NASH FUNCTIONS AND THE STRUCTURE SHEAF

FELIPE CUCKER

Let **R** be a real closed field and $U \subset \mathbf{R}^n$ an open semialgebraic (s.a.) set. A Nash function over U is a function of class C^{∞} and s.a. If $\mathbf{R} = \mathbf{R}$, this definition agrees with the usual one [1, Chapter 8].

If $A = \mathbf{R}[X_1, \dots, X_n]$ and \tilde{U} is the constructible set in Spec_rA associated to U, the ring of Nash functions over U is canonically isomorphic to the ring $\mathcal{N}_A(U)$ of global sections over U of the structure sheaf of Spec $_{r}A$. This is a consequence of the Artin-Mazur description of Nash functions and the behavior of the operator \sim . For this result and other basic properties of the structure sheaf see M.-F. Roy's article [8].

Now, let $V \subset \mathbf{R}^n$ be an algebraic variety (not necessarily smooth) and let A be its coordinate ring. In the above quoted article, we observe that if N_V is the sheaf obtained by restriction and identification of elements of $\mathcal{N}_{R[X_1,\ldots,X_n]}$ over Spec $_rA$, this sheaf does not necessarily coincide with \mathcal{N}_A . Moreover, an example of a variety for which these sheaves differ is given, the study of the relationship between them is proposed and it is conjectured (for $\mathbf{R} = \mathbf{R}$) that the set of points of V, for which the stalks of both sheaves are isomorphic, is the set of quasi-regular points of V in Tognoli's sense.

To answer these questions, our first results are the following theorems.

THEOREM 1. ([2, II. 1.5]. or [3, 1.7]) For every $\alpha \in \operatorname{Spec}_r A$ the stalk $N_{V,\alpha}$ is naturally isomorphic to $\mathcal{N}_{A,\alpha}/\mathrm{rad}_r(0)$.

THEOREM 2. ([2, II. 2.1.], or [3, 2.1]) Let $x \in V$. The following statements are equivalent:

(i) x is quasi-regular (i.e., the complexification of the Nash germ V_x coincides with the complex Nash germ at x of the algebraic complexification V_c of V);

Partially supported by C.A.I.C. y T. 2280/83. Copyright @1989 Rocky Mountain Mathematics Consortium

F. CUCKER

(ii) The henselization ${}^{h}(A_{x})$ of the local ring A_{x} is real.

Since the stalk at x of the structure sheaf $\mathcal{N}_{A,x}$ is just the ring ${}^{h}(A_{x})$, the answer to Roy's question is now evident from the theorems above.

With respect to the relationship between both sheaves - which is related to isoalgebraic functions (see [6]) - we can summarize our results in

THEOREM 3. ([2, II. §1] or [3])

(i) There is a surjective sheaf morphism $\varphi : \mathcal{N}_A \to \mathcal{N}_V$ which induces in the stalks the natural projections given in Theorem 1.

(ii) Let $U \subset V$ be a s.a. open subset and $\varphi_U : \mathcal{N}_A(\tilde{U}) \to N_V(\tilde{U})$ the ring morphism on the global sections rings. Then φ_U is surjective if and only if $\forall f \in N_V(\tilde{U}), \exists U' \subset V_c$ an open s.a. subset containing U, and $\exists g$ an isoalgebraic function on U' such that $\forall x \in Uf(x) = g(x)$. This is, for example, the case if V is a curve.

Our last result concerns algebraic properties of the ring of global sections of the structure sheaf.

THEOREM 4. ([2, III.1.7., III 2.3. and III 3.4] or [4]) Let $U \subset V$ be an open s.a. subset. Then

- (i) $\max \mathcal{N}_A(\tilde{U}) \approx U;$
- (ii) $\forall x \in U^h(\mathcal{N}_A(\tilde{U})_m) \approx \mathcal{N}_{A,x};$

(iii) If dim U is max{dim $A_x/x \in U$ }, the ring $\mathcal{N}_A(\tilde{U})$ is an excellent ring of dimension equal to dim U.

REMARKS. (i) Part (iii) of this last result is not known for $N_V(U)$ for an arbitrary U, since even the dimension of this ring is unknown. For some positive results see [7].

Our results give part (iii) of theorem 4 for $N_V(\tilde{U})$ in case V is a curve or U is contained in the set of quasi-regular points of V.

(ii) Several nullstellensätze and the positive answer for Hilbert's 17th

648

problem can be shown for $\mathcal{N}_A(\tilde{U})$. See [5].

REFERENCES

1. J. Bochnak, M. Coste, and M.-F. Roy, *Géométrie algébrique réelle*, Erg. der Math., Springer Verlag, 1987.

2. F. Cucker, Fonctions de Nash sur les variétiés algébriques affines, These d'Université, Rennes, 1986.

3. ——, Fonctions de Nash sur les variétés affines, Math. Z. **198** (1988), 53-62.

4. ——, Sur les anneaux de sections globales du faisceau structural sur le spectre réel, Comm. Algebra, 16 (1988), 307-323.

5. F. Cucker and M.-F Roy, Théoremes des zéros et positivstellensatz pour les fonctions de Nash dans le cas non-lisse, C.R. Acad. de Sc. de Paris, t.303, n°12, 1986.

6. M Knebusch, Isoalgebraic geometry: first steps, Séminaire Delange-Pisot-Poitou, 1980/81, Birkhauser.

7. F. Mora and M. Raimondo, On noetherianess of Nash rings, Proc A.M.S., vol. 90, n°1, 1984.

8. M.-F. Roy, Faisceau structural sur le spectre réel et fonctions de Nash, Springer Verlag LNM 959, New York, 1982.

Dept. de Llenguatges I Sistemes informátics, Facultat d'informática de Barcelona, Pau Gargallo 5, Barcelona 08028, Spain