X. Then K = clgx Z is a zero
set in X and p(Z) = v(K).

Fix € > 0 and find a closed H C X disjoint from K with 7(K) +
v(H) > p(BX) — e. By normality in SX, there is an open U O H
with clgxU N K = @. Then F = (F\U) U (clgxU N F). Both sets
in this union are closed and the second is zero-dimensional, so by the



SMOOTHNESS PROPERTIES OF QUASI-MEASURES 485

lemma, we have 7(F) = v(F\U) < p(8X) —v(H) < 7(K) +¢€. So
v(F) = v(K) = p(Z), so by part (2) of Theorem 3.1, p is strongly
T-smooth.

To prove (3), suppose that W = clgx (8X\X) is zero-dimensional and
that U is a cozero subset of X. Set Z = X\U and F = clgxZ. Then
v(F) = u(Z) and by the lemma, 7(FUW) = o(F). If V = X \(FUW),
then V C U and 7(U) = 0(BX) — 0(FUW) = u(X) — u(Z) = p(U).
So for every € > 0 there is a compact K C U with 7(K) > p(U), hence
W is strongly 7-smooth. ]

We remark that the proof of the previous result actually gives a
generalization of the lemma: if v is a proper Borel quasi-measure on a
compact X and FF = K UW with F and K closed and every compact
subset of W zero-dimensional, then v(F) = v(K).

The next results are the “strong” analogs of Boardman’s Theo-
rem 5.16 and Corollary 5.17.

Theorem 3.6. Suppose u is a strongly o-smooth quasi-measure on
X. Then p is strongly T-smooth if and only if whenever U is a cozero
set in X and {U,} is a cozero cover of U, there is a countable subfamily

{Uq,} of {Us} such that p(UnenUs,) = p(U).

Proof. =. Suppose p is strongly 7-smooth. Let {Uy} be a cozero
cover of U = X\ Z, which we assume is closed under finite unions. Let
Zo = X\Uy; by strong 7-smoothness, u(Z,) — pu(Z). For each n € N,
find an «, such that p(Z,,) > p(Z) — 1/n. Since the U,’s are closed
under finite unions, we can assume that the U, ’s are increasing, so
that 4(UnenUa,) = 1 — p(2).

<. Suppose that whenever U is a cozero set in X and {U, } is a cozero
cover of U, there is a countable subfamily {U,, } of {Uy} such that
p(UnenUa,) = p(U). Let Zy \( Z and set U, = X\Z, and U = X\ Z.
By hypothesis, there is a countable subcollection {U,,, } of the U,’s such
that p(UpenUs, ) = p(U). We can assume the U, ’s are increasing
in n; by strong o-smoothness we have u(U,, ) = p(UnenUa, ). Thus,
w(Z) =1 p(UnenUa,) = limn (1 - p(Ua,,) < lima(1—p(Ua)) < p(Z).
So p is strongly 7-smooth. O
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The assumption of strong o-smoothness in this result is necessary, as
can be seen from Example 2.3. A comparison with Theorem 5.16 of
[6] suggests that for strongly o-smooth quasi-measures, the difference
between 7-smoothness and strong 7-smoothness is similar to the differ-
ence between Lindel6f and hereditary Lindel6f. However, the following
result shows that this is not quite true.

Theorem 3.7. Suppose X is Lindelof. Then every strongly o-smooth
Baire quasi-measure on X s strongly T-smooth.

Proof. Let p be a strongly o-smooth Baire quasi-measure on a
Lindel6f X, and suppose that we have a family of zero sets {Z, : o € A}
with Z, \( Z. By way of contradiction, suppose that there is an ¢ > 0
such that p(Z,) > wu(Z) + € for all a. Let U be a cozero set such
that Z C U and pu(U) < p(Z) +e. Then {U} U{X\Zy : a € A}
is an open cover of X, let {U} U {X\Z,,} be a countable subcover.
Then NZ,, C U; by strong o-smoothness u(NZ,, ) > p(Z) + €, which
contradicts u(U) < u(Z) + e. Thus, p is strongly T-smooth. O

Our final result shows that in locally compact spaces, the notions of
strong) 7-smoothness and (strong) tightness merge.
g g) tig g

Theorem 3.8. Suppose X is locally compact and that v is a Baire
quasi-measure on X. Then p is (strongly) T-smooth if and only if p is
(strongly) tight.

Proof. We prove the forward implication in the case when p is
strongly o-smooth. Let U be cozero in X, then by local compactness
of X, U is open in X and F = (BX\X) U (X\U) is a closed set in
BX whose intersection with X is a zero set Z = X\U. By strong 7-
smoothness, 7(F) = p(FNX) =1—pu(U),so v(U) =1-5(F) = u(U).
That is, 7(U) = 1 — #(F) = p(U). Thus, for every ¢ > 0, there is
a compact K C U such that 7(K) > u(U) — €, so that u is strongly
tight. O
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