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ON TRACE FORMS OF ALGEBRAIC FUNCTION FIELDS 

ALEXANDER PRESTEL 

1. Introduction and results. Let L/K be a finite separable field 
extension. The trace form of L/K is the following symmetric bilinear 
form over K 

LxL-+K, {x,y) ->TrL/K{x-y). 

This form will be denoted by TK{L, 1). If P is an ordering of K, it is 
well-known that 

sgnP7V(L, 1) = ^{extensions of P to L}. 

Thus every trace form has totally positive signature over K, i.e., 

sgnPTK(L, 1) > 0 for all P G XK. 

As usual XK denotes the set of all orderings of K. Therefore every 
(regular) quadratic form p over K which is Witt equivalent to some 
trace form over K has totally positive signature. 

In [3] the question has been raised whether, for algebraic number 
fields K, the converse also holds, i.e., whether in this case every regular 
quadratic form p which has totally positive signature over K is Witt 
equivalent to a trace form TK(L, 1) for some finite extension L/K. 
Conner and Perlis succeeded in proving this in case K = Q. In a recent 
paper W. Scharlau [8] gave a positive answer for all number fields, 
reducing the general case to the 1-dimensional case already solved in 
[5]. In the 1-dimensional case p = (/?), the condition of totally positive 
signature just means that ß is a sum of squares in K. 

The main result of this paper is 

MAIN THEOREM. Let K be an algebraic function field in one variable 
over a real closed field R. Then every regular quadratic form p which 
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has totally positive signature over K is Witt equivalent to some trace 
formTK(L,l). 

The strategy of the proof is the same as in [8]: first reducing 
the general case to the 1-dimensional case, and then proving the 1-
dimensional case. 

Scharlau's reduction step used the two facts that algebraic number 
fields are hilbertian (i.e., satisfy Hubert 's Irreducibility Theorem) and 
have only a finite number of orderings. While the first fact is still true 
for algebraic function fields, the second no longer holds (except for the 
case XK = 0). A substitute for this second fact will be that every 
algebraic function field in one variable over a real closed field R (as 
well as every algebraic number field) allows Effective Diagonalization 
(ED) of quadratic forms (see [11] and [7]), i.e., for every quadratic form 
p over K, there is a diagonalization 

V 0 dnJ 

such that , for each P G X # , we have 

di+i e P=ïdi£ P. 

This means that - independent of P - the positive elements di always 
are on top of the negative ones. 

The first theorem we prove corresponds to Scharlau's reduction step. 
(Since the fields in the Main Theorem are of characteristic zero, we will 
restrict ourselves to this case.) 

THEOREM 1. Let K be a hilbertian field of characteristic zero 
satisfying ED. Then every regular quadratic form p having totally 
positive signature over K is isometric to a scaled trace form Tx(L,ß) 
for some finite extension L/K with ß being a sum of squares in Lx. 

A scaled trace form TK(L, ß) is given by the symmetric bilinear form 
over K 

LxL^K, (x,y)->TrL/K(ßxy), 
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where L/K is a finite (separable) extension and ß G L. It is easy to 
prove (see, e.g., [9; Chapter 3, Theorem 4.5]) that, for every P G XK, 

sgnPTK(L,ß) =#{extensions P ' of P to L s.t. ß G P1} 

- #{extensions P' of P to L s.t. - ße P '} . 

Thus, as a consequence, we have 

PROPOSITION. Let TK(L, ß) be a scaled trace form with ß G L. Then 
ß is a sum of squares in L if and only if for all P G XK , 

sgnFTtf(L,ß) — #{extensions of P to L}. 

The second theorem we prove will correspond to Corollary 1 of [5]. 
We will say that a field L satisfies the Norm Theorem (NT) of [5] if, 
for every sum of squares ß G L which is not a square in L, there is 
a natural number m such that — m is a Norm of L(yJ~ß) over L, i.e., 
the form (1, — /3,m) is isotropic over L. By a theorem of Witt (see [12] 
and [4]), every totally indefinite quadratic form of dimension > 3 over 
an algebraic function field L in one variable over a real closed field is 
isotropic. Thus by taking, e.g., m = 1, every such function field L 
satisfies the Norm Theorem. 

THEOREM 2. Let L be a hilbertian field of characteristic 0 satisfying 
NT. Then, for every sum of squares ß G L x , the I-dimensional form (ß) 
is Witt equivalent to a trace form Ti(F, 1) over L for some extension 
F/L obtained by an irreducible linear trinomial Xm+1 -f aX -\-b G L[X] 
of odd degree. 

From these two theorems the Main Theorem follows at once: 

Let K be an algebraic function field in one variable over a real closed 
field R and let p be a regular quadratic form which has totally positive 
signature over K. Since K is hilbertian and satisfies ED, by Theorem 
# 1 we find a finite extension L/K and a sum of squares ß G Lx such 
that 
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Since L is again an algebraic function field in one variable over Ä, it is 
hilbertian and satisfies NT. Thus, applying Theorem 2 to L and /?, we 
obtain a finite extension F/L such that 

(ß)~TL(F,l)mW{L). 

Using the transitivity of the trace and Corollary VII. 1.5 of [6], we 
finally get 

p~TK(F,l) in W{K).u 

At the end of the paper we will investigate the property NT for function 
fields a little closer. 

Concerning notations and basic results about quadratic forms we refer 
the reader to [6]. 

2. Proo f of T h e o r e m 1. Since the case XK = 0 is already covered 
by Scharlau's paper, we concentrate on the case XK / 0-

Let K be hilbertian and satisfy ED. Given a regular quadratic form 
p of dimension n over K, we can then assume that p is represented by 
a diagonal matrix 

/ d i 0 \ 

D = I w i thd , eKx 

\ 0 dj 

such that , for all P E XK, 

dl+l e P^ditP. 

If we assume s g n P p > 0 for all P 6 XK, we know that each di with 
i < [(n + l ) /2] is a sum of squares in K. As usual [m/2] denotes 
the integral part of m / 2 . Thus, after rearranging the elements of the 
diagonal, we can assume that all dj with odd index ^ 1 , ^ 3 , ^ 5 , . . . are 
sums of squares in K. Multiplying by suitable squares, we may in 
addition assume that 

d2i-\d2i / d2j-\d2j 
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for all 1 < i < j < [(n + l)/2]. We require this condition also for the 
case j = [(n + l)/2] and n odd after setting dn + i := dn. 

Using now Scharlau's argument (see [8]) it suffices to find a symmetric 
matrix B e K^n^ such that 

(i) the characteristic polynomial f(X) of DB is irreducible over K. 

(ii) f(X) has exactly sgnPp roots in the real closure (K, P) of K with 
respect to P. 

As it is explained in [8], by (i) there exists a ß in L — K[X]/(f) such 
that 

p = TK(L,ß). 

By (ii) the number of extensions of P to L is 

sgnPTK(L,ß). 

Thus by Proposition, ß is a sum of squares in L. 

In order to find such a matrix B, let us start with the symmetric 
matrix 

Bo = 

/Ol 
10 

\o 

01 
10 

\ 

/ 

(M 

The last square in the diagonal of Bo is the 2-by-2 matrix ( ? J ) if n 

is even, and the 1-by-l matrix 1 if n is odd. 

Forming the characteristic polynomial 

fo(X) - det n(DB 0 - Xln) 

we find that 

fo(X)= J ] (d2i-id2i-X
2).l(X), 

!<*<[w/2] 

where /(X) = 1 if n is even and l(X) = dn — X if n is odd. By our 
choice of the di G K we see immediately that 

sgnPp = #{zeros of f0 in (K, P)} 
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for each P G XK- Thus /o satisfies (ii). 

Since, for a fixed ordering P , all the zeros of /o in (K, P) are simple, 
any matrix B p which has its elements very close to that of Bo in (if, P) 
yields a polynomial 

/ p = d e t n ( D B p - X I n ) 

which has the same number of zeros in (K,P) as /o . Actually, for a 
fixed P G XK we find some ap G Px such that , for all e^ G {K,P) 
with 0 <P €ij <p l/ap and e^ = tji, the symmetric matrix 

Bp, f = B 0 + e = (bij + €ij) 

yields a polynomial 

/p , e = d e t n ( D B p , e - X I n ) 

having the same number of zeros in (K,P) as /o . Thus, in particular, 

sgn P p = #{zeros of /p j C in (K, P)}. 

As we will see there are always choices of e^ G if which make / p e 

irreducible over K. This gives a positive solution to (i). But now (ii) 
can be guaranteed only for the ordering P which we fixed. Thus our 
problem is to find some e^ G K which do the job simultaneously for 
all P G XK- This can be achieved in the following way. 

For every P G XK we choose ap G Kx as above and consider the 
subset Up of XK consisting of those Q G XK such that 

sgnQp = #{zeros of /Q j C in (K,Q)} 

for all €ij G {K,Q) satisfying 0 < Q e^ < g l / a p and e^ = e^. Clearly 
P G £7p, since it is well-known XK is a compact space with respect to 
the topology generated by the subsets 

H(c) = {P£XK\ceP}, ceK. 

The sets Up are open in this topology. This is a consequence of 
Tarski's Theorem on the Elimination of Quantifiers over real closed 
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fields. In fact, it is not difficult to write down a formula <p(xi,..., xn, y) 
in the language of ordered fields such that 

Up = {Q G XK | (K,Q) satisfies <p(di,... , d n , a P ) } . 

By Tarski's Theorem there are polynomials 

PijiQi G Z[Xi,...,Xn,Y] 

such that i/j(di,..., dn, ap) is equivalent to 

Vj"=1te(d,op) = 0 A Aj=1pij(3,ap) > 0) 

in all real closures (K,Q). Assuming w.l.o.g. that qi(d,ap) = 0 for all 
z, we thus have 

£/p = ur=1n$=1Jf(ptf(5,ap)). 

Hence f/p is open in XK • By compactness we can therefore find a finite 
cover Upx U • • • U Upm of XK • If we now let a — aPl + h apm, then 
the choice ê - = l /(o + 2/f?) with ?/?;J = ^ G Jf(T obviously satisfies 

0 <Q €ij <Q ~2— a n d €ij = €ji 
Q> r> 

for all Q G C/p and all 1 < v < m. Thus, if we set 

By = Bo + ( —^-2- J with Ytj = Yji 

and 
SY = d e t n ( D B y - X I n ) , 

by the definition of Up, we obtain 

sgnQp = #{zeros of fy in (K, Q)} 

for all substitutions y^ G K and all Q G XK- Thus /^ satisfies (ii). In 
addition we can choose y^ G K such that fy is also irreducible, thus 
also satisfying (i). In fact, 

^ = n g{X'Y(alv*) w i t h f l € i f [ J f , F y ] . 
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As we will show in the next section, g is irreducible over K. Thus, 
by the assumption on K being hilbertian, we find yij £ K such that 
g(Xiyij) G K[X] is irreducible. This finishes the proof of Theorem 1. 
D 

Looking carefully at the proof of Theorem 1 we can see that after 
having used ED the rest of the proof actually yields 

ADDITION LEMMA. Let K be a hilbertian field of characteristic zero. 
If Pi ~ Tx(Li,ßi) for some extensions Li/K and some sums of squares 
ßi of Li {for i = 1,2), then p\ ± p2 — Tx(L,ß) for some extension 
L/K and some sum of squares ß of L. 

In fact, by Scharlau 's argument we find symmetric matrices B^ such 
that (i) and (ii) holds for D^B^ where D ; are symmetric matrices 
representing pi (for i — 1,2). Considering now the matrix 

*»=(B0 £ ) 
we can follow the proof of Theorem 1 in order to obtain the Addition 
Lemma. G 

As a consequence we get 

COROLLARY. Every closed and open subset of the order space XK 
of a hilbertian field K is the image under the restriction map of some 
finite extension L/K. 

PROOF. Let A C XK be open and closed. Then 

A = U?=lP%ilH(aij), aiJeKx. 

Clearly, the sets B{ = D^llH(aij) are the images under the restriction 
map for the fields 

Li = K(y/(ïïï, • • • , y/ûimi ) 

for 1 < i < n. Since the trace forms pi = J T # ( L J , 1 ) have non-
vanishing signature exactly on Bi, the corollary follows from the Addi
tion Lemma. D 
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This corollary generalizes the corresponding result of Andradas and 
Gamboa for real function fields [1, Theorem 4.1]. 

3. An irreducibility result. The aim of this section is to prove 

LEMMA. Assume that K is a formally real field. For 1 < z, j < n 
let aij G K and Cij € Kx. Then, for any sum of squares a E Kx, the 
characteristic polynomial fn of the matrix 

A n = I aij + —~rp> ) with Yij = Yji 

is a quotient of an irreducible polynomial gn € K[X, Yij] and 

rii<i, , • < > + y » ) -

This lemma applied to the case 

aij — diOij ano Cij —— ct̂  

yields the result used in the proof of Theorem 1. 

PROOF. We proceed by induction on n. For the case n = 1 one 
obtains 

01 = an(a + Y?x) + cn - X(a + Y&). 

As a polynomial in X this is clearly irreducible over K[Yn] since 
en ï 0. 

Now let us assume by induction that n > 2 and, for all m < n, the 
polynomial gm is irreducible and of degree m in X. 

Writing for a moment Zij for (a + ^ j ) " 1 , we obtain 

( an + CiiZn - x ai2 + C12Z12 • • • 
a 2 i+c 2 iZ i2 

= (on + cnZn - X) / n _ i -f ])T (au + cHZH) (aji + Cji^ijO/n-^» 



906 A. PRESTEL 

where f^-2 ls (UP to Sl&n) the detn_2 of the matrix obtained by 
cancelling the 1s t and i th columns and 1s t and j t h rows of An — XIn. 
By induction hypothesis we have 

r _ 9n-l 
Jn-

with gn-\ irreducible and of degree n — 1 in X and 

(I/,I/) _ 9n-2 
Jn-2 n i j ¥ i , , (a + ^ ) 

with g£-2 irreducible and of degree n — 2 in X. Clearly, in the case 

n = 2 we let /Q ' — ÇQ — — 1. Thus we obtain 

9n = (en + ( a n - X)(a + Y1\))6 + (a + F n ) 7 

with 
« = ffn_1(o + y1

2
2)2---(a + Yl2

n)
2 

7=ÇfcW) J] (a + O II(a + yiM) 

for suitable polynomials h^1^ G K[X^YÌJ]Ì^^I. In particular we find 

fc<*> - (cH+aH(a+F 1
2

î))(c î l4-a z l(a+F 1
2

ï))^! 2(a+^) . [ J (<*+^) 2 . 

As a polynomial in Y\\ we have 

gn = aYi2! + 0 

with a = 7 4- a\\8 — X6 and /? = ay 4- cn<$ 4- aan# — aX<5. If a 
and ß would have a common divisor, also 8 and 7 would have one. If 
(a +Yj2;), for some 1 < i, would divide 7, then it would also divide h^ 
and hence cu or en which is impossible. Since gn-\ is irreducible and 
degxpn_i = n - 1 > degx7, there could only be a common divisor of 
6 and 7, if 7 = 0. But this would yield 

0 = ] P (au 4 ciiZiiXoji 4- CjiZxj)/^. 
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Observing that 

degxf^<degxf^=n-2 

for i ^ j one easily sees that the highest coefficients of X cannot cancel. 

If gn were reducible in Fu, then the highest coefficients of a and ß 
in X would differ by a negative square from the field 

Quot(K[y0-] ( i f i)^ (i )i )). 

This is impossible since they differ by a which is a non-zero sum of 
squares in K. Thus gn is irreducible. 

4. Proof of Theorem 2. Let / £ L[X] be an irreducible linear 
trinomial 

f(X) = Xm+1+aX + b 

of odd degree. The trace form TL(F, 1) of the extension F = L[X]/(f) 
turns out to be (for a computation see [3] or [10]) 

TL(F,1) - ( l , m , - m d ) in W(L), 

where 
d = mmam+1 + (m + l ) m + 1 6 m mod L2. 

If we knew in addition that d ~ ßmodL2 and that — m is a norm 
from L(y/]3) over L (assuming that ß is not a square in L), then 
the form (1, — /3, m) would be isotropic. Hence the 2-fold Pfister form 
(1, — /3,m, —ßm) would be zero in W(L). Thus we would get 

TL(F,l)~(ß) in W(L). 

We are therefore looking for such a trinomial. 

Let us first assume that ß is not a square in L, since otherwise we 
may take F = L. Next let us assume w.l.o.g. that — m is a norm from 
L(y/ß) and m is even. Now let 

^ _ ( m + l ) m + 1 ß 
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The polynomial 

/ ( * , Y) = X m + 1 + ( A 7 2 - r)X + (ßiY2 - r) 

is irreducible in K[X, Y). This follows at once by Eisenstein's Criterion 
if we consider / as a polynomial in X over L[Y]. Since L is hilbertian, 
we find y G Lx such that 

f(X) = Xm+i + (ßlV
2 - r)X + (ßlV

2 - r) 

is irreducible in Ä'fA']. 

If we now set a = b = ßiy2—r we have found the desired linear trinomial 
of odd degree. In fact, we have (observing that m is even) mod L2 

d = mmam+1 + (m + l)m+1bm 

= mma+(m + l)m+1 

= ßy2 

= ß-

This finishes the proof of Theorem 2. D 

It may be interesting to observe that the converse of Theorem 2 
also holds, i.e., assuming that , in L, every sum of squares ß is Wit t 
equivalent to a trace form TL(F, 1) for some F obtained by a linear 
trinomial Xm+l + aX + b with m even, then L satisfies NT. 

In fact, by this assumption we have 

( / ? )~ ( l , m , - m d ) in W(L) 

with d as above. From this Wit t equivalence we obtain the isometry 

( / U , - l ) ^ ( l , m , - m d ) 

which clearly implies 
ß = dmoaL2. 

In particular we obtain that the 2-fold Pfister form ( l , r a , —mß, —ß) is 
zero in W(L). But this implies that ( l , r a , — ß) is isotropic. Thus, in 
case ß is not a square in L, this tells us that — m is a norm from L(yfß). 
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5. More about NT. The remark at the end of the last section 
shows that NT is in some sense essential for the result of the Main 
Theorem. It will be thus interesting to ask in general which function 
fields are satisfying this property. For rational function fields we can 
give a complete answer. 

THEOREM. Let k be a formally real field. Then the rational function 
field k(t) satisfies NT if and only if k is hereditarily pythagorean, i.e., 
k and all its finite formally real extensions are pythagorean. 

PROOF. In [2; Chapter III, Theorem 4], it is shown that if k is 
hereditarily pythagorean, in k(t) every sum of squares ß is equal to 
a sum of 2 squares. Thus the form (1, —/?, 1) is isotropic over k(t). 

Conversely, let us assume that there is a finite formally real extension 
k\ of k which is not pythagorean. Then there is some a £ k\ such that 
7 = 1 -f ÖL2 is not a square in k\. We consider the extensions 

fc2 = M \ / 7 ) a n d fc3 = k2[yjy/ï - I)-

Observing that (yfy — 7)(—y^ — 7) = 72 — 7 = 7(7 - 1) = 7a2 we see 
that k$/k\ is cyclic with the automorphism 

generating the Galois group. The unique extension of k\ of degree 2 
in &3 is &2- Since k2 is formally real, we find that, for every m G N, 
y/—m £ k%. On the other hand k% is not formally real. In fact, 7 > 1 
implies 7 > y/y. Denoting by f(t) the irreducible polynomial of some 
generator of £3 over k, we thus find polynomials / 1 , . . . , fr £ k[t] such 
that 

- l = / 2 - f . . . + / 2 m o d / 

and deg/?; < deg/ . If we now assume that k(t) satisfies NT, we could 
find some m G N and g\,Q2, h € k[t] such that 
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Since / divides 1 + 5Z /f, we may assume (after cancelling) that / does 
not divide h or gx. Thus, computing m o d / , we would get that — m is 
a square in £3. This contradiction proves the theorem. D 

This theorem in particular shows that the field Q(t) does not 
satisfy Theorem 2. More precisely, considering the fields k = k\ 

= Q, k2(V2), h = Q( ( \ /2 - 2)4) we see that / = t4 + 4t2 + 2 and 

-l = (t2)2 + (2t)2 + l2modf. 

Thus we find that the sum of squares 

ß = t4 + \t2 + l e Q{t) 

is not Witt equivalent to any trace form of a finite extension of Q(t) 
given by some linear trinomial of odd degree. 

According to [4] and [11] a formally real function field in one variable 
over a field k satisfies ED if and only if k is hereditarily euclidean, i.e., 
k and all its finite formally real extensions are pythagorean and have 
just one ordering. Thus the main theorem already holds for algebraic 
function fields in one variable over a hereditarily euclidean field, since 
also Wit t ' s Theorem on totally indefinite quadratic forms of dimension 
> 3 holds for such function fields (see [4]). 
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