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MULTIPLICITY OF POSITIVE SOLUTIONS
FOR A MIXED BOUNDARY ELLIPTIC SYSTEM

CLAUDIANOR O. ALVES

ABSTRACT. In this paper we are concerned with the ex-
istence and multiplicity of positive solutions for the following
class of elliptic system

{ —e?Au+u = Qu(u,v), —e?Av+v=Qy(u,v) inQ

u=v=0 on I' and Ou/On=0v/On=0 on X
where Q is a bounded domain in RN, Q is a p-homogeneous
function with 2 < p < 2N/(N — 2) for N > 3. The main tool

used in this paper is the variational method combined with
the Ljusternick-Schnirelman category of ¥ in itself.

1. Introduction. In this paper we are concerned with the existence
of positive solutions for the following class of elliptic system

—&?Au +u = Qyu(u,v) inQ
—e2Av+v = Q,(u,v) inQ
u=v= 0 on F

Ou/On = 0v/On =0 on X

(S)

where 2 is a bounded domain in RV with smooth boundary 0Q = T'UX,
where I' and ¥ are smooth (/N — 1)-dimensional submanifolds of 02
with positive measures such that TNY = @, Q € CY(O,R) is a
homogeneous function of degree p, with 2 < p < 2N/(N — 2) and
© = [0,+00) X [0,400). Let us state the hypotheses on the nonlinearity

(Q1) There exists a C' > 0 such that

{ |Qu(u,v)| < C(uP~t +vP~1) for all (u,v) € ©
Qv (u,v)| < C(uP~t +vP71) for all (u,v) € O.
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(QZ) Qu(oa ]-) = Qv(lvo) = 0;

(Q3) Qu(lvo) = Qv((]’ ]-) = 0;

(Q4) Q(u,v) > 0 for all u,v > 0;

(Q5) Qulu,v),Qy(u,v) >0 for all u,v > 0.

Since @ is a C* homogeneous function of degree p > 2, then
1. pQ(u,v) = uQy(u,v) + vQy (u,v);
2. V@ is a homogeneous function of degree p — 1.

Some examples of this type of homogeneous function can be found in
[9, 12].

Following a well-known device used to obtain a solution of (S), let us
extend function @ to the whole plane as a C''-function as

Q(s, 1) — {Q(s,t) 5,630

0 otherwise.

In the last years, many papers have considered the scalar equation
(P:) —e?Au+u = |uP2u, Q
with Dirichlet or Neumann boundary conditions. The main points
considered by these papers were the following:

e Existence and multiplicity of solutions.

e The concentration of the maximum points of the solutions, which is
strongly related to the boundary conditions considered in the problem.

e The relation between the geometry of domain with the multiplicity
of solution using the Ljusternick-Schnirelman category of €2 or 0f2 in
itself.

An important point when we are working with the problem (P;) is the
properties of the limit problem, which in general involves the following
equation

(Ps) —Au+u = |uP?u

in RV or Rf . We cite the works [2, 6, 13, 16-22 and references
therein] to the reader interested in getting more information about
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problem (P;). For elliptic systems of the gradient or Hamiltonian type,
we cite the papers [4, 5, 7].

In relation to the mixed boundary condition, there are a lot of
interesting questions to study; we cite the papers [3, 10, 11, 15, 22,
23] and references therein.

Motivated by the works [4, 10, 11], we use the Ljusternick-
Schnirelman category of ¥ in itself to obtain multiplicity results for
system (S). The main difficulties found in this paper were to make a
careful study among the minimizing sequences associated to the system
when we are considering the domains 2, RY and Rf and to get some
relations involving the limits of these sequences. Adapting some argu-
ments found in [14, 19, 22] for the scalar case, we prove that similar
results of those proved in [10] also hold for system (S).

Our main result is the following

Theorem 1. There exists ¢* > 0 such that for any ¢ € (0,e*),
system (S) has at least cat (X) positive solutions. Moreover, if ¥ is
not contractible in itself, then (S) admits at least cat (X) + 1 positive
solutions.

We recall that cat (X) is the Ljusternick-Schnirelman category of X
in itself, that is, the least number of closed and contractible sets in %
which cover X.

This paper is divided in the following way: In Section 2, we make
some definitions and prove some technical results and in Section 3, we
prove Theorem 1.

2. Notations and preliminary results. In this section, we fix
some notations and show technical results. Hereafter, Let us denote by
Rf the half-space,

Rf = {.I': (z',...,zN) e RN; 2V >0}
and by m(R") and m(RY) the following numbers
Vul? + |[Vv]? + u? + v?) dz
P A\ A )

(u,v)€Hoo (Ja~ Q(u,v) dz)?/?
fQ Q(u,v) dz#0
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and
Jan (VU2 +|Vv|* +u?+0?) do
N

fRN (u,v) dx)?/P ’

RY f / )d
m(RY)= uvlgHer Q(u,v)dz #0
where Ho, = HY(RY) x H*(RY) and Hoo = HY(RY) x H'(RY).

Using standard arguments, more precisely a result by Lions [14], we
can prove that the numbers m(R") and m(RY) are reached with

(2.1) m(RY) = 2/P - 1m(RN).

An important point is the fact that m(R”) is reached by a vec-
tor (wy,ws) € Hy such that both wi,ws are positive radially sym-
metric functions at the origin. Moreover, the vector (wy,ws) =
(201/Payy, 21/Pwy) € Hoo 4 reaches the number m(RY).

Now we remark upon the solutions of system (S) when 2 is a smooth
bounded domain.

In what follows, let us denote by m(e,2) and m(1,$2.) the following
numbers

Jo [ Vul® + |Vv|2] u? +v?) dz

Q = N f
m(e, Q) [ (u,lz%eH (o Q(u,v) dx)?/»
Q(u,v) de#0
Q
and
m(1,Q:) = inf fQE(|VU|2+|VU‘2+u2+U2)dm

[ gy U QLR
o, w,v) dx

where Q. = {z € RV;ex € Q}, H = E(Q) x E(Q),H. = E(Q) x
BE(9),
EQ)={uec H'(Q); u=0 on T}

and
EQ)={uc H'(Q); u=0 on T.}

where I'. =T'/e.
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From Sobolev imbeddings, it is easy to prove that the numbers
m(e, Q) and m(1,Q.) are reached. Moreover, for example, if m(e, Q)
is reached by (u,,v,), the functions u; = m(s, Q)" P~Dyy and v; =
m(e, Q)Y P=2)y, are solutions of (S).

Another important result involving the numbers m(e, Q) and m(1, Q)
is the following identity

e 2m(e, Q) = m(1,Q.), a= N(% - l)
p

Other notations that we will use in this paper are the following:
Je a(u,v) = /(52[\Vu|2+\Vv|2]+u2+v2) dz, forall (u,v) € V(Q)
Q

where
V() = {(u,v) € H;/ Q(u,v)dz = 1}.
Q
Let » > p > 0 be such that both the sets
¥~ ={z € %;dist (z,I) >7} and YT = {z c RV;dist (x,%) < r}

are homotopically equivalent to . Moreover, without loss generality,
we assume that 0 € X7

Let n € C*(]0, ), R) verifying:
0<n(t)<1n(t)=1

if 0<t<—,nt)=0 if t>1, and [9|<C

DN | =

for some positive constant C'. For any y € X~ and for = € Q, we set

¢ (y)(x) = (¢2(y)(x), $2(y)(x)), where
%@K@—n(mpm>m(xay> i=1,2.
Moreover, we define ®.(y)(z) = (®1(y)(z), ®%(y)(x)) with

VN (e
WO = e e an

i=1,2.
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By construction, ®. is a continuous map from %~ to H.

Lemma 1. For any y € ¥, we have ®.(y) € V(). Moreover,
(2.2) Jeo(®:(y)) = 2 [mRY) +0(1)] as -0

uniformly for y € X~

Proof. Tt is easy to see that ®.(y) > 0 for all y € ¥~ and
[, Q(®L,®2)de = 1. Moreover, since dist (B,(y),I') > 0, then
spt(q)’) ccC QU Yfori=1,2.

Using the fact that 2 is a smooth bounded domain, for each y € ¥,
there exists a § > 0, an open neighborhood N of y and a diffeomorphism
U : Bs(y) — N which has the Jacobian determinant at y verifying
U'(y) = I and ¥(B) = N'NQ where B = BsNRY, see [1] for more
details.

For each n, let us choose a unitary matrix 7T, such that (NZn =
T,.(Q, — yn) has ¥V as the inner normal vector of 99, at the origin.
Using the same arguments explored in [19, 22], for any R > 0, if
{yn} C ¥ is a convergent sequence to y € ¥, we have

BE(O)\%(ﬁn)ﬁ{x:|x|§R} -0 as n—o0

n

where €, — 0 as n — oo and |A| denotes the Lebesgue measure of a
mensurable set A C RY. The last limit together with the change of
variable theorem and Lebesgue theorem imply that

(2.3) en e, 0(®e, (Yn)) = m(RY) + 0n(1).

The uniform estimate mentioned in (2.2) follows from (2.3). O

Hereafter, let us denote by Y. the Banach space Y. = H'(Q) x H*()
endowed with the norm

ol = ([ €T 19081 42+ 02y e)
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and by m*(e, Q) the following number

e i )
(u,v)€Y: fQ dil? 2/p’
fﬂ Q(u,v) dz#0

Corollary 1. The numbers m*(g,2) and m(RiY) satisfy the follow-
ing equality
e72*m*(e,Q) = m(RY) + 0.(1).
Proof. From the definitions of m*(e,2) and m(e, ), we have
m*(e,Q) <m(e, Q) < J. o(2(0));
consequently,
e 2m* (e,Q) < e 2*m(e, Q) < e 2*J, o(®.(0)).
On the other hand, from Lemma 1,
e 2 Jea(2:(0)) = m(RY) + 0 (1);
then,
(24) m*(1,Q:) <m(1,9.) < mRY) + o (1).
Now, we will prove the following claim.
Claim 1. Denoting Q, = Q.,, we have

lim m*(1,Q,) =m®RY) as &, = 0.

n— oo

In fact, first of all, if {(un,v,)} satisfies

m* (L, Q) = / (Vtnl? + [Von? + fun]? + [0 ]?) da

n
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using the fact that €, verifies the uniform cone condition for all n € N,
there exists ¢ > 0 satisfying

|u|Lr (0, < cllullwrzq,) forall neN (see [22]).

The last inequality together with Lions [14] imply that there exist R,
7> 0 and {y,} C 09, such that

(2.5) lim Q(un,v,)dx > 7.

n— oo Br(yn)Nn

For each n, denoting again by 7}, a unitary matrix such that fln =
T (Q, —y,) has yV as inner normal vector of 9, at origin, we get by
a direct calculus

Xg, = Xmry a.e in RY,

where X5 and Xpy are the characteristic functions of €, and RY,

respectively. Defining the sequences u,(z) = u,(T;'(z) + y,) and
Un(z) = v, (T () + yn), it is easy to check that

m*(1,9Q,) = m*(1,Q,)
with (@, U,,) satisfying the equality

m*(1,0) = /~ (IVBn[2 + V8|2 + [0 ]2 + [u]?) da

n

and fﬁ (Un,v,) dz = 1. Moreover, there exist nonnegative functions

u,v € HE, (RN) \ {0} such that @, — w and v, — v in H_(RY).
Thus, if w, = U, — v and z, = v, — u, we have

/~|an\2¢®+/ |Vu|2da::/~ |V, |? dz + 0, (1)
Q. RY Q

n

and

n

/N\Vzn\2dac+/ |Vv|2d:c:/~ V5|2 dz + o (1);
Qn Rf Q
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hence,

m* (1, 0) = / (Il + (Vo2 + [uf? + [0]?) do
R

+/~ (Vonl? + [Venl? + [wn? + |2n]2) dz + on(1).

n

Denoting A = [, x Q(u,v) dz, it follows that
R
+

m* (1, Q) > m(BRY)AP 4 (1 - N)2Pm*(1,Q,) + 0,(1)
and, from (2.4),
m*(1,Q,) > (AP + (1 — N)P)ym*(1,9Q5) + 0, (1).
Since there exists 6 > 0 such that
m*(1,Q,) > 6 forall neN,

we have
1> 227 4 (1 - NP + 0, (1);

then, passing the limit n — oo, it follows that
1> AP 4 (1 - N)2P.
If X € (0,1), we have
AP+ (1=N)F > 1

which is absurd with the above inequality, and we can conclude that
A € {0,1}. Once that A # 0 by (2.5), we have A =1 and so

Q(u,v)dz =1.
RY
On the other hand,
/ (|Vu)® 4 |Vo? + |u|? + |v]?) dz
Ry

<liminf [ (|Vn|? + [VOu|? + |Un|? + [3a]?) do,

n—o0 Q
n
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hence

m(RY) g/RN(\Vu|2+|Vv|2+|u|2+|v|2)da:glinn_1>io1gfm*(1,f~2n).

+

By (2.4), B
limsup m*(1,Q,) < m(RY)

n—r0o0

so, from the last two inequalities, it follows

lim m*(1,Q,) = m(RY),

n—0o0

consequently
lim m*(1,Q,) = m(Rf).

n— oo
The last limit implies that

. —2a, % _ N
E11_1)1(1)5 m*(e,Q) =m(RLY). O

Lemma 2. Let (uy,v,) be a sequence satisfying

/ [Vt ? + [V0a? + [un]? + Jon]?] dr = m(1,20) + 0, (1)

n

and
(Un,vn) € V()

where Q, = Q. and e, — 0 as n — oco. Then, for some subsequence,
there exists y, € 02 such that: For each € > 0 there is an R > 0 with
the property that

lim Q(up,vp,)dz > 1 —e.
n— o0 Br(yn)Nn

Proof. In what follows, we will show that sequence {X,Q(un,vn)}
satisfies the condition of compactness mentioned in the concentration-
compactness lemma due to Lions [14], where X,, is the characteristic
function of 2,,. To this end, we will divide our arguments in two steps:
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Step 1. Vanishing does not hold. Hereafter, let us denote by mg and
Mg two positive constants verifying

(2.6) mo[lulP+|v] < Q(u,v) < Mg[lulP+|v|P] for all (u,v) € RZ.

Assuming by contradiction that

(2.7) lim < sup / XnQ(Un, vy) dx> =0,
BR(y)ﬂQn

n—r o0 yERN

from (2.6)—(2.7) it follows that

lim ( sup / |un|pd:v> = lim < sup / vn|pdac>
=00 \ yeRN J Br(y)NQ % \ yeRN J Br(y)NQn

=0,
hence by [22, Lemma 2.2], we get
lim Xn|un|P dz = lim Xn|vn|P dz = 0.
n—oo RN n—oo RN

The last limits together with (2.6) imply that

limsup/ Q(up,v,)dx =0
Qp

n— oo

which is absurd, because (uy,v,) € V(). Therefore, we can conclude
that vanishing does not hold.

Step 2. Dichotomy does not hold. Adapting again the arguments
explored in [22], there exists v € (0, 1), such that: For each ¢ > 0,
there exists Ry > 0 and {z,} C R” satisfying

(2.8) / Q(up,vy)dx > v — c
BRO(Zn)an 2

and
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(2.9) / Q(un,v,)de < v+ =
BZRO (Zn)ﬁﬂn 2
for some subsequence, still denoted by (uy,,vy,).

Let n be a smooth nonincreasing function defined on [0, +00) such
that 9(t) = 1,0 <t < 1;n() =0,t > 2 and |n'| < 2. Also define
&(t) = 1 — n(t) which is a nondecreasing function on [0, 00). Let

i (z) = xn(x)n(%)un(w)

and
and |
9 B T — 2n
uz(z) = Xn(z < >Ry >un
and |
2 — Zn
i) = xnlwle (! Jonta)

From the above definitions, we have

(2.10) ‘ N Q(u}t,v}t) dr —v| < 2¢
R
(2.11) ‘ Q(uZ,v2)dx — (1 - 7)‘ <2
RN
[ 0wl o= [ (Fu P+ ) do
(2.12) U i
- [ ) do > -2
Qn
and
/ (Va2 + [vnl?) / (IVL2 + [0l ) da
(2.13) U .
/ (V22 + |02[?) do > —2e.
Q
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From (2.10)—(2.13),

(2.14) m(1,Qn) + on(1) = (/Q Q(ui,vi)dm> 2/pm(1,gn)

2/p
+ (/ Qu2,v?) dx) m(1,Q,) — 4e.
Qp
Using the fact that there exists §o > 0 such that
m(1,Q,) >y forall neN

from (2.14),

2/p 2/p
1+o0,(1) > (/ Qul,v}) dx) + </ Q(ui,vi)dw) —Ce
Q, Qn

for some positive constant C. From (2.10)—(2.11),
1> (y—20)%P 4+ (1 — v —26)%/P — Ce;

thus, passing to the limit when € — 0 in the last inequality and using
the fact that v € (0, 1), it follows that

1> 4 (197 > 1

which is absurd. Therefore, dichotomy does not hold.

From the above steps, we can conclude that compactness holds, so
there exists {z,} C R such that for each ¢ > 0 fixed, there exists
Ry > 0 satisfying

lim Q(up,vp) >1—¢.
nroo Br, (zn)NQ

Claim 2. There ezists C > 0 such that

dist (2,,,09,) < C.
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If the claim is not true, then for some subsequence, still denoted by
{zn}, we have

dist (zp, 0Q2p) = 400 as n — oco.

Thus, we can conclude that there exists R, € (0,+o00) with R,, — oo
and Bg, () C Q.

Defining

@) = (T Junte) and wde) =52 oo,

it follows

Qwl,w?) dr = / Q(wl, w?) da
RN Bar,, (2n)

> [ Gl
BR1 (zn)

which implies
(2.15) Q(wl,w2)dr >1—¢ forall neN.

RN
Once that
/ Vtnl? & [Voul? + un? + v

= [ IVwhE (VR kP fudf? > -2

Qp

we have

m(1, Q) + o, (1) > ( /Q ) Q(wy, w}) dw) 2/pm(RN) — 2,

and by (2.15),

(2.16) m(1,Q,) + on(1) > (1 —€)>Pm(RY) — 2e.
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Recalling that
limsupm(L,Q,) < m(RY)

n—so00
from (2.16), it follows that
m(RY) > (1 —)Pm(R"N) — 2,
and taking the limit of ¢ — 0, we get
m(RY) > m(R"),
which is a contradiction with (2.1), and the claim is proved.

From Claim 2, there exists y, € 09, verifying the inequality |z, —

yn| < C, which implies Bg,(z,) C Bg(y,) where R = R; + C.
Therefore,

/ Q(up,vy,)dz > / Q(up,vy)dx >1—c. o
BR(y")ﬁQ

BRI (Zn)ﬂﬂn

Lemma 3. Let e, | 0 and (un,v,) satisfy the hypotheses of
Lemma 2. Then, there exists C' > 0 such that

dist (yn, Xn) < C,

where {y,} € 0K, is the sequence given in Lemma 2.

Proof. Assume by contradiction that

lim dist (yp,, Xn) = +o0.

n— o0
Then, there exists {R,} C (0,400) with R,, — oo such that
dist (yn, Xn) > 2R,.
Defining

@) = (2 i) and @) = (R Yo o)

z € Q,,
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where 7 was given in the above lemma and repeating the same type of
arguments used in that lemma, we may obtain again

m(RY) > m(RY),

which is absurd. O

In what follows, let us denote by 8 : V(Q2) — R” the continuous map

Bu,v) = / Q(u,v)z dz.
Q
From the definitions of ®, and (3, we have that

B(®.(y) =y forall yeX~.

Proposition 1. For each 8 > 0 there exists e1 > 0 such that for all
e € (0,e1) and (u,v) € V(Q), we have

Jealu,v) <m(e, Q) +0e?* = B(u,v) € V.

Proof. Assume that there exist 8,,,&, — 0, (un,v,) € V(Q) such that
Jer (Un,vn) < m(en, Q) + 0,62 and  Blup,vn) ¢ T
consequently,

(2.17) .2,

E€n,

Q(Un,vn) <m(1,Q,) + 6,.
Defining

wy(z) = e Puy(epz) and  z,(z) = e/Pu, (enz),
from (2.17) and Corollary 1, we have

(wn,2,) € V(Q,) and limsup Jia., (Wn, 2n) < m(Rf).

n—o0
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From Lemmas 2 and 3, there exist y,, € 02, C >0, >0and R > 0
such that

lim Q(Wn,2p) >1—¢ and dist(y,,2,) < C.
nee Br(yn)NQp

Thus, there exists x, € X such that

Yn — —| < C and lim Q(un,vy)de>1—¢

n JB., gy (€a)NQ

where R; = R+ C. Since ¥ is bounded, we can assume that, for some
subsequence, ¢, — o9 € X. Then, for:=1,... |N

5 (ams o) = 2b] = | [ Qa0 e = ) i,
which implies

18 (um, o) — 2] < / Quum, o)zt — b

QﬂBEan (a:n)

+/ Q(Un,vn)|z" — zh| da;
O\Be,, Ry (Tn)

hence,
1B (tn, vp) — | < €nRy + |2t — 2}| + € max |z — o),
xr

S0,

nll)néo |B(un7vn) - £l70| =0,

showing that ((un,v,) € L1 for n sufficiently large, leading to an
absurdity. O

3. Proof of main theorem. In this section we will prove
Theorem 1. Hereafter, let us denote by 6 the number obtained in

Proposition 1, m*(g) = m(g, Q) + 02, and by Jgg(s) the following set

ng(s) = {(u, v) € H; Jeo(u,v) < m*(e)}.
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Lemma 4. There exists €* > 0 such that for any € € (0,&*),
() V™ gnd BV™ ) cxt,

where V™€) = J7 ) qv(Q).

Proof. First of all, we have

lim e 2*J o(®(y)) = lim e **m(e, Q) = m(RY)

e—0 e—0

uniformly for y € ¥~. Thus,

lim £=2° (JE,Q(q»E(y)) ~mle, Q)) -0

e—0

uniformly in ¥7. Then, there exists an €9 > 0 such that
g2 (JE,Q(QE(y)) —mf(e, Q)) <6, Vee(0,e2) and VyeXT;
that is,
Jea(®:(y)) <m(e,Q) + 0>, Ve € (0,e2) and VyeX .

Considering €* = min{e;, ez}, we have ®.(X~) C V™ ) and, by
Proposition 1,

BV™E)yc et forall e€(0,e*). O

In the proof of the next result, we use similar arguments developed
by Benci and Cerami [8].

Lemma 5. Let ¢* > 0 be given by Lemma 4. Then

cat (Vm*(s)) >cat(X) forall €€ (0,e%).

Proof. Assume that

ymiE) = 4, U---U A,
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where A;,7 = 1,...,n is closed and contractible in V™ () that is,
there exists
hj € C([0,1] x A3, V™),

such that
hi(0,u) =wu, h;(l,u)=h;(1,v) forall wu,veA;.
Consider B; = ®71(4,), 1 < j < n. The sets B; are closed and
X" =B U---UB,,.

Using the deformation

gj (t7 y) = B(hj(ta Qs(y)))a

we have

gj(oay) = B(h](oaés(y))) = B(q)a(y)) =Y for all AS b

and
9i(Ly) = B(h;(1,2:(y))) = B(z) forall ye B

thus, Bj is contractible in 1, and

cat (V™ ) > caty( (B7) =cat (%). o

Proof of Theorem 1. Let ¢* be as in Lemma 4 and ¢ € (0,&%).
Using well known Ljusternik-Schirelman arguments, it follows that
the existence of at least cat(X) distinct critical points of J. o on
V(Q). For the case where ¥ is not contractible in itself, we fix

(u*,v*) e V(Q)\ &.(X7) and F : [0,1] x &.(X~) — V() by setting

t(u*,v*) + (1 —t)(u,v)

F(t,u) = 75"
(@) + (- )

Repeating the same arguments as found in Candela and Lazzo [10], we
find one more critical point.
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