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FLAT EPIMORPHISMS AND
A GENERALIZED KAPLANSKY IDEAL TRANSFORM

JAY SHAPIRO

ABSTRACT. We generalize the notion of the Kaplansky
ideal transform Q(I) to an ideal I in an arbitrary commutative
ring R by defining Q(I) as the localization of R with respect
to a certain filter of ideals. It is shown that if the total ring
of quotients of R is von Neumann regular, then Q(I) is the
ring of global sections over the open set D(I). Additionally
for such rings, we characterize when the open set D(I) is an
affine scheme in terms of the flatness of Q(I).

1. Introduction. Let R be an integral domain with quotient
field K. For an ideal I, the Nagata ideal transform Ng(I) = U,>0(R :k
I"Y={qe K:I"C (R :k q) for some n > 0}, where (R :x q) = {r €
X : rq € R), has proven to be a very useful tool in various areas of
commutative ring theory. Not only in its original application by Nagata
in solving Hilbert’s fourteenth problem, but also in the general study
of overrings, see [1, 2, 9, 10].

However, once one leaves the realm of Noetherian rings, the Nagata
transform apparently is not as useful a tool. For nonfinitely generated
ideals I of an integral domain R, a variant of this transform has been
studied and proven to be of significant value. The Kaplansky (ideal)
transform of R with respect to an ideal I of R is the overring

Qr(I):={¢e K:ICRad(R:rq)}

Observe that Qg(I) is an overring of the Nagata ideal transform of I,
with the two transforms equal if I is finitely generated.

As noted by Fontana in [4], localizing (or Gabriel) filters of ideals
and generalized rings of quotients is a natural approach to the study
of ideal transforms (see Section 2 for the definitions and basic results).
Carrying this notion a step further, we define a generalized Kaplansky
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ideal transform, also denoted §2(I), for an ideal I of an arbitrary
(commutative) ring in terms of the ring of quotients with respect to
the localizing filter

Fr={JCR:ICRad(J)}.

When R is an integral domain, this new definition agrees with the old
one, hence there is no chance of confusion. In Section 3, using [4] in
part as a template, we generalize a number of results on the Kaplansky
transform from integral domains to a more general setting. While the
ideal transform is defined for an arbitrary ring, we obtain our deepest
results with the additional assumption that the total ring of quotients
of R, denoted T'(R), is von Neumann regular.

For I an ideal of R, let Y := D(I), where D(I) is the open subset of
X := Spec(R) consisting of those primes that do not contain I. Let
I'(Y, Oy|x) denote the ring of global sections over the open subspace
Y of X.

When R is Noetherian, Deligne’s formula states that 6I'(Y, Oy|x) =
lim Hom (I"™, R). Because of certain properties of Noetherian rings,
—

this formula can be restated in terms of the ring of quotients of R
at the localizing filter determined by I. In particular, one has that
(Y, Oy|x) = Q(I). Using our more general definition of the Kaplansky
transform, we show that this formula also holds in the non-Noetherian
case if T'(R) is von Neumann regular, Theorem 3.3.

It is well known that ring homomorphisms R — S that are flat
epimorphisms arise from localizing at a particularly well behaved filter
of ideals, see for example [14]. If R is an integral domain, then
the finitely generated flat overrings (which are necessarily epimorphic
extensions) of R can be characterized as the Kaplansky transform (1)
of a finitely generated ideal I, whose associated filter F; is perfect, see
[4, 13].

For an arbitrary commutative ring we give some necessary and
sufficient conditions for Q(I) to be a finitely generated flat epimorphic
R algebra. The results are made more precise under the additional
assumption that T'(R) is von Neumann regular. This includes, for such
rings, a characterization of when the open subspace D(I) is an affine
scheme, Theorem 3.12.
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All rings are assumed to be commutative with identity. Standard
notation that we will use throughout include Spec (R) to denote the
set of prime ideals with the Zariski topology and Min (R) to denote the
set of minimal prime ideals of R. For I an ideal of R, V(I) will denote
the closed subset of Spec (R) consisting of all prime ideals containing
I, while D(I) := Spec (R)\V(I). We call I a regular ideal if it contains
a regular element. If S is a ring containing R, s € S and L C §, then
(L :r s) :={r € R:sr € L}. Forany ring R, T(R) will denote the
total ring of quotients of R; in other words, R localized at the set of
regular elements of R.

2. Localization. In this section we review the notion of localiza-
tion (or ring of quotients) at a filter and present some of the basic
results. We give special attention to those rings R such that T'(R) is
von Neumann regular.

A collection of ideals of a commutative ring R is called a filter if it is
closed under the operation of taking finite intersections and such that
any ideal containing an element of the collection is in the collection.
A filter of ideals F of a commutative ring R is called a localizing,
or Gabriel, filter if it satisfies the additional property that if I is an
arbitrary ideal and J is an element of F such that for all a € J,
(I:gpa)€ F,thenI € F.

Associated to a localizing filter F is a left exact functor gz on the
category of R modules, i.e., for M an R-module, gx(M) is also an
R-module, defined by

gr(M) = | J Hom (I, M),
IeF

where we identify two elements fi, fo of this set if they agree on an
ideal J € F contained in the intersection of their domains of definition.
Addition is defined in the obvious fashion. When M = R we can define
multiplication for f,g € ¢r(R) with domains I and J respectively
as follows: The product of f and g is the composition f o g defined
on the ideal IJ. With this definition, gz(R) is a commutative ring
and the map from R to gr(R) given by r goes to multiplication by
r is a ring homomorphism. We then define a left exact, idempotent
functor on the category of R-modules by Mz := qr(qr(M)). For
each M, there is an obvious (and canonical) R-homomorphism from
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M to Myr. When M = R this map is a ring homomorphism. The
torsion submodule, associated to F, (M) of a module M is defined
as Tr(M) :={m € M : mI =0 for some I € F}. It is not difficult to
see that this subset is a submodule. Moreover, one can show that

Mz = | ) Hom (I, M/r(M)) = qr(M/75(M)).

The module M will be called F-torsion if 72(M) = M and F-torsion
free if 72(M) = 0. The former occurs if and only if Mz = 0, the latter
if and only if the map M — My is a monomorphism. When there is
no ambiguity, we will omit the F as a subscript for 7.

One other important result that will be needed from the theory on
rings of quotients is that if a : M — N is a monomorphism between
R-modules, then the induced map ar : My — Nz is an isomorphism
if and only if N/a(M) is F-torsion, see for example, [7, Proposition
6.2]. For more on the basic definitions and results on Gabriel filters
and localizations, see [7, 14].

There is another way to define the module of quotients Mz with
respect to a localizing filter 7. While this method is not as transparent,
it is often more useful. First suppose that M is F-torsion free. Let
E(M) denote the injective envelope of M, and let 7 : E(M) —
E(M)/M denote the canonical surjection. Then Mz is canonically
isomorphic to 7=(7(E(M)/M)). For an arbitrary module M, Mg is
isomorphic to the previous construction applied to M/7(M). From this
construction it is clear that if a : M — My is the canonical map, then
Mz/a(M) is F-torsion.

The most common example of a localizing filter is given by a multi-
plicative set S C R. The associated filter F is the set of ideals {J C R :
such that J NS # @}. For P € Spec (R), the adjectives P-torsion and
P-torsion free will mean with respect to the filters determined by the
set theoretic complement of P.

Our first lemma collects some elementary facts about localization of
a commutative ring that will be used throughout the paper.



GENERALIZED KAPLANSKY TRANSFORM 271

Lemma 2.1. Let F be a localizing filter on the ring R. Then the
following hold:

(1) If a € R is regular, then so is the image of a in Rx.
(2) If R is a reduced ring, then so is Rx.

Proof. (1) Clearly a ¢ 77(R) = 7(R), since 7(R) consists of zero
divisors. Let b € R be such that ab € 7(R). Then there exists J € F
such that abJ = 0. Since a is a regular element, bJ = 0. Thus b € 7(R)
and so its image in R is zero.

(2) First we will show that R/7(R) is reduced. Let a € R be such
that a™ € 7(R) for some n > 1. Then, for some J € F, a™J = 0. Since
R is reduced, aJ = 0. Hence, a € 7(R) and we have the claim.

Let x € Rx be a nilpotent element. Thus, ™ = 0 for some n > 0.
We also know that there exists an ideal J C R with J € F, such that
zJ C R/T(R) C Rz. Clearly xJ is a nilpotent ideal of R/7(R), which,
by our initial claim, forces zJ = 0. Since R is torsion free over F we
have that = = 0. u]

Our next result is part of the folklore of general localization theory,
which we present for the sake of completeness. It reduces localization at
a filter F to the case where the ring R is F-torsion free. First we need
a definition. Let R be any ring, and let F be any localizing filter on R.
Let R' = R/7(R) and denote by 7 the canonical surjection 7 : R — R'.
We can use F to define a filter 7/ on R’ via 7' = {J C R : n71(J) €
F}. One checks that in fact F' is a localizing filter on R'.

Proposition 2.2. Let F be a localizing filter on R and F' the filter
on R := R/7x(R) induced by F. Then Ry ~ R',.

Proof. First observe that R’ is torsion free with respect to F’'. Thus
R’/ = UjermHom (J, R"). Then we can define a map

f:Ry — Ry

by sending g : J — R’ to gow : m~1(J) — R’. It is not difficult to
check that f is a well defined ring homomorphism.
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To see that f is injective, suppose that h : J — R/, for J € F', is in
the kernel of f. In other words, there exists L C = !(J) with L € F
such that h o 7 restricted to L is the zero map. Thus, h o 7 induces a
map from 7~ 1(J)/L — R’. But the domain of this map is F-torsion
(since R/L is F-torsion), while the range is F-torsion free. Hence, this
induced map is the zero map, and so the original map h would also
have to be the zero map (since 7 is a surjection). Thus, f is injective.

To check that f is surjective, let g : L — R’ where L € F. Since R’ is
F-torsion free, one has that L N 7(R) C kerg. Thus, g induces a map
from L/(ENT(R)) to R'. Since L/(LNT(R)) ~ (L+7(R))/7(R), we have
a map from (L + 7(R))/7(R) to R'. Moreover, (L + 7(R))/T(R) € F'
and so we have an element of R’z, that is mapped to g by f. Thus the
map between the two rings of quotients is an isomorphism. ]

We want to examine reduced rings R whose total ring of quotients
T(R) is a von Neumann regular ring. An important fact to recall about
such rings is that every prime ideal of R that is not a minimal prime
contains a regular element.

Lemma 2.3. Suppose that T(R) is von Neumann regular. Let F be
a localizing filter on R and set T = 7r. Then 7(R) = Npex P where
X ={P eMin(R): 7(R) C P}.

Proof. By Lemma 2.1 (2), 7(R) is a radical ideal. Thus, 7(R) is the
intersection of elements of Spec (R) that are minimal over the torsion
ideal. On the other hand, if @ € Spec (R) is minimal over 7(R), then its
image in R/7(R) consists of zero divisors of R/7(R), see [10, Corollary
2.2]. However, as T(R) is von Neumann regular, we can apply Lemma
2.1 (1). Thus, the image in R/7(R) of every @ € Spec(R) \ Min (R)
is a regular ideal of R/7(R). Hence, all the prime ideals of R that are
minimal over 7(R) are elements of Min (R). O

Proposition 2.4. Suppose that T(R) is von Neumann regular and
F is a localizing filter on R. Let X be as in Lemma 2.3, and let
Y C Spec(T'(R)) be the primes of T(R) that lay over X, i.e., there
is a bijection between the sets Y and X given by Q — Q N R. Let
L := NgeyQ. Then L = 7(T'(R)) and T(R)/L is the total ring of
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quotients of R/T(R). In particular, R/7(R) has a total ring of quotients
that is von Neumann regular.

Proof. First we show that L = 7(T(R)). By Lemma 2.3, 7(R) =
Npex P and, since X consists of minimal primes of R, this last set
equals L N R. Thus, 7(T(R)) = 7(R)T(R) C L. Conversely, if z € L,
then zb € R for some regular element b € R. Furthermore, since x € L,
xzb € P for each P € X. Thus, 2b € Npex P = 7(R).

Clearly, R/7(R) is naturally a subring of T'(R)/L. Furthermore, since
T'(R) is von Neumann regular, so is T(R)/L. Therefore, to show that
T(R)/L is the total ring of quotients of R/7(R), it will suffice to show
that for any 0 # g € T(R)/L, there exists a regular element t € R/7(R),
such that 0 # gt € R/7(R).

Let z € T(R) be a preimage of g. Then there exists a regular element
s € R such that 0 # s € R. However, by Lemma 2.1 (1), the image of
sin R/7(R) is regular. Therefore, it will suffice to show that the image
of xs in R/7(R) is not zero, in other words, to show that xs ¢ 7(R).
However, notice that if @ is any prime ideal of T'(R), then z € @ if and
only if zs € QN R. Thus, z € L if and only if zs € LNR = 7(R). Since
the image of z in T'(R)/L is not zero, we can conclude that zs ¢ 7(R)
and we have the proof. a

Corollary 2.5. Suppose that the total ring of quotients of R is
von Neumann regular. Let F be a localizing filter on R, T = 7, and J
an ideal of R such that 7(R) C J. Then J contains a regular element
of R if and only if the image of J in R/T(R) contains a regular element

of R/T(R).

Proof. Note that 7(T'(R)) = 7(R)T' C JT. Let R' = R/7(R), and
let J' denote the image of J in R'. By the Proposition, T'(R') =
T(R)/T(T(R)). Thus, J'T(R') = T(R') if and only if JT(R) = T(R).
Hence, J' contains a regular element of R’ if and only if J contains a
regular element of R. O

Let F C G be localizing filters on the ring R. Then it follows from
the definition that there is a natural ring homomorphism from Rz to
Rg. In particular, if G is the filter determined by the regular elements
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of R, and if F is a filter such that every J € F is a regular ideal, then
R C Ry C Rg = T(R). Furthermore, it follows from the alternate

definition of localization that in this case Rx = {¢ € T(R) : ¢J C R
for some J € F}. We can generalize this notion. O

Proposition 2.6. Let T(R) be von Neumann regular, F a localizing
filter on R and T = 7¢. If, for each J € F, J + 7(R) is a regular
ideal of R, then Rr C T(R/7(R)). Furthermore, in this case Ry =
R(r)/T(R(F)) where Riry ={q € T(R) : ¢J C R for some J € F}.

Proof. Again let R’ = R/7(R). First observe that by Proposition 2.4
the von Neumann regular ring T'(R)/7(T(R)) equals T(R'). Now
assume that for each J € F, J + 7(R) is a regular ideal of R. Let
F' be the filter on R’ induced by F. Then by Lemma 2.1 (1) every
element of F’ is a regular ideal of R'. Thus F’ is a subfilter of the filter
determined by the regular elements of R’. Hence Rx is a subring of
the total ring of quotients of R’. Furthermore, we know that

Rr=(R)s ={qeT(R)/7(T(R)):qL C R’ for some L € F'}.

Let # : T(R) — T(R') be the canonical surjection. Since for any
LeF, (L) € F, it follows that for ¢ € Rr, 7~ '(q) C R(). Thus
Ry C R(]:)/T(R(]:)).

For the reverse containment, let * € R(r). Then zJ C R for some
J € F. Furthermore, the image of z-7(R) in R’ is F-torsion, yet T'(R')
is F-torsion free. Thus, it follows that m(z - 7(R)) = 0. Therefore,
m(z) - (J + 7(R))/7(R) C R'. Since (J + 7(R))/7(R) € F', we have
n(xz) € R = Ry and thus R(r)/7(R(F)) = RF as claimed. O

We will obtain a partial converse of this last result in the next section.

3. The generalized Kaplansky transform. Let R be an integral
domain, K its quotient field and I C R an ideal. The (Nagata) ideal
transform Nr(I) = {q € K : ¢I" C R for some n > 1} of an ideal I of
R has proven very useful in the study of Noetherian domains. Also note
that Ng(I) = lim_, Hom (I", R), which of course is reminiscent of the
definition of localization at a filter. However, for the non-Noetherian
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case, there appear to be many advantages in using the ideal transform
introduced by Kaplansky, see for example, [4, 5]

Qr(I) = Q) ={qe K : I" C Rad(R :g qR)}.

It is not difficult to check that N(I) C Q(I) with equality if I is finitely
generated.

In this section we introduce a generalized version of the Kaplansky
transform that is applicable to commutative rings that are not domains.
Let R be an arbitrary commutative ring, and let I be an ideal of R.
Define a filter of ideals on R via Fy:={J C R:I1 C Rad(J)} ={J C
R : for all y € I there exists n > 1 such that y™ € J}. One checks
that F; is in fact a localizing filter on R. Therefore for an arbitrary
ring R and ideal I we can define the generalized Kaplansky transform
of the ideal I as the ring Rz,, which we also denote by Q(I). This
definition is motivated by the observation that, for an arbitrary ideal
I of a domain R, the usual Kaplansky transform is equal to Ryz,, see
[4, Lemma 4.3], so there is no ambiguity. For the sake of brevity, we
denote the torsion submodule of a module M with respect to this filter
by 71(M).

We will generalize some of the known results on Q(I) to arbitrary
(commutative) rings. For our first theorem in this direction, let
Y := D(I) and X := Spec(R) (recall that D(I) is the open subset
of Spec (R) consisting of those elements that do not contain I). Let
I'(Y, Oy|x) denote the ring of global sections over the open subspace
Y of X. For an arbitrary Noetherian ring R, Deligne’s formula states
that I'(Y, Oy |x) = lim_, Hom (I", R). Furthermore, it has been shown
[3, Lemma 2.5] that if R is Noetherian, then

h_r>nH0m(I ,R):h_r>nH0m(I ,R/m1(R)).

Thus in our notation, Deligne’s formula translates to the statement that
(Y, Oy|x) = Q(I), for any ideal I of Noetherian ring R. Additionally
this formula has been shown to hold for finitely generated ideals of an
arbitrary (commutative) ring [3, Proposition 2.12]. Generalizing in a
different direction, we show that the equation I'(Y, Oy |x) = Q(I) holds
if I is any ideal of a ring R whose total ring of quotients is von Neumann
regular, Theorem 3.3.
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We also show that certain finitely generated (as algebras), flat epimor-
phic ring homomorphisms from R are of the form R — Q(I). Finally,
in a generalization of [4, Theorem 4.4], we obtain more precise con-
ditions for when this occurs under the assumption that the total ring
of quotients of R is von Neumann regular, see Theorem 3.12. These
conditions relate the flatness of 2(I) to when D(I) is an affine scheme.

We proceed to generalize Deligne’s formula. If I = aR is a principal
ideal, then the ring of global sections over D(I) is just R,, i.e., R
localized at the multiplicative set {a,a?,a®,...}. First we need a simple
lemma regarding R,.

Lemma 3.1. Let I = aR be a principal ideal. Then Q(I) = R,.

Proof. The filter F; clearly consists of all ideals J that contain a
power of a. This is precisely the filter determined by the multiplicative
set {1,a,a?,a®...}. Since R, is localization at this filter, we have the
desired equality. o

Next we give a helpful description of 77(R) when R is reduced.

Lemma 3.2. Let I be an ideal of R, and suppose that R is a reduced
rmg Let Z = Min (R) N D(I) Then T](R) = ﬂpezp = (0 ‘R I)

Proof. Let L = NpezP. Then IL is contained in every element of
Min (R). Since R is reduced, we have IL = 0. Thus, L C 7;(R).
Conversely, let a € 77(R). Then aJ = 0 for some J € F;. Thus,
by definition, I C Rad(J). Clearly D(I) C D(J), and hence Z =
Min (R) N D(I) € Min (R) N D(J). Since aJ = 0, it follows that a € Q
for all @ € Min (R) N D(J). Thus, a € Q for all @ € Z. Therefore, the
sets L and 77(R) are equal. As for the second equality, as noted earlier,
IL =0. Hence, L C (0 :g I). On the other hand, since I € Fy, it is
clear that (0:5 I) C 77(R) = L. o

Theorem 3.3. Suppose that T(R) is von Neumann regular. Then,
for any ideal I C R, one has
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L(Y,Oyx) = Q(I),
where X = Spec(R) and Y = D(I).

Proof. Let S = {s;}icr be a generating set for I. For s; € S, we let
R; denote R localized at the element s;. For (k,m) € ' x I', we let
Ry, denote R localized at the element sgs,,. Then, for each k,m € T’
there is a canonical map Ry — Rpgp,. Thus, for each ¢ € I', there are
two maps from R; into H(k,m)erxr Ry, This induces two maps g and

h from [, Re t0 [T4 nyerxr Rim.

One defines the difference map f : [[,cp Rt — H(k,m)eFxK Ry, via
f := g — h. Since the sets {D(sg)}rer form an open cover of Y, it
follows from Lemma 3.1 and the definition of a sheaf, see for example,
[15, Remark 1.8], that there is a canonical embedding « such that the
following is an exact sequence:

0 =T 0vx) = [[Re = ] Rim
kel (k,m)el’'xI’

Since localization is idempotent and since F; C F; whenever J C I,
we know that (Rx)z, = Rk. Furthermore, since localization is left
exact, it commutes with products. Thus, when we localize the above
sequence at the filter F;, it remains exact and by Lemma 3.1 the
two terms on the right are unchanged. Hence, the remaining term
is unchanged. Thus (I'(Y, Oy|x))r, = I'(Y,Oy|x). We will conclude
our proof by showing that Q(I) = (I'(Y, Oy x)) ;.

It is clear from the last argument that I'(Y, Oy x) is F-torsion free.
Let a : R — I'(Y,Oy|x) be the canonical map with R’ the image of
a. Then for each P € D(I) we know that R, = I'(Y, Oy |x)p = Rp.
Hence, I'(Y, Oy |x)/R' is P-torsion. In particular, for P € D(I) and any
q € I'(Y,Oy|x) we have (R’ :g q) ¢ P. Therefore I C Rad (R’ :r q)
for any ¢ € T'(Y, Oy x). Hence, I'(Y,Oy|x)/R’ is F-torsion. Thus, if
we can show that ker & = 77(R), then using the alternate definition of
localization, we would have Q(I) = I'(Y, Oy |x) 7,

Since I'(Y, Oy |x) is F-torsion free, 77(R) C kera. We also know
from Lemma 3.2 that 7;(R) is the intersection of the elements in
the set Min (R) N D(I). Thus, if ker a is strictly bigger than 7,(R),
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it follows that keraw ¢ P for some P € D(I). Hence, for this P,

'> = 0. But this would be a contradiction with the fact that the maps
R — T'(Y,Oy|x) = Rp compose to give the canonical map from R to
Rp. Thus, ker « = 77(R), and our proof is complete. O

A ring homomorphism « : R — S is called an epimorphism, if it is
an epimorphism in the category of Rings. This is equivalent to the
statement that the multiplication map S ®g S — S is an isomorphism.
There is a well-known correspondence between flat epimorphism and
the ring of quotients with respect to a certain kind of localizing filter.
This relation will be crucial to what follows. If « : R — S is a flat
epimorphism, then the collection of ideals F = {I C R: «(I)S = S}
is a localizing filter and there is a canonical isomorphism S ~ Rg.
Conversely, if the family F of ideals J such that o(J)T = T is a
localizing filter such that there is a ring isomorphism o : 7' — Rg
where caw : R — Ry is the canonical map, then « : R — T is a
flat epimorphism, see [14, Theorem 2.1]. We call such an F a perfect
filter (for more information on such filters, see [14]). If F is a perfect
filter, then for any ideal J of R, one has that Jr = «(J)Rzx, where
a: R — Rz is the canonical map. Moreover, localization at a perfect
filter is an exact functor.

In general it is possible to have two distinct filters F and G such that
Ry = Rg. However, if F is a perfect filter, then F C G. This is a
consequence of the next result (which undoubtedly is known to some).

Lemma 3.4. Let R be any ring and F a localizing filter on R. Let
a: R — Rgx be the canonical morphism. If J is an ideal of R such that
a(J)Ry = Rg, then J € F.

Proof. We prove the contrapositive. Suppose that J ¢ F. Since the
annihilator of the image of 1 in R/J is J, it follows that R/J is not F-
torsion. Thus, the canonical morphism R/J — (R/J)# is not the zero
map. Since localization is left exact, we get the following commutative
diagram where the horizontal sequences are exact and the vertical maps
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are canonical:

0 t‘f T R/J 0
0 Jr Ry (R/J)F

Since the diagram is commutative, it follows that a(J)Rr C Jg.
Furthermore, since the map R — R/J is a surjection, we know that
the composed map R — (R/P)# is not the zero morphism. Hence, the
image of Rr in (R/P)r is not zero. Therefore, a(J)Rr C Jr # Rr. O

We are now able to present a partial converse to Proposition 2.6 as
promised.

Corollary 3.5. Let F be a perfect filter on R such that Ry C T(R).
Then F C G, where G is the filter determined by the reqular elements
of R. In particular, each J € F is a regular ideal of R.

Proof. 1t is not difficult to check that the intersection of two localizing
filters is again a localizing filter. Thus, H := F NG is a localizing filter
on R. We claim that Rx = Ry. Since H C G, it follows that Ry is a
subring of T'(R); to be precise, Ry = {¢ € T(R) : (R :g q) € H}. If
q € R C T(R), then clearly (R:g ¢q) € FNG. Thus, Rr C Ry.

Conversely, using the alternate definition of localization, we see that
T(R)/Rg is F-torsion free and hence H-torsion free. Thus, Ry C Rz,
and so we have equality of the two rings. However, since F is perfect,
it follows from Lemma 3.4 that this equality of the ring of quotients
implies that F C H. Hence, the two filters are equal, which proves the
result. o

Recall that if R is a domain, then any flat overring S, i.e., S contains
R and is contained in the quotient field of R, is an epimorphic extension
(this will also follow from Lemma 3.8). Thus, the following two results
are a generalization of what is essentially [11, Theorem 5] from the case
when R is an integral domain to arbitrary commutative rings. We note
that our proofs are relatively simple adaptations of the proof found in
[4, Proposition 2.9].
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Proposition 3.6. Let I C R be an ideal, and let o : R — Q(I) be
the canonical map. If a(I)Q(I) = Q(I), then Fy is a perfect filter (so
Fr={JCR:JQI) =QI)}) and QI) is a finitely generated, as an
algebra, flat epimorphic extension of R. Furthermore, there is a finitely
generated ideal I' C I, such that Rad (I) = Rad (I'), so Fr = Fr.

Proof. First we will show that F; = {J C R : o(J)Q(I) = Q(I)}
and hence it is a perfect filter. Let J € F, so I C Rad(J). Thus, if
P € V(J), then I C P. Therefore, a(P)Q(I) = Q(I). It is not difficult
to see that this implies that a(J)Q(I) = Q(I) (if not let @ be a prime
of Q(I) that contains «(J)Q(I). Now pull @ back to R and obtain a
contradiction.)

Conversely, if J is an ideal of R such that «(J)Q(I) = Q(I), then
by Lemma 3.4, J € F;. Hence, F; is as claimed and so it is a perfect
filter. Thus, R — Q(I) is a flat epimorphism.

Next we show the existence of I’ with the stated properties. Since
a(DQI) = Q(I), there exists z1,23,... ,2, € I and s1,82,...,8, €
Q(I) such that

n

Z a(z;)s; = 1.

i=1
Let I' = (z1,... ,zy). Clearly a(I")Q(I) = Q(I). Thus I’ € Fr. Hence
I CRad(I'). Since I' C I, we also have Rad (I) = Rad (I').

Finally we show that (I) is finitely generated over R. Clearly we
may assume that I is finitely generated. Let R’ = a(R) C Q(I). We
claim that Q(I) = R'[s1,...s,]). Let t € Q(I), so (R :g t) € Fr.
Since I is finitely generated, there exists M > 0 such that I™ C
(R :g t). Since a(I)R'[s1,...,8n] = R'[s1,...,8n], it follows that
a(IMR'[s1,... ,8,) = R'[s1,. .. ,sn]. Hence,

T
= Z a(zk)zk with oy € ™
k=1

and

2k € R'[s1,...,8,), 7>1.
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Since z3 € I™ and (M)t C R', we have

r

t= Z(a(xk)t)zk € R/[Sh cee aSn]a

k=1

and the proof is complete. o

We also have a partial converse to the above, which is really just the
proof (i) = (ii) of [4, Proposition 2.9].

Proposition 3.7. Let R — S be an embedding of rings that makes
S into a finitely generated, as an algebra, flat epimorphic extension.
Then S = Q(I) for some finitely generated ideal I of R such that Fy is
a perfect filter.

Proof. Since S is a flat epimorphic extension of R, the family of ideals
F={J CR:JS = S}is a perfect filter on R. We will show that
there is an ideal I of R such that F = Fj.

For each t € S, the ideal (R :g t) is an element of F, since by the
alternate definition of localization the module S/R is F-torsion. Let
S = R[s1,...,8s], and set

1= (R ‘R 81) ﬂ(R ‘R Sz)mﬂ(R ‘R Sn).

Thus, I € F, since F is a filter, so IS = S.

If J € F, then JS = S. Thus, there exists ji,...,Jj € J and
t1,...,t, € S such that >, _, jitx = 1. Since ¢, € R[s1,..., sy], there
exists N > 0 such that ¢tV C R for each k, 1 < k < r. Therefore,

N =1".1= INijtk = ijtkIN c J,
k=1 k=1
whence J € Fy, from which we deduce that F C Fj.

In the other direction suppose that J € Fr. Thus, I C Rad (J). Since
IS = S we can, as in the proof of Proposition 3.6 (the first paragraph),
conclude that JS = S, i.e., J € F. Hence, F = Fj.
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Since Fy is a perfect filter, we can use Proposition 3.6 to find a finitely
generated ideal I’ C I so that Rad (I) = Rad (I’). Thus, we are done.
O

Observe that if the ideal I of R contains a regular element, then every
element of F; contains a regular element. This follows for if J € Fj,
then Rad (J) contains a regular element a. Hence, a™ € J for some
m > 0. In particular, F; C G, where G is the filter determined by the
set of regular elements of R. Thus, Rz, = {t € T(R) : tJ C R for some
J e ]:[}

When we make the additional assumption that the total ring of
quotients of R is von Neumann regular, we are able to obtain further
results. We first record some known results on flat epimorphisms that
will be needed in what follows.

Lemma 3.8. Let R be a (commutative) ring. Then the following
statements hold.

(1) Let R C S C T be ring inclusions such that T is a flat epimor-
phism over R. Then S flat over R implies that S is also an epimorphic
eztension of R;

(2) if the total ring of quotients T(R) is von Neumann regular, then
any ring that contains R as a flat epimorphic extension is contained in
T(R);

(3) a ring homomorphism « : R — S is a flat epimorphism if and
only if for each P € Spec (R), either a(P)S = S or a®gSp : Rp — Sp
is an isomorphism.

Proof. For (1), see [14, Proposition 2.4] and for (2), see [6, Theorem
4.3.7]. Finally, (3) is from [13, Proposition 2.4]. O

Corollary 3.9. Assume T(R) is von Neumann regular, and let
R C S CT(R). Then the following are equivalent:

(1) S is flat and finitely generated over R.

(2) There exists a finitely generated ideal I containing a regular
element such that S = Q(I) and IQ(I) = Q(I).
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Proof. (1) = (2). By Lemma 3.8 (1), S is also an epimorphic
extension of R. Therefore, by Proposition 3.7 the ideal I exists with all
the properties stated, with the possible exception that it need contain
a regular element. However, since the map from R to Q(I) = S is a
monomorphism, (I :g 0) = 0. Because [ is finitely generated, by [10,
Theorem 4.5] it must contain a regular element.

(2) = (1). This follows immediately from Proposition 3.6. o

Let F be a localizing filter on R, and let P € Spec(R). Since the
annihilator of every element of R/P is P, it follows that R/P is either
F-torsion or F-torsion free, depending on whether P € F or not. In
a similar argument, for Q € Spec (Rx), Rr/Q is either F-torsion or
F-torsion free, depending on whether or not a=!(Q) is an element of
F (here a denotes the canonical map from R to Rx). In particular,
there is an assignment from the set Z := {Q € Spec (Rz) : Rx/Q is
F-torsion free} to the set Y := {P € Spec (R) : R/P is F-torsion free}
via @ — a~1(Q). In fact we can say more about this function.

Lemma 3.10. Let F be a localizing filter on R, and let a : R — Rx
be the canonical map. Let Z := {Q € Spec(Rx) : Rr/Q is F-torsion
free} and Y := {P € Spec(R) : R/P is F-torsion free}. Then the
assignment Q — a~1(Q) is a bijection from Z to Y.

Proof. As we have already seen, o~ ! defines a map from Z to Y. We
will show that the map P +— P is the inverse assignment.

First we must show that for P € Y, Pr is a prime ideal of Rz. Since
R/P is F-torsion free, 7(R) C P. Thus, by appealing to Proposition 2.2
we may assume that R is F-torsion free, and hence R C Rz. Now
suppose that a,b € Ry such that ab € Pr. Since both Rr/R and
Px/P are F-torsion, by the definition of a filter, there exist J € F
such that both aJ and bJ are contained in R, while abJ? C P. Since P
is prime, either aJ C P C ProrbJ C P C Pr. But Rx/Pr C (R/P)#
is F-torsion free. Hence a € Pr or b € Pr. Which proves the ideal is
prime.

For each Q € Z, Q/(Q N R) is F-torsion (since it is contained in
Rz/R). Thus, (Q N R)x = Qx. On the other hand, consider the
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following commutative diagram

0 T R( Rr/Q 0
0 Qr Ry (Rr/Q)F

where the horizontal rows are exact and the vertical maps are the
canonical injective maps (the middle one of course is bijective). It
follows from a standard diagram chase that the leftmost vertical map
must also be onto. In particular, (Q N R)r = Q@ = Q. Thus, the
assignments are one sided inverses of each other.

Finally, we must show that for P € Y, PN R = P. It is clear that
P C Py and Pg/P is F-torsion. Furthermore ,(Pr N R)/P C R/P.
Since by hypothesis the latter module is F-torsion free, it follows that
PrNR=P. O

Next we present one more lemma before moving onto our final
theorem of the section.

Lemma 3.11. Suppose that T'(R) is von Neumann regular. Let I
be an ideal of R such that I + 77(R) is a regular ideal. Then for any
J € Fr, J+71(R) is a regular ideal. In particular, Q(I) C T(R/71(R)).

Proof. Let J € Fr, then I C Rad(J). Thus, I 4+ 77(R) C
Rad (J + 77(R)) and hence Rad (J + 77(R)) contains a regular element
of R. As before we see that this implies that J + 7;7(R) is a regular
ideal of R. Therefore, by Lemma 2.1 (1) every ideal of F’, the filter on
R/71(R) induced by Fj, contains a regular element of R/77(R). Thus,
by Proposition 2.2 we have the concluding remark of the Lemma. a

We are almost ready to move onto generalizing Theorem 4.4 of [4].
In that theorem, where R is assumed to be an integral domain, one
condition used is the assumption that, for certain prime ideals P,
Q(I) ¢ Rp. In our next result we work with localizations that are
not embeddings. Therefore, we need an alternate formulation of this
condition. To that end we claim that when R is a domain, the condition
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that Q(I) ¢ Rp is equivalent to the condition that Q(I)/R is not P-
torsion. To see why, let K denote the quotient field of R, then

Q(I) ¢ Rp <= 3 q € K, such that ¢ € Q(I) and ¢ € Rp
<= I CRad(R:gq)and (R:gq) C P
<= ¢ € Q(I) and the image of ¢ in Q(I)/R

is not P-torsion.

Our last theorem is an adaption of Theorem 4.4 of [4] from the case
where R is an integral domain, to where T'(R) is von Neumann regular.

Theorem 3.12. Assume that T(R) is von Neumann regular, and let
I be an ideal of R. Set X := Spec(R), Y := D(I), W := Spec (Q(I)),
and let « : R — Q(I) denote the canonical map. Then the following
statements are equivalent:

(1) Y is an affine open subspace of X;

(2) the canonical morphism
(VV,OW) — (Y70Y)7 QHQ?I(Q)a

s a scheme-isomorphism,

(3) a(DUI) = Q(I);
(4) for each P € V(I), a(P)QUI) = Q(I);

(56) Fr is a perfect filter (so in particular a : R — Q(I) is a flat
epimorphism);

(6) I+ (0:g I) contains a regular element of R, Q(I) is flat over R,
and for each P € V(I), Q(I)/a(R) is not P-torsion.

If the above equivalent conditions hold, then Q(I) = Q(I)/(0 108 I),
where Q(I) = {q € T(R) : ¢J C R for some J € Fr}.

Proof. Let Y' := Dy (IQ(I)).

(1) < (2). By Theorem 3.3 Y is an affine subspace of X if and only
if the canonical map Y — Spec (I'(Y, Ox|y)) = W [8, 1.2.3.2] defines a

scheme isomorphism.
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(2) & (3). This follows directly from Lemma 3.10, since I2(I) = Q(I)
if and only if Y/ =W,

(3) & (4). Clearly (3) implies (4). The reverse direction is the same
argument as used in the proof of Proposition 3.6 (first paragraph).

(4) = (5). This is immediate from Proposition 3.6.

(5) = (6). The map a : R — Q(I) is a flat epimorphism. Now
suppose that for some P € Spec(R), I C P, yet Q(I)/a(R) is P-
torsion. Then we have the following commutative diagram:

R—Q(I)

.

Since Q(I)/a(R) is P-torsion, the bottom horizontal map is onto.
Hence, the image of PRp in Q(I)p is a prime ideal. Let @ denote
this ideal pulled back to Q(I). Thus, we have PQ(I) C Q. But
this is a contradiction to the assumption that PQ(I) = Q(I) for all
P € Spec(R) with I C P.

Finally we have to show that I + (0 :g I) contains a regular element.
First note that (0 :g I) = 7(R) by Lemma 3.2. Let F' be the
filter induced by F; on the ring R = R/7(R). It is easy to see
that F' is a perfect filter on R'. Furthermore, by Lemma 3.8 (2)
Ry = Rz, C T(R'). Hence, each element of F' contains a regular
element of R, Corollary 3.5. Therefore, we can apply Corollary 2.5 to
conclude that every element of F that contains 7(R) contains a regular
element of R.

(6) = (4). Note that Q(I) is necessarily flat over R’, since the canon-
ical map R — R’ is an epimorphism. Furthermore, by Lemma 3.11,
Ry C T(R'). Since Q(I) is flat over R’, by Lemma 3.8 (1), Q(I) is a
flat epimorphic extension of R'. Thus, R — Q(I) is a flat epimorphism
and whence Q(7) is the localization of R at a perfect filter.

Let P € Spec (R); then a(P)Q(I) is the localization of P at a perfect
filter. In particular, either a(P)Q(I) = Q(I) or a(P)S(I) is a prime
ideal of Q(I) and a !(P) = P. Now suppose that P € V(I) and yet
a(P)Q(I) # Q(I). Then, by Lemma 3.8 (3), the map « ® Rp : Rp —
Q(I)p is an isomorphism. This implies that Q(I)/a(R) is P-torsion,
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a contradiction with our assumption. Hence, a(P)Q(I) = Q(I) for all
P eV(I).

Finally, to see the concluding statement, note that by Proposi-
tion 3.11, every ideal in F’ contains a regular element of R’. Thus,
by Proposition 2.6, Q(I) = Q(I)/7(Q(I)). However, 7(Q(I)) =
m7(T(R)) NQ(I)). Since T(R) is a localization of R at a multiplica-
tive set, it follows that 7;(T'(R)) = 7(R)T(R) = (0 :r I)T(R) =
(0 :pr)y IT(R)). Therefore, () = (0 :rr)y IT(R)) NI =

(05 12I) = (05 D). O

We can translate the above equivalent conditions to one that is
internal to the total ring of quotients of R.

Corollary 3.13. Suppose that T(R) is von Neumann regular and
I is an ideal of R. Let o : R — Q(I) be the canonical map, and let

Q(I) denote the subring of T(R) as given in the last result. Then the
following conditions are equivalent:

(1) a(DQI) = Q(I);

(2) I +(0: I) is a regular ideal and IQ(I) + (0 Teg) I)=Q(I)

If I is finitely generated, the above is equivalent to: IQ(I) +
I)=Q(I).

(0 15(1)

_ Proof. (1) = (2). By the Theorem, the kernel of the projection
QI) — QI) is (0 :g(;)) and I + (0 :g I) contains a regular element.
Thus, we are done.

(2) = (1). Since I + (0 :g I) contains a regular element, by
Lemma 3.11 every ideal of the form J + (0 :g I), J € Fr, contains
a regular element. Thus, by Proposition 2.6, Q(I) = Q(I)/7(2(I)).

From the Theorem we know that 7;(€2()) = (0 i) {). Hence it is
clear that the second assumption in (2) implies that «(I)Q2(I) = Q(I).

To show the concluding statement it will suffice to prove that I+(0 :g
I) is a regular ideal whenever I is finitely generated. As already
observed, if I is finitely generated, either I is a regular ideal or there
exists 0 # s € R such that s/ = 0. In the former case we are done.
Assume the latter; then IT(R) is a proper, finitely generated ideal
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of the von Neumann regular ring T(R). Thus, it is generated by an
idempotent e. Furthermore, there exists a regular element b € R such
that (L —e)b € R. Clearly (1 —e)b € (0:5 I) and (I, (L —e)b)T'(R) =
T(R). Since (I,(1 — e)) is finitely generated, it contains a regular
element t. In other words, t € (I,(1 —¢€)) C I+ (0:x I), so we are
done. O

If R is a domain and I an ideal of R, then whenever Q(I) is flat, the
map R — Q(I) is also an epimorphism. We conclude with an example
of a von Neumann regular ring R that contains an ideal I such that
Q(I) is flat over R yet R — Q(I) is not an epimorphism.

Example 3.14. Let F be any field, and let T be a product of
copies of F' indexed by the natural numbers. Let R be the subring of T’
generated by the full socle I of T, i.e., I = > F, along with all elements
of the form a -1 where a € F (thus, R consists of all sequences that are
eventually constant). Then R is von Neumann regular. Additionally,
T is an essential extension of R and T - I C R (more precisely, I is an
ideal of T'); thus, Q(I) = T. Clearly T is flat over R, since R is von
Neumann regular. On the other hand, since R is von Neumann regular,
it has no proper monic flat epimorphic extensions.
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