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ON RECURRENCE RELATIONS FOR
THE EXTENSIONS OF EULER SUMS

YAO LIN ONG AND MINKING EIE

ABSTRACT. We consider the extended Euler sums

oo 1 2k 1 oo 1 [k/2]1
E,,,qzzﬁ<zj_p> and TM:ZE<ZF>

k=1 j=1 k=1 j=1

and obtain the explicit values of £}, 4 and T}, 4 when the weight
p+q is odd via integral transformations of Bernoulli identities
involving Bernoulli polynomials. Two families of Bernoulli
identities are transformed into explicit formule of Euler sums
and extended Euler sums.

1. Preliminaries. The sequence of Bernoulli numbers (n =
0,1,2,...) is defined by

t = B,t"
(1.1) = nz:% nes <2

It is a sequence of rational numbers and it can be evaluated through
the following recursive formula:

(12) {om .
() Bn1 4+ ()Bo=0,n > 2.
In particular, we get B; = —1/2 from the relation
2B1 + By =0.

2000 AMS Mathematics subject classification. Primary 11MO06, Secondary

11B68, 11M35.
Keywords and phrases. Euler sums, Bernoulli polynomials, Hurwitz zeta

function.
The first author was supported by the Department of Accounting and Informa-

tion Systems, Chang Jung Christian University, and the National Science Council
of Taiwan, Republic of China. The second author was supported by the Depart-
ment of Mathematics, National Chung Cheng University, and the National Science

Council of Taiwan, Republic of China. The first author is the corresponding author.
Received by the editors on September 12, 2005, and in revised form on Febru-

ary 13, 2006.
DOI:10.1216/RMJ-2008-38-1-225 Copyright (©2008 Rocky Mountain Mathematics Consortium

225
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Also Bsr+1 =0 for k& > 1 since the function

t +t
et -1 2

(1.3) F(t) =

is an even function of ¢ by a direct verification. Bernoulli numbers are
used to express the special values of the Riemann zeta function

(1.4) ¢(s) = in_s, Res > 1,
n=1
namely,
(1.5) ¢(2m) = @rP" ()™ Bam s g

2(2m)! ’
Given the functional equation of {(s), this is equivalent to

(1.6) (l-n)=-"" n>L

On the other hand, Bernoulli polynomials are polynomials with
Bernoulli numbers as coefficients defined by

o n
1.7 By(z) = Bpz" %, n=0,1,2,...,
(1.7 @ =3 (4)Bat o

or equivalently,

te®t > B, tn
(1.8) =¥ Bul@)t” ) < or,

Bernoulli polynomials can be evaluated one by one through the differ-
ential equation

(1.9) diBn(x) =nBn_1(xz), Bn(0)=B,, n>1,
i

and By(z) = 1. The first few Bernoulli polynomials are

1 1
(1.10) Bl(a:):a:—g, Bg(a:):w2—x+g, Bg(x):a:?’—;w2+g.
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Bernoulli polynomials satisfy the relation
(1.11) B,(1—2z)=(-1)"B,(z).

They have the following Fourier expansions [10]:

2 cos2krz  (—1)"1(27)%" By ()
1.12 = >1,0< 1
(1.12) ];1 K2n 2(2n)! n210se<,
2 sin2krz (—=1)"T1(27)2" By, (2)
1.13 = >1,0< 1.
(1.13) 2 TpEn 2(2n + 1) n=LisEs

Bernoulli polynomials are used to express the special values at nega-
tive integers of Hurwitz zeta function defined as below [12]:

o0
(1.14) C(s;2) = Z(n +z)7°, Res>1l,z>0.

n=0
Such a zeta function has its analytic continuation in the complex plane
as a function of s and, for each positive integer m,

Bm(x).

(1.15) C(1—myz) =— -

Zeta functions related to linear forms were considered by the second
author [5, 6, 7] as generalizations of Riemann zeta and Hurwitz
zeta functions. Their special values at negative integers are given by
polynomial functions in Bernoulli numbers and Bernoulli polynomials.

Theorem A [5, 7]. Let ay,as,...,a, be positive numbers. Define
the zeta function Z1(s) by
(1.16)

Zi(s) = Z Z Z [ainy + agna + - -+ arn,.]7°, Res>r.
n=1ns,=1 ny=1

Then Z1(s) has its analytic continuation in the whole complez plane as

a function of s. Furthermore, for each positive integer m > r,
(1.17)

(m —r)! -1 _pa—1 -
Zl("'_m): Z ma}fl 0’12)2 eay lBP1BP2"'BPr7

lp|=m
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where p = (p1,...,pr) ranges over all r-tuples of nonnegative integers
and |p| =p1+ -+ p,.

Theorem B [5, 7]. Let ay,aq,...,a, be positive integers, and
let x = (z1,22,...,2,) be r-tuples of nonnegative numbers such that
1+ @2+ -+ -+ x, > 0. Define the zeta function Zs(s;x) by

(]_18) Zz(S;I) = Z Z Z a1 n1+m1 +a2(n2+x2)—|—...

n1=0n=0 n,=0

+a,(n, +z.)]7°, Res>r.

Then Zs(s;x) has its analytic continuation in the whole complez plane
as a function of s. Furthermore, for each positive integer m > r,

(1.19) Zs(r —m;x)

T (m—r)! 1 g1 _
_(_1\T P1 P2 L apr—1
- ( 1) = p1!p2! . _pr!al ay ar BP1 (ml)BIm (Ig)

+ By, (z;).

There is a famous identity on Bernoulli numbers due to Euler [1]:

Z (2k)! 2n— 2k)

k=1

(120) B2kB2n_2k = —(QTL + 1)B2n, n > 2,

which is equivalent to the identity

n—1

(1.21) > ¢(2k)¢(2n — 2k) =

k=1

2n+1
2

¢(2n).

One way to prove the above identity is to consider the zeta function
o0 o0
(1.22) Zs(s) = Z Z ni+n2)”%, Res>2.
’I’Ll: :

Note that Z3(s) is a specialization of Z(s).
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With n = ny + no as a new dummy variable in place of n, ny, we get
the identity

(1.23) Zs(s) =Y (n—1)n"* =((s — 1) — ((s).

Now there are at least two ways to evaluate Z3(s) at negative integers:
one way is by means of Theorem A, and the other way is by means of
the special values of Riemann zeta function. Setting s = 2 — 2n with
n > 2 in the identity (1.23), we get

" 2n — 2)! Ba,
(1.24) > ¥ngB2n_2k =2

A rearrangement then yields the identity (1.20).

Similar considerations lead to identities of a similar kind such as the
following which appeared in [6].

2n)!
(1.25) Z mszBZqB%

2 1)(2 2
@t )En+y)

pt+gq+r=n
n(n—1)

BZn727 n Z 37

2 2
and
(2n)!
(1.26) By, By, Boy Bay
2 G
2n+1)(2n+2)(2n+ 3 An2(2m — 1
RS R TR P CIE P

where p,q,r,l > 1 in the above summations.

To obtain identities involving Bernoulli polynomials, we simply con-
sider zeta functions of the form

Za(s;w)= D Y o0 D (o) + (na+2) +ng oo ]

n1=0n=0 Nne=

o
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which is equal to
1 o0
—— Y (n+1H)(n+2)---(n+r—1)(n+2z)""°.
(r—1)! nz:%
The above zeta function is a linear combination of shifted Hurwitz zeta
functions, so that we have two ways to evaluate Z4(s;z) at negative
integers and hence identities involving Bernoulli polynomials follow.

For example, consider the zeta function

Zs(sz)= Y D [ +a)+ (n2+2)] 77,

ny =0 na =0

which is equal to
oo

Z(n +1)(n+2z)°.

n=0

A slight observation then leads to the identity
Zs(s;x) = Z(s — 1,2z) + (1 — 22)Z(s; 2z).
By setting s = 1 — 2n with n > 1, one gets that

(1.27)

Z ﬁBp(x)Bq(x) = - + 2B (z) ————.
p+q=2n+1 piq: i X
Here are just a few.

(2n —2)!
1.28 ~—B,(x)B,(x)B,
o p+q+;2n+1 plglr! ,(2) By ()
_ 1Byni1(22) | (3—4z) Ban(22) 2 Ban 1(22)
2 2n+1 T o2n +(22° =32 +1) n122),
and
(2n — 3)!
1.29 ~—~—B,(x)B,(x)B,B;
( ) p+q+§=2n+1 plg!ril! () By (2)
sl Ban(2
=Pl ) Panlie)
6 2n+1 .
_ (1222 — 24z + 11) By, _1(22)
6 2n — 1

(823 — 2422 + 227 — 6) Ba,_2(27)
6 2n—2
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Identities such as those above can be transformed into relations
among Euler sums and extended Euler sums. We shall introduce a
new relation in the next section by multiplying both sides by cot 7w
and then integrating with respect to z from 0 to 1/2.

2. Extended Euler sums and main theorems. For a pair of
positive integers p and ¢ with ¢ > 1, the classical Euler sum is defined
as [9]:

(2.1) Spa = i%(i%)

Sp,q is also denoted by S,/ F. Other alternating Euler sums are defined
as follows [9].

(2.2 s =2 Sr (24,

k=1 =7
. oo 1 k (_1 j—1
(2.3) S,q_2ﬁ<z 3P >’
k=1 j=1

and

o 2 (1)k—1 k 1)t
(2.4) Sp.a :Z( k)q <Zl( jl >

k=1

The evaluation of Sp, 4 in terms of values of Riemann zeta functions are
known when p = 1, (p,q) = (2,4) or (4,2), p = ¢, or p+ ¢ is odd. In
particular, we have the following theorems.

Theorem C [1, 9]. For each positive integer n with n > 2, we have

1

C(k)(n+1—F).

2

n

(2.5) Spm=" ;r 2e(n+1) -

DO | =
B
||
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Theorem D [9]. For positive integers m and n, we have

S2m,2n+1 = C(2m +2n + ].)

" (2k -
(2.6) + ];) <2n> C(2k)C(2K + 1)

N | =

+ ];) <2m%_ 1)((%)((2% +1),

where k = m +n — k. Here ((s) is the Riemann zeta function with

¢(0) = —1/2.

It is interesting to note that Soy, 2n4+1 comes from the integral trans-
formation of a product of two Bernoulli polynomials. Indeed, we have
in Proposition 6 that

1
(2.7) / By (2)Bapt1(z) cot T da
0

—1)mtm4(2m)!(2n + 1)! 1
= (-1) (2W)gm+gn(+l +1) {ng72n+1 - 5((2m+2n+1)}‘

Consequently, another way of verifying Theorem D follows from the
Bernoulli identity

= /2m Bz T
0 +1) p Bopin(®)
2k +1

with k = m + n — k, and the well-known formula [4]

2(~1)"+1(2n + 1)!
(2m)2n+1

1
(2.9) /0 Boy 11 (z) cot mz dx = ¢(2n+1).
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Remark 1. The Bernoulli identity (2.8) comes from the identity of
the zeta function

(2.10) ((ps,z)¢(gs, ) + C(ps + gs, x)

=3 S (1 + na + @) (na + 2) 9]

n1:0 TLQ:O
0 D lm e+ 2 +2)]
n1:0 n2:0

which follows from

(2.11)  ¢(ps,z)¢(gs, x)
= > D [ +2)P(ng + )7 °

= Y lm+a)Pre+2) °+ Y [(m+a)P(ne+2)9°

n12n2 ’I’L1STL2

= Y [+ @) (2 + 7)1

niy=nsq

In this paper, we shall transform the Bernoulli identities involving
Bernoulli polynomials such as the identities (1.27), (1.28) and (1.29)
into the explicit evaluations of the extensions of Euler sums defined by

(2.12) Epq :ik—lq(ik 1)

k=1 j=1 Jr
and

oy W/
(2.13) Tpg=> I ( Z j—p).

k=1 j=1

Here and throughout, we name E, ; and T}, , the extended Euler sums.

The following relationships

(2.14) Spq— S 7 =2""9E

p,q»

(2.15) Spg — Sy =27PT, 4,
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and for p,q > 2,

(2.16) Epq+Top =277¢(p +q) + C(p)¢(a),

are all elementary by the definitions of E, , and Tp q- It is known that
the values of S, , and S, were already given in [9] when p = 1 or
p + ¢ is odd, so that T}, , can be obtained from (2.15) when p = 1 or
p + q is odd. Moreover, we obtain the value of E,, from T, , when
p+ ¢ is odd and p,q > 2 with the relationship (2.16).

For other explicit values of certain extended Euler sums such as E 2y,
E3 951 and T5y,_2 3, we state our main theorems as follows. The proofs
will be given in Sections 4 to 6. First, we obtain the evaluation of E; 2,
from the identity (1.27).

Theorem 1. For each positive integer n, we have

n—1
(2.17)  Ei9, = 2": ! C(2n+1) = Y 22" 2F¢(2k)¢(2n + 1 — 2K).
k=0

Next, we obtain the value of E5 2,_1 from the identity (1.28).

Theorem 2. For positive integers n with n > 2, we have

(2.18)
Eyon_1 = %C(Q” +1)
n—1
+ 3 (20 — 2k)22 71 2RC(2k)C (20 + 1 — 2k)
k=0
e 2n — 2k
4 92n-2 Z <2n - )
[g(2k)§(2n +1—2k)+n(2k)n(2n + 1 — 2k)],
where
e n+1
= Z (1—2"")¢(s)

n=1

with n(1) = log 2.
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Finally, we obtain the explicit evaluation of T5,_2 3 from the identity
(1.29).

Theorem 3. For positive integers n with n > 2, we have

(2.19)
1
Ton 23 = 1_6C(2n +1)

n—1
+ 3 (g ) een +1- 20

k=0
2n — 2k
22n 3
z(2n_ )

x [C(2k)C(2n + 1 — 2k) + n(2k)n(2n + 1 — 2k)]

with the same n(s) defined as in Theorem 2.

A direct verification reveals that the evaluation of E1 .2n in Theorem 1
comes from the relation (2.14) with S; 2, and S1 b given in [9].
However, what we provide in this work is a more systematic way of
evaluating E 2, as well as deriving the explicit values of E3 2,1 and
T5pn—2,3, which so far had not yet been considered. Furthermore, the
explicit formulzae of the general extended Euler sums of odd weight
which will be shown in Section 7 can also be carried out.

Our method in this paper is based on the integral transformation of
certain kinds of Bernoulli identities into F, ; and T}, ; as one shall see
in Section 3. It is worth noting that in contrast to the similar technique
anticipated by Crandall and Buhler [3], we develop a more systematic
way of deriving the desired identities among Bernoulli polynomials by
showing how they arise from the special values at the negative integers
of the certain zeta functions [7].

3. The integral transformations. Like the classical Euler sum
Sp,q, both Ep , and 1}, , come from the integral transformations of
products of Bernoulli polynomials when the weight p + ¢ is odd.
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Proposition 1. For positive integers m and n, we have

1/2
(3.1) Bo, () Bapt1(22) cot mx da
0
m-+n

= (27r)2m+2n+1

Proof. For 0 < z < 1/2, we have from (1.13) that

(—1)"*+12(2n + 1)! i sin 4kmz

Bant1(22) = (@m)2ett 2t
k=1
Note that
2k
sindkrxcotmr =1+ 2 Z cos2jmx — cos dkmx.
j=1

In order to evaluate the integral, it suffices to evaluate

1/2 1/2
By (z)dr and / By () cos 2§z dz.
0 0

The anti-derivative of Bo,,(z) is Bamt1(z)/2m + 1, so it follows that

1/2 1 1
/0 Bop () dx = W{BZerl <§> - BZm+1(0)} =0.

For each 1 < j < 2k, we have

1/2
Bom (z)(2cos2jmx) dx
0
( l)m 12 o0 1 /1/2 ‘
= — 2cos 2l 2 d
@) z:: . cos 2lmx cos 2jmx dx
(-pml22m)! 1 1
2

= (2m)2m j2m
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since
0 ifl # 3,

1/2
2 cos 2 2 =
/0 cos 2lmx cos 2jma dx { 1/2 ifl=j.

Thus our assertion follows. o
In exactly the same way, we obtain the following.

Proposition 2. For positive integers m and n, we have

1/2
(3.2) Bo (22) Bap 41 (2) cot T da
0

(—1)m*+2(2m)!(2n + 1)!
(27r)2m+2n+1

X {Tom,2n41 — 27" FD¢(2m + 2n + 1)}

Here is an exceptional case excluded from the above considerations.

Proposition 3. For each positive integer n, we have

(3.3) v Bi(x){Ban(22) — Bay } cot Tz dx
:t%%;gﬁ{&m—EQ%+U}

Proof. For 0 <z < 1/2, we have

(=1)"12(2n)! K cosdkrx — 1
Ban(2z) — Ban = (2m)2n Z k2n
k=1

in light of (1.12). Note that

2k
(cosdkmz — 1) cot me = —2 Z sin 2jmx + sin 4kwx.
j=1
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Also we have
1/2

| By (z)(—2sin2jmx) dx = %
by an integration by parts. It follows that
1/2
Bj(2){Ban(2z) — Bz, } cot Tz dx
0

)R T (e 1 11
e S e i)
e )

In the same manner, we get the following propositions.

Proposition 4. For each positive integer n, we have
1/2
(3.4) B (22){Ban(x) — Ban } cot mx dz
0

—1)*19(2n)!
= %{Tm — 27+ e(2n + 1)},

Proposition 5. For each positive integer n, we have
1/2
(3.5) Bi(2){Ban(z) — Ba,} cot Tz dx
0
—1)"~12(2n)! 1

(27T)2n+1

The following proposition has a similar proof to Proposition 1.

Proposition 6. For positive integers m and n, we have
1/2
(3.6) Boy () Bap i1 () cot mz dz
0
B (—=1)™*t"2(2m)!(2n + 1)!
- (27T)2m+2n+1

1
{SQm,2n+1 — 5@(21’)’1, +2n + 1)}
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4. The evaluation for E; 3,. To obtain the evaluation of E »,, we
need Bernoulli identities involving the particular term B (x){Ba,(2z)—
Bs,}. So we begin with identity (1.27). By removing the terms
corresponding to p = 0, p = 1, ¢ = 0, and ¢ = 1 from the lefthand
side of the identity to the righthand side, we get the identity

(2n — 1)!
B By,
Zl 2k+1 Ji@n — 2k D21 (@) Ban-2i (@)
(2n — 1)' Bgn+1(2$)
=-2—" 2B, _ 2nt1AE)
O} TG oy |
Bgn(QI) Bgn(CE)
2B — — 2B —
+ 2B (@) 2n 1(@) 2n '
which is equivalent to
— (2n —1)!
(4.1) B Bo,
Z 2k+1 @n — 2y 2241 (®) Banau(@)
(27’L - 1)' 1B2n+1(2$)

_ErT g _
Gnr @) =350
1
+ Bl(x)%{Bgn(2l‘) — Bgn}

- Bl(ac)%{an(ac) ~ Bon}).

Each term in the above identity is ready to be applied with an integral
transformation. Multiplying both sides by cot 7z and then integrating
with respect to z from 0 to 1/2, we get the identity

(42) {Ei20- %g(znju D} - {S12m - %C(Zn +1)}

n—1

_n —2k 1§(2n +1) - Z {S2n—2k,2k+1 - %C(Qn—}— 1)}

k=1

after a cancelation of a constant. With the help of the formule (2.5)
and (2.6) mentioned in Section 2, and the well-known formula

£+

k=0
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for any positive integer m, we get our explicit value of Ey 2,,. Thus, the
proof of Theorem 1 is completed.

5. The evaluation for E33,_;. The evaluation of Fs 3,1 comes
from the integral transformation of By(z)Ba,—1(2z), so we choose the
identity (1.28) as a possible candidate. The identity is as follows.

(2n — 2)!
(5.1) ZQ 1 WBp(m)Bq(m)Br
ptqtr=2n+
_ 132n+1(2$) i (3 — 4x) Bon(22)
T2 2n+1 2 2n
Bgn,]_(zl')
2n—1 -

+ (22% — 3z +1)

Again we want to remove the terms corresponding tor =1, p =1
and ¢ = 1 from the lefthand side of the identity to the righthand side.

The term corresponding to » = 1 is equal to

(5.2 (-3) ¥ o 2mw@nw.

1g!
pro=2n DT

With the identity (1.27), but replacing 2n + 1 with 2n instead, the
terms (5.2) are equal to

(5.3) (—1>{—32;7f$)+231(x)%’;71(?)}.

The terms corresponding to p =1, ¢ = 1 and r even are given by

(5.4) 2B1(w){ y Cn=2p s +1an1(x)}7

girzon q'r! 2 2n—1
which is equal to
Bo, () Bop—1(z) 1 Bap_1(z)
5.5 2B — -1 — .
(55) l(w){ on T T e
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So, after the above rearrangement, we get the following Bernoulli

identity.
(5.6)
n—2n—k—1
(2n — 2)!
22 2 @@+ 1ian 2k a2 () Benain(a)

(2n —2)!
i kZ:O (2k)!(2n + 1 — 2k)!
_ 1 Byni1(22) 1
- 52;—“ —2B1(2) 5 {B2n(22) — Ban}
+ 2Bl(w)%{32n(w) — B} + 232(90)322’;;—1_(219”)

_ 9By (a) B2n1@) | 1Bana(%2) 1 Bona(0)
2 o1 "6 onm 1 6 2n 1

Bop Bopy1-2k(x)

Multiplying both sides by cot 7z and integrating with respect to x
from 0 to 1/2, we get the following identity.

(5.7) Ez2n-1 — é(@n +1)

= 72”(2;”6* Deon+1

)
- 2n_1{[E12n* i((?n-l—l)]

- [51 2n — %C(2n + 1)}}

L
+3 > C(2k)¢(2n + 1 — 2k)
k=0
n—2n—k—1
1
- <(2k){52n72k72l,2l+1 - 5((2n +1-— 2k)},
k=0 (=1

for each positive integer n > 2.
Consequently, the formula (5.7) can be verified to be equivalent to
(2.18) in light of (4.2) and the repeated use of (2.6). This gives the

proof of Theorem 2.
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6. The evaluation for 75, 2 3. The evaluation of T5,_» 3 depends
on the integral transformation of Bg, 2(2x)Bs(z), so we choose the
identity (1.29) as a possible candidate. The identity is given by

(2n — 3)!
(6.1) > i Br(@)Bay(@) BBy
ptatrti=zntl DT
1 Bapy1(2 By (2
_ 1B241(22) +(z— 1)M
6 2n+1 2n
(122 — 242 4 11) By, 1(22)
6 2n—1
(823 — 2422 + 227 — 6) Ba,_2(27)
6 2n—2
Let (2k)!
k)Bai, = ~— By, B
a( ) 2k T§k (27‘)'(21)' 2 21

By applying with the identity (1.24), we have that

1 if k=0,
a(k) =4 2 ifk=1,
—(2k—1) ifk>1.

Therefore, the following identity follows after we remove the terms
corresponding top=1,¢=1,r =1, and | = 1 from the lefthand side
of the identity (6.1) to the righthand side.

—2n—k-1 (2n— 31
kZ:: ; (20 + 1)!(2n — 2k — 21)! a(k) B2k Boi 1 (%) Ban—2k—2(2)
(2n —3)!
. Z (2k) '2n +1—2k! a(k)Ba Ban+1-2k ()
(6.2)

1B2n+1(2$) 1
= 22208 L B (2)—{ By, (2z) — B,
6 ang1 T B1@)g {Ban(22) = Bon}

~ Bi(@) 5 Bou(®) ~ Ban)
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1 1
2 By(2)———— {Bop,_5(23) — Boy,_
+ 5 Bi(e) g —5{B2n-2(22) — Ban-2}
1 1 Bgn_1(2I)
— 231 (I) 27’L — 2{Bgn_2(x) — Bgn_g} + 2Bz($) 2n 1
Bon1(z) 4 Bsy,—2(x) By, 2(2z)
2By(@) =~ + 3B Bl

1B3,-1(22) 1Ban-1(2)
4 2n-—1 6 2n—1

Applying the same integral transformation to (6.2), we get the fol-
lowing identity.

(6.3) Thn—23— i§(2n +1)

16
_ %{52,1_273 _ %C(Qn +1)}+ @
X {<E272n_1 — é((?n + 1)) — <S2,2n—1 - %C@” + 1))}
(2n)(2n —1) 1

_ T{(ELQH - Z((?n + 1)) - <Sl,2n - %C@"‘F 1))}

+202){ (Brans — 36@n— 1)) — (Sunz — 5¢n - 1))}
. (2n)(2n —1)(2n — 2)

C2n+1) ~ 5(20 — 2)C(2)(2n~ 1)

72
2 n—2n—k—1 1
+ 3 Z a(k)C(2k){52n72k72l,21+1 - 5((271 +1- 2k)}
o
—3 a(k)C(2k)¢C(2n + 1 — 2k)
k=0

for each positive integer n > 2.

Consequently, Theorem 3 can be verified with the same argument as
in the proof of Theorem 2.

7. Explicit formulse of Ey,, 2,11 and T5, 2p,41. In the final
section, we give the explicit generalized formula for the extended Euler
sums of the forms Foy, 241 and Tom 2n+1 in Theorem 4.
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For positive integers p and ¢, we consider the product of two Hurwitz
zeta functions defined as

(7.1) ((ps,2z)¢(gs, ) Z Z (n1+2z)P(ne+2)97°, Res>1.

Now, we decompose the above double series into three subseries ac-
cording to the conditions

(1) n1 > 2ng,

(2) ny is even and ny < 2nao,

(3) ny is odd and ny < 2ns.
When n; > 2ng, we let n; = nf + 2ne. When n; is even and n; < 2na,
we let ny = 2n}, ne = nf + n, + 1. When n, is odd and ny < 2ng, we

let ny = 2n} + 1, ny = n} + nf + 1. This leads to the following identity
of zeta functions.

(7.2) C(ps,2z)¢(gs, @)

e psnzonZOK n1 + ( n2+x)>p(n2+x)qr

—S

+27p8 i i [(nl +x)P((n1 + ) + (n2 + 1))‘1}

TL1_0 ’I’L2_0

crr S S s 1Y (o ) o (e ) T

ny= 0’!12 0

A new kind of zeta functions then appear on the righthand side of
the above identity. Here we give the evaluation at negative integers of
this new zeta function.

Proposition 7. For positive integers p and q and numbers a,x,y
with a >0, x > 0, y > 0, define the zeta function as

oo o0

Zpq(s;a,m,y) Z Z a(ni+a)+(n2+y))?P (n2+y)? ™% Res > 1.

ny= Onz 0



EXTENSIONS OF EULER SUMS 245

Then Zy, 4 has its analytic continuation in the whole compler plane as
a function of s. Furthermore, for each positive integer m,

1 " pm+1 B 21 (y)
VA . _ k—1B pm+qm+
pa(=mia, 2,y) pm + 1 kzzo< k >a k(x)pm—i—qm—i—ka

p(il)qmaperqurl

ptq

+

Bpm4gm+2 ()
(pm)!(qm)!m-

Proof. Here we only give an outline. For Re s > 1, we have

Zpq(s;a,z,y)L'(ps)I'(gs)

/ / Ps 1 qs 1 <€(lt_y)(tl+752)> (e(l—f)ah) it dts.
etitta — 1 et — 1

I'(s) :/ t*"te7tdt, Res>1
0

where

is the classical Gamma function.

Under the transformation t; = tu, to = tv with t > 0, u,v > 0 and
u + v = 1, the integral is transformed into

1
/ et gy / ot gt eV
0 0 (et 1)(eatu _ 1) .

The special value at the negative integer s = —m is just the coefficient
of tPm 4™ of the integration with respect to u. The result is
vaq(_m; a, T, y)

_(=1)™ml! Z aP7 1B, (1 - y)Bg(l —x)

 p+g a!p!

Gp(—m)

a+pB=pm+qm+2

where for Res > 0,

_I(s)

( 1ups—1,uqs—1u6—1 u
i) !
I(s)T(ps+8-1)
C(ps)L(ps+gs+6—1)

Gp(s) =
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Our assertion then follows from

[(pm)!/m!][(pm+gqm~+1-p)!/
(pm+1— B (p-q) (1)t
if0< B <pm+1,
[(pm)!/ml][(gm)!/1]p(—1)mFP™
if 8 =pm+ qgm + 2,
0 otherwise. o

Setting s = —m in the identity (7.2), we get that

(7.3)  Byms1(22) By (2)
pm—+1

pm+1 1—k  Bpm+qm+2-k(%)
=(gm+1 opm+l=kp
(g )kZ:O ( k > kpm+qm+2—k

1 qm+1p(_1)qm B 9
+( 3 =L (pm + 1)!(gm + 1) —EmEam*2__
<2> p+gq v Jg ) (pm + gm + 2)!
qm—+1
<qm + l>B (1) Bpm+gm+2-k(®)

+ 2 (pm 1) Y
= k pm+qm+2—k

g(=1)P™ Bpm+qm+2(1)
porm LT 1) (g 1)1t t 2
p+q (v e )(pm+qm+2)!

am+1 <qm n 1> B <1> Bpmtgmiz k(@ + (1/2))

+27" (pm 1) Y

= k 2 pm+qm+2—k
g(=1)Pm Bpm+qm+2(1/2)
+2Pm I (pm 4 1)) (gm + 1)1 PRt S
+gq (b ) )(pm+qm+2)!

In particular, we have for positive integers m and n that

(7.4)
Bgm (I)an+1(2x)

" (20 4+ 1N opi1_ok  Bopia (@)
=2 9ntl-2kp 2kt117)
m};}( 2% > ok +1
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+22"(2n + 1) i <2m> By D2E1(®)

=\ 2k 2k + 1
" (2m 1\ Bopiq(z + (1/2))
22" (2n + 1 Boj | = | =2k
+27 2+ )kz_o<2k> 2’“(2) 2k + 1
and
(7.5)
Bom(2z) Ban11()
o Bygy1(2)
2 1 22m—2kB 2E+1
(2n+ Z(%) 2% + 1
k=0
" 2n+1 Bogi ()
22m 1 2]f+1
+ Z( ) * ok +1
k=0
"L (2n+1 1, Bopyq(z 4 (1/2))
22m 1 2k+1_
r2mom 3 () PR

where k = m+n—k. Under the integral transformation by multiplying
cot mz and integrating with respect to z from 0 to 1/2, we get our last
main theorem.

Theorem 4. For positive integers m and n, we have

Eomont1 = 2_(2m+1)§(2m +2n+1)

" 2m 4 2n — 2k 0piq
22n+1=2k - (9k) (2 2n+1-—2
+k2_0< N ) C(2k)¢(2m + 2n + 1 — 2k)

" (2m 420 —2
+22my ( m +2: k) C(2k)C(2m + 2n + 1 — 2k)
k=0

" (2m +2n — 2k
+22"Z( m+2: >17(2k)17(2m+2n+1 — 2k)
k=0
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and
Tom,2n+1
=27+ (2m 4 20 4 1)
" /2 on — 2k
+y° ( " +2: >22m2k§(2k)((2m +2n+1 - 2Kk)
k=0
" /2m + 2n — 2k
92m—1 2k)C(2 on+1-— 2k
+ ;( o )e@rigtem + 241~ 20
2. /o2m + 2n — 2k
92m—1 2k)n(2 on+1—2k
+ I;( o atekintem + 20+ 1 - 20),
where
> ( 1)n+1 1—s
77(8):2 e (1—=2"7°)¢(s)
n=1

with n(1) = log 2.
Corollary 1. For positive integers m and n we have

n(2m +2n+ 1)

3 <2m 20— 2k>n(2k)§(2m on 41 2%)
k=0

"\ (2m + 2n — 2k
2 2 2 1-2
kZ_()( om — 1 >77( kE)n(2m + 2n + k)

+ — —
S2m,2n+1 -

N | =

+

and
S2m,2n+1 = 57](2771 +2n + 1)

+ zn: <2m +2n - 2k>n(2k)((2m +2n+1—2k)

-y (2m +2n = 2k>n(2k)n(2m +2n+1— 2Kk).
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Proof. 1t follows from
S2m72n+1 o S;m,_Zn+1 = 272”E2m,2n+1
and

— 1-2
Som,2n+1 — S2m2n+1 27 " Tom 2nt1. O

Remark 2. As a generalization of the extended Euler sums E, 4, we
may change the range of the inner summation into j = 1 to kl or [kr]
with k being a positive integer and r being a rational number. Namely,

Hy =>4 (25)

and

Then we obtain countable families of these new sums. The following
results can be found in [8].

Theorem 1. For positive integers k, we have

n—1
k) _ 2n+1 om—al
Lon = —gpG(2n+1) - ; k2 2e(20)¢(2n + 1 — 21)

—Zk% 15(1 —>S<2n E)’

where S(s,z) =Y oo, (sin 27z /n®).
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Theorem II. Suppose that r = a/b with a, b being relatively prime
positive integers. Then for each positive integer n,

1

T nb — 2n—
E(), = <2ab2n + > ¢(2n+1) Z 2Ac20)¢(2n +1 - 21)
=0

S
-3 [eon ) -] (1)
- Ega%—?b(m, %)C(Qn T1-2, %)

b—1n—-1
_ Z Z a2"_1_2l5<2l +1, a—;’>5<2n -2, %)

v=1 [=0

Here | =m +n — 1,

ad 2
C(S,I) _ Z COSs ’/ij

and

oo .
Z sin 27
= oy
n=1

in the above summations with C(0,z) = ¢(0) = —1/2 and C(1,z) =
—log(2sin(mwz)) for 0 < z < 1.
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