
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 19, Number 3, Summer 1989 

SIMULTANEOUS SIMILARITIES OF PAIRS OF 
2 x 2 INTEGRAL SYMMETRIC MATRICES 

OLGA TAUSSKY 

This is a continuation of a previous paper [12]. The issue of the 
present paper is stated in a different way as the title indicates. The title 
links it with S. Friedland's important paper [2] called 'Simultaneous 
similarity of matrices'. However, he deals with matrix pairs with 
complex entries, even pairs of symmetric ones. My paper is a small 
inroad in the case of integral matrices. 

I will first report briefly on my previous work, including [12], and 
then come to new material. Both parts deal with integral matrices A 
with characteristic polynomial x2 — ra, m = 2, 3(4) and square free. 
The matrix A = (a^) is 2 x 2 and belongs to a matrix class in the 
sense of the theorem of Latimer and MacDuffee. 

By a theorem of Frobenius, A can be expressed as S1S2, with S; 
symmetric and rational. I had studied the problem to characterize the 
A's with both factors integral [10]. The factorization can be linked to 
a similarity, say S, between A and its transpose A': 

A' ^ S ^ A S or A N S A ' S " 1 

It is known, see, e.g., [14] that S can be chosen symmetric and rational, 
even integral. In this case also A ' S - 1 turns out symmetric and rational. 
In 1973 I showed that both factors can be chosen integral if and only 
if the ideal class corresponding to the matrix class of A is of order 1, 
2, 4, apart from a set of ra's which will be discussed again in Part II. 

Part I. I made an attempt to unify all the ra's by expressing A as 
the product of two rational matrices T i , T2 with Tj = S-1S,;S so that 
A ^ S ^ S i S - S - ^ S . 

This was done in [12] paper in the following way: Instead of studying 
a single matrix class, all matrix classes corresponding to m are consid
ered, and, in particular, the classes of order 1 or 2 or 4. While there 
may not be any of order 2 or 4, there is certainly one of order 1, namely 
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the class of the companion matrix 

c-(° x 

whose symmetric factors can be taken as ( J , f J. 

At this stage it is appropriate to use the following facts from [7]: 

THEOREM 1. A matrix A is obtained from a matrix in the principal 
class via an ideal matrix corresponding to the ideal which corresponds 
to the class of A. 

THEOREM 2. Let A , B define two matrix classes. Then B = 
Y _ 1 A Y where Y is of the form X i X ^ 1 and X i , X 2 ideal matrices, 
one corresponding to an ideal corresponding to the class of A, the other 
one to the class o / B . 

For these theorems the concept of ideal matrix has to be introduced 
(see [7, 12]). The definition is as follows: Let c^i , . . . ,<jn be a basis for 
the maximal order O of the field in question, in our case Q(y/m). Let 
Q i , . . . , an be a basis for the ideal u. Then the ideal matrix Xu of u is 
given by 

, (7) - (T) . 
\ujn/ \an/ 

With changes of bases for Ö and for u, Xu is determined up to left or 
right unimodular factors. 

Theorems 1, 2 are applied here to use Xu to transform the companion 
matrix C into our given matrix A, while any matrix in an ideal class of 
order 2, or 4 (if not in the excluded class) leads to a factorization via 
a quotient of ideal matrices. 

This is the similarity corresponding to the title when it is applied to 
the symmetric factors of C or the factors of the other cases. 

Examples were computed to show that , under not yet fully under
stood circumstances, the two rational factors of A obtained can be 
integral, and to find other information on the nature of the factors. 
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Part II. I will now report on the additions which are at issue in this 
paper: 

1. The fact that the 1, 2, 4 cases remain somehow 'aloof. Although 
the main factorization applies to them, too, an example is given which 
shows that their special virtue, of leading to symmetric factors is not 
obtained by similarity via an ideal matrix. 

I tried a simple example of a field of class number 2. I then knew that 
the matrix class belonging to the non-principal ideal would factorize 
into 2 symmetric integral factors. The example is the field Q(\/Î5), 
with the non-principal ideal with bases (2,3 + \/Ï5) and bases (1, \/Ï5) 
as basis of Ö. The matrix class belonging to the ideal can be represented 

by A = ( ~3 J and an ideal matrix ( 2 ). It turns out that 

A = S 1 S 2 =(- 2 J) ( j I 

This would be a stronger result than is needed for the problem of the 
title. However, it does not fit into this problem and I cannot obtain it 
by my method as I will explain. 

The symmetric factor f ~ J 1 is not similar to one of the factors of the 
companion matrix. First of all, it is not similar to f J, but also not 
to I 1 ! I because the traces do not coincide. A more detailed examina
tion of C = ° ! I shows: C cannot be split into two symmetric factors 
of determinants 3, 5 nor is there an essentially different factorization 
possible of determinants 1, 15 than the one mentioned. These state
ments follow from the fact that the transformation S = (sik) of C into 
C leads only to the equation S22 — 15sn. Hence, for S = ('s** 1 5 ^ ), 
we have determinants either \hs\x —s\2 = ±1 , or ±3, or ±5 from which, 
by simple diophantine arguments, the result announced is achieved. 
This example indicates that if there is a factorization into two integral 
symmetric factors, they cannot be obtained by my method of mapping 
via ideal matrices. 

2. The similarity between A and its transpose A'. At this point I 
want to make another remark concerning the factorization of an integral 
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matrix A arising from an algebraic number field with the maximal order 
O generated by a single element a with characteristic polynomial, say 
f(x). As said before, A = S1S2 with rational entries, where the entries 
of Si can be assumed integral. Further, Si can be obtained from the 
similarity of S between A and A ' . I have a new remark here: The 
matrix class of A corresponds to an ideal class in (9, but A ' is another 
matrix for f(x) = 0. The ideal class to which it corresponds is discussed 
in [6] for the case that Ö = Z[a]. Let me denote it as the class of the 
ideal u'. By Theorem 2 of [12] it follows that , for u and u' suitably 
chosen in their classes, we have: Si is given by the ideal matrix of u 
divided by the inverse of the ideal matrix of u'. 

If the matrix A is in a class of order 2, then the class of A coincides 
with the class of A7. As pointed out in [12], the similarity between A 
and A7 can be obtained by a unimodular matrix. In this paper a case 
of cyclic class group was discussed. Since it contained an element of 
order 2 it could again be concluded that A and A ' were in the same 
class without recourse to [6]. A similar conclusion could not be made 
for class of order 4, for the class of A 3 is again of order 4. 

3. The exceptional values of m. For this purpose, a quadratic form, 
usually denoted by a(A,/i), is introduced. The matrix class of A and 
its corresponding ideal class are not the only concepts considered here. 
For Gauss the quadratic form f(x,y) = a<i\x2 + (022 — ^ n ) %y — «122/2 

would have been the starting point. It has the discriminant 4m. This 
is also the discriminant of x2 — 771. The form a(A, //) is the negative 
square of / (# ,? / ) , see [8]. Its class is of order 1 or 2. In the case under 
consideration it represents factors of the discriminant. If these are 
factors of m the factorization of A can be achieved, but it can happen 
that all discriminantal divisors represented by the form contain a factor 
2. Then the factorization cannot take place. These are the exceptional 
numbers, an example of them was constructed by Estes and Kisilevsky 
for m = 1139 = 17-67. Another example, namely m — 1299 = 3 • 433, 
will be discussed below. 

4. Numerical examples: (m = 79, class number 3; m = 235, class 
number 6). Details of integral factorizations are given in [12]. 

(m = 226, class number 8). Cyclic class group, generating ideal 
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(3,14 + \/226), corresponding (For clarity we repeat here, once for 
all, that the correspondence (in the sense of Latimer and MacDuffee) 

is given by the fact that [ " " £ ] [14+^22ë] = V/226 [ 1 4 + ^2ê] •) 

matrix ( "~ • J. Square of generator (9,8 + V226), corresponding 

matrix ( ^f 8 ) factors into 

1 0 \ / - 8 9 
0 2) \ 9 4 

Fourth power of generator (2, l+\/226), corresponding matrix I ~ J 

factors into 
/ 0 l \ / 211 -14N 

VI UJ \-U 2 
Corresponding ideal matrices: 

3 0 \ / 9 0 \ / 2 0 
14 1 J ' I 8 1 7 ' V 14 1 

Similarity to factors of the companion matrix 

( ' °) 
V-14-75 226 ; 

-14 3 
-65 14 

1 0 \ / - 8 9 
-200 2 2 6 / ' \-7 8 

1 0 \ / -14 2 
-7 -225 2 2 6 / ' V-195/2 14 

(The fractional nature of only one of the factors here will occur in 
another example under similar circumstances.) 

I will now use the factorization of the square of the generator, 
an element of order 4, and study the factorization of the matrix 
corresponding to the generator, by using Theorem 2 of [7]. (This case 
was not yet studied in [12].) Hence, instead of using the factors of the 
companion matrix, I use the pair of integral symmetric matrices 

\Q 2}' V 9 4 ; 
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and transform them by the matrix Y = XiX 2 *, where Xi is the ideal 
matrix of the square of the generator and X2 that of the generator, i.e., 

*-•! : u î) - ü, ? ) • 
Now apply the similarity via Y to the matrix which corresponds to 
the square of the generator, obtaining the matrix corresponding to the 
generator. Next apply Y to the two factors of the latter obtaining 2 
integral matrices: 

1 0 \ / - 1 4 3 
- 2 2 , / ' V - 9 10 

(m = 1090 = 10 • 109). Class group of order 12, noncyclic, one cycle 
of order 6, generator (3,32 + \/l090), the other one with generator 
(2,32 + >/l090) of order 2. 

The corresponding matrices of these two ideals are 

/ -32 3 \ / -32 2 \ 
V 22 32 / ' V 33 3 2 / ' 

Their ideal matrices are 

/ 3 0 \ 
V32 \)> 

2 0 
32 1 

Transformations for the first one, via the companion matrix, are 

( 1 0 \ / -32 3 \ 
V - 3 2 • 363 1090 J ' V ~ 3 4 1 3 2 / ' 

Transformations for the second one, again via the companion matrix, 
are 

( \ 0 \ / -32 2 \ 
V16(-1089) 1090y' y-1023/2 3 2 / ' 

Two exceptional cases: (m = 1139 = 17-67). This case was discovered 
by D. Estes and H. Kisilevsky, answering an inquiry by myself, see [8]. 
Q(y/m) has class group of order 4, generated by the ideal (5,33+V1139) 
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corresponding to the class of the matrix ( **3 5 J and ideal matrix 

( 33 l ) ' Hence the matrix splits into the factors 

/ 5 0 \ 1 / - 5 • 33 25 \ 1 
V33(-1138) 5 - 1 1 3 9 / 5 ' V-1085 5 - 3 3 / 5 

both fractional, The quadratic form associated with this case is 

a(A,/x) = A2 + 66A/i-25^2 . 

It represents 2, 34, —2 • 67,2 • 17 • 67, but no odd divisor of the discrim
inant, positive or negative. It follows from Gauss' work on ambiguous 
forms (Disquisitiones Arithmeticae, Article 258) that only four divisors 
can be represented. 

(m = 1299 = 3 • 433). This exceptional case is somehow different 
from the first one since it has a class group of order 8 with a cyclic 
subgroup of order 4. The generator of the whole class group is given by 

(5,33 + \/l299) with corresponding matrix (~ J and ideal matrix 

equal to f J. It can then be shown that the matrix can be factorized 

into the fractional matrices 

5 0 
-33 • 1298 5 • 1299 

\ 1 / - 5 • 33 25 U 
/ 5 ' V " 1 0 8 8 5 - 3 3 / 5 ' 

I now proceed to the ideal which generates the subgroup of order 

4 : (25,32 + \/l299) and ideal matrix ( ^ J ) with corresponding matrix 

/ - 1 8 25 \ 
V 39 18/* 

The factorization is 

25 0 \ 1 / - 1 8 - 2 5 252 \ 1 
>J 25' 18(-1298) 2 5 - 1 2 9 9 / 2 5 ' \ ~ 3 2 3 I 8 - 2 5 / 25' 

The quadratic form a(A, /x) attached to the matrix is 

2A2 + 62A//-169/z2. 

It represents — 6 for A = 5, /x = 2. 
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Further, 
- 3 = s2 - 1299*2, for s = 36, t = 1 

433 = u2 - 1299i;2, for u = 433, v = 12 

and 2 • 433 is represented by the form in consequence of the fact that 
—6, but neither 3, —3, nor 433,-433 are represented by the form since 
they are norms of integers from Q ( v l 2 9 9 ) , but not of ideals. 

This case is similar to the example found previously by Estes and 
Kisilevsky and another example by Estes, namely 579 = 3 • 193. 

The following remark by D. Estes helps in the discussion of the 
exceptional cases. 

Consider f{x, y) = ax2 + bxy + cy2 with discriminant A = (b2 — 4ac). 
Then always / ( l , 0) = a. However, if a is a discriminantal divisor, since 
b2 = A + 4ac, it follows that a\b. Then / ( - 6 / a , 2 ) = - A / a so that / 
also represents the (negative) residual factor. 

5. Remark. It was pointed out to me by R. Guralnick and D. Estes 
that the companion matrix for polynomials of higher degrees can still 
be factorized into 2 symmetric integral factors. Since factorization 
into integral symmetric factors for higher degrees is studied in [9], the 
problems started in this paper could be extended to higher degrees. 

D. Estes furthermore aided by explaining Gauss' work on quadratic 
forms. 
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