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CONTINUED FRACTION TAILS A N D IRRATIONALITY 

R.M. HOVSTAD 

ABSTRACT. A theorem on irrational numbers using tails 
is proved. Two examples are given. A comment is made on a 
classical result in the light of the method used. 

1. Introduction. Tails of continued fractions have recently been in 
focus in continued fraction theory, see [1]. 

Consider the continued fraction 

(1) K ? = 1 ^ 
Ok 

where a*. / 0 and b^ are complex numbers for k > 1. Then we call the 
continued fractions 

(2) rt = K£fc£ 
Oi 

for K > 1 the tails of (1). In the present treatment we consider 
only the case where the elements a* and bk in (1) are integers. A 
closer examination of the proof of a well known classical theorem on 
irrationality shows that the concept of tail can be used with advantage 
and provides a more transparent access to this irrationality result, see 
[2, p. 56]. 

A comment at the end of the present treatment will make this explicit 
and show that this irrationality result is almost trivial in the light 
of tails. We will illustrate the tail approach by giving a theorem 
on irrationality below. This theorem contains two possible outcomes 
precisely like the classical result in [2]. This means that (1) is irrational 
in certain situations and rational in the opposite situations. The 
theorem gives complete information. 

As an illustration, one example of each situation is given. We now 
formulate the core of the tail method. Choose a number x0 ^ 0. Define 

(3) Xk=TkXk-\ 
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for k > 1 supposing that Tk ^ 0 are well defined. Suppose that 

(4) n = bk + Tk+l 

is justified for k > 1. Combining (3) and (4) we obtain the three-term 
recurrence relation 

(5) ak-\xk-2 - bk-\xk-\ + xk 

for A: > 2. The idea in the proof is to combine (3) and (5). The equality 
in (3) gives us the magnitude and sign of xk ^ 0, and the equality in 
(5) gives us that xk is an integer if xo and X\ are integers. The aim 
in the irrationality proof then is to prove the impossibility of such a 
sequence {xfc}fc>o in certain situations. In the opposite situations we 
obtain rationality for trivial reasons. We turn to the actual proof of 
the theorem on irrationality which shall illustrate explicitly the use of 
tails. 

Tails and irrationality. We intend to prove the following theorem. 

THEOREM. Let the series 

oc 

diverge where P2k-\ is a positive integer for k > 1. Consider the 
continued fraction 

(7) K fc~=1^, 
Ok 

where the elements are positive integers obeying the following two 
conditions 

( . Û2fc-1 = b2k-\P2k-l + 1 

b2k > Û2fc^2fc-1 - ^2fc+l 

for k > 1. Then the continued fraction in (7) converges. The value of 
(7) is irrational if we have strict inequality in the second condition of 
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(8) for infinitely many values ofk. In the opposite case the value of (7) 
is rational. 

PROOF. First, we notice tha t the tails in (2) are convergent. This 
follows by appealing to [2; Satz 2.11, p. 47]. Here we need only point 
out tha t 

/gx b2khk+i > hk+i > 1 

Ö2Ä:+1 Û2fc+1 2p2A'+l 

for k > 1. The inequality (9) provides divergence of the series 

(10) g Ia2kb2k+ 

fc=i v a 2 f c + 1 

Divergence of (10) is sufficient, in the light of the result in [2], to insure 
that the tails converge. The equality, (4), involving tails, is clearly 
fulfilled with Tfc > 0 for k > 1. Second, we estimate the tails Tk for 
k > 1. Define 

Tk(n) = K?=kjj; 

for n > k > 1. We find, using the backward recurrence algorithm, that 

( H ) T2k-ì(2n-ì)>P2h-ì 

for n > k > 1. For the backward recurrence algorithm see [3, p. 26]. 
We will justify (11) properly. Observe that 0 < x < \/p2i-\ implies 

(12) P 2 , _ , < j - ^ -
b2l-i + x 

for i > 1. Also, y > p2i+\ implies 

(13) 0 < - ^ - < l 

b2l+y P2i-\ 

for i > 1. Repeated application of (12) and (13) gives us (11), 
remembering tha t a2?:-i/&2?;-i > P2i-i for i > I- Letting n —• oc 
in (11) we arrive at 

(14) T2k-X >p2k-i 



1038 R. HOVSTAD 

for fc > 1. 

We discriminate between two cases in (14). The first case is when 
there is equality for some fc > 1. The second case is when there is strict 
inequality for all fc > 1. In the first case we have that (7) is rational 
for trivial reasons. In the second case we suppose that (7) is a rational 
number Xi/xo where XQ and x\ are positive integers. We conclude from 
(3) that Xk > 0 for fc > 0 since Tk > 0 for fc > 1. Further we have from 
(3) that 

(15) X2k-\ > P2k-lX2k-2 

for fc > 1. Using (5) we see that 

, l ß x X2k = CL2k-l^2k-2 - hk-lX2k-l 

= %2k-2 +b2k-l(p2k-\X2k-2 ~ X2fc-l) < X2fc-2 

for fc > 1. In (16) we used (15) and the first condition in (8). Thus we 
have proved that 

(17) 0 < x2k < x2k-2 

for fc > 1. The result (17) shows that we have a descending infinite 
sequence of positive integers which is clearly impossible and (7) is 
irrational in the second case. 

It remains to be shown that the two cases in (14) correspond exactly 
to the two cases in (8) formulated at the end of the theorem. This is 
done in the following way. Suppose that T2fc-i = P2k-i f°r some fixed 
fc > 1. Using (4) we see that this implies T2fc = \/p2k-\- Using (4) once 
more we find that this implies X^+i = a2fcp2fc-i — &2fc- This identity 
gives us T2k+\ = P2fc+i and b2k = a2kP2k-i - P2fc+i because we have 
T2k+i > P2k+i and a2kP2k-\ ~hk < P2fc+i- We can clearly do the same 
to jT2fc+i as was already done to T2^-i. 

We can continue in this way. This means that ò2i = &2iP2i-\ — P2i+i 
for all i > fc. On the other hand, let 62; = a2j/?2i-i — P2i+i for i > fc 
where fc > 1 is a suitable fixed integer. Using the backward recurrence 
algorithm we find that 

(18) T2k-i(2n) < P2k-\ 
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for n > k > 1. We now justify (18) properly. In the following we 
consider i > k. We observe tha t x > \/p2i-\ implies 

/ m \ a 2 i —1 . 
(!9) 7 r — < P 2 i - i 

0 2 i - l + £ 

for i > k. Also, we see tha t 0 < y < P2i+i implies 

(20) _ ^ i _ > l 

hi + y P2i-i 

for i > k. Repeated application of (19) and (20) gives us (18). Letting 
n —• oo in (18) we arrive at T2k-\ < P2k-i- Since T2k-\ > P2k-\ 
according to (14), it is clear tha t T2k-\ — P2k-\ for this particular k. 
Finally we have shown that T2k-\ — P2k-i, for some k > 1, is equivalent 
to Ò2i = CL2iP2i-i — P2i+i f ° r z sufficiently large. This means that the 
two cases in (14) correspond exactly to the two situations described at 
the end of the theorem and the theorem is proved. D 

We will now give two examples illustrating the two different situations 
in the theorem. 

EXAMPLE 1. (IRRATIONALITY). Choosing p2k-i = P for k > 1 where 
p is a positive integer, we have that 

<»> 7-ì + ÌJK**-'-¥u'-T- "h 

is irrational according to the theorem. This is t rue by direct control. 
The formula (21) is easily checked since we, on the right side, have a 
2-periodic continued fraction. 

EXAMPLE 2. (RATIONALITY). Choosing p2k-\ = p for k > 1 where 
p is a positive integer we have tha t 

(22) p=P±l * Ell ... 
y ' y 1 +P+ 1 + 

is rational according to the theorem. The formula (22) is easily checked 
since the right side is a 2-periodic continued fraction. 
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We will finally give a comment on the classical irrationality result in 
[2] previously mentioned. 

COMMENT. The result we have in mind is found in [2; Satz 2.18, p. 
56]. Except for irrelevant differences this theorem states: Suppose that 
the continued fraction 

(23) K? = 1 g 

obeys bk > \ak\ and even bk > \ak\ + 1 if Q>k+\ < 0 where a& ^ 0 
and bk are integers for A: > 1. Then (23) converges. Also (23) is 
irrational unless dk < 0 and bk — \ak\ + 1 for sufficiently large k. In this 
exceptional case (23) is rational. The proof of this result in the light of 
tails will not be given in detail here. But the main steps will be pointed 
out in the tail terminology. First, we notice that convergence follows 
from [2; Satz 2.14, p. 50]. Using the backward recurrence algorithm 
analogously we find that 

(24) 0 < | T f c | < l 

for k > 1. If equality in (24) is the case for some k > 1, clearly (23) is 
rational. If inequality in (24) is the case for k > 1, we have, supposing 
rationality of (23), that 

(25) 0 < |xifc| = |Tfc| \xk-i\<\xk^\ 

for k > 1 where (25) gives us a descending infinite sequence of positive 
integers which is impossible. Using the backwards recurrence algorithm 
again analogously we show that the two cases in (24) correspond exactly 
to the two cases formulated in the classical result in the sense that 
\Tk\ = 1 for some k > 1 is equivalent to bj = |a7| + 1 and a; < 0 for i 
sufficiently large. Thus the classical result follows. 

Obviously the approach using tails makes this classical result look 
almost trivial since the basic inequality (24) is evident a priori. 
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