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FUNDAMENTALS OF ANALYSIS OVER 
SURREAL NUMBERS FIELDS 

NORMAN L. ALLING 

ABSTRACT. The Tarski Principle informs us that, con
cerning first order statements, all real-closed fields are created 
equal. Thus the field Ft of all real-numbers and the field Rn 
of all real-algebraic numbers have the same first order theory; 
however, their higher order theories are quite different. For 
example, Ft is Dedekind-complete and is a vast transcenden
tal extension of its prime field, whereas Fto is not Dedekind-
complete and is an algebraic extension of its prime field. The 
surreal number fields £No are all real-closed. They have ex
traordinary higher order properties, which allow one to do 
analysis over them, as we will see below. 

0. Introduction. The construction of the class, On, of all von 
Neumann ordinals is, in many ways, quite similar to some of the most 
instructive constructions of the surreal numbers. Let us recall von 
Neumann's definition. (For convenience, let us work within Kelley-
Morse set theory. See, e.g., [11, Chapter 2] for details.) 

A class A will be called e-transitive if, for all sets £, y, for which x G y 
and y G A, then x £ A. Ais called an ordinal if it and each element in it 
is e- transiti ve. Let On be the class of all ordinals. It is easy to see that 
the empty set is an ordinal, which is defined to be 0. Given a G On, 
let a + 1 be defined to be the union of a and {a}; then a -f 1 is in On . 
Clearly 0 , 1 , . . . , n are finite ordinals. Let UJ be defined to be the union 
of the set of all finite ordinals, u is the smallest infinite ordinal. For all 
a, ß G On, one and only one of the following hold: a G ß, ß = a, or 
ß G a. (See, e.g., [11, pp. 68-75] for proofs and details.) One defines 
a < ß in On if a G /?, and one finds that, under this ordering, On 
is a well-ordered class, ß G On is called a limit ordinal if there is no 
a G On such that ß = a + 1. /3 is called a non-limit ordinal if it is not 
a limit ordinal. Thus, for example, UJ is a limit ordinal, whereas 2 is a 
non-limit ordinal. 

One interesting property of the (von Neumann) ordinals is that they 
are canonical objects in set theory. This follows from the fact that there 
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is only one empty set and that , using transfinite induction, the ordinals 
are built up from the empty set, in a canonical fashion, as suggested 
above. 

Let us define a cardinal number to be an element ß G On such that ß 
is not equipotent with any a G ß. Thus 0 , 1 , . . . , n and UJ are cardinal 
numbers. However, u + 1 is not a cardinal number. For any ordinal 
number a let a + denote the least cardinal that is greater than a; thus, 
e.g., 2 + = 3. Assume, for some 7 G On , that (toa)a<j has been defined. 
If 7 = 0, let LÜQ — LJ. If 7 = ß + 1, for some ß E On, let u;7 = u;£. 
If 7 is a non-zero limit ordinal, let uo1 be defined to be the union of 
(^a)a<7- Thus a G On —> o;a is a strictly order-preserving mapping 
of On onto the class of all infinite cardinal numbers. For example, u\ 
is the least uncountable ordinal. 

Given any set 5 , there is a unique cardinal number a with which 
S is equipotent. Let us also denote it by | 5 | , and call it the cardinal 
number (or the powerjoî S. ua is defined to be regular if every cofinal 
subset of uja has power u)a, and singular if it is not regular. (Regular 
infinite cardinals may be thought of as irreducible infinite cardinals.) 
Note that , for all a G On,u) Q + i is regular [11, 21.14]. Thus, given 
any infinite cardinal number K, there exists a least £ G On such that 
K < LJÇ, for which £ > 0 and u^ is regular. 

Let L and R be subclasses of an ordered class T. One writes L < R, 
and says that L is less than R, if, for all xL G L and xR G R, xL < xR. 
Note that 0 < R,L < 0, and that 0 < 0. Following Hausdorff [10, 
pp. 172-185], T is called an rj^-class if, given any subsets L and R of 
T, for which L < R and |L| + |Ä| < 1^, there exists x G T such that 
L < {#} < # . Any ordered set of power < u^ can be embedded in an 
7/^-set by means of a strictly order-preserving map [10, p. 181]. 

Let T be an ordered set. By a Cuesta Dutari cut in T is meant a pair, 
(L,R), of subsets of T such that L < i£, for which T is the union of L 
and R [7]. Let CD (T) be the set of Cuesta Dutari cuts in T. Note that 
L or R may be empty thus (0, T) and (T, 0) are Cuesta Dutari cuts in 
T. Hence CD (T) is never empty. 

Let x{T), the Cuesta Dutari completion of T, be the union of T and 
CD (T), be ordered as follows. Let x,y € xCO- If x a n d V are in T, 
let them be ordered in \(T} as they were ordered in T. If x G T and 
y = {L,R) is in CD (T), let x < y if x G L, and y < x if x G # . If 
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x = (L,R) and y = (V,R!) are in CD (T), let x < y if L is a proper 
subset of V (or equivalently if R' is a proper subset of R). The following 
hold: 

(0) x{T) is an ordered set. Given to < t\ in T, there exists 
e G CD (T) for which to < c < t\. Given Co < c\ in CD(T), there 
exists t G T for which Co < t < C\. (0, T) is the least and (T, 0) is the 
greatest element of x(T). (See, e.g., [5, 4.02] for a proof.) 

Assume, for some ß G On, that a family (Ta)a<ß has been defined. 
If ß — 0, let To be the empty set. If there is an a G On such that 
ß = a -f 1, then let Tß be x(^«)î a n d if ß is a non-zero limit ordinal, let 
Tß be the union of (Ta)a<ß. Then (Ta)aeQn

 1S defined. Note that Tw0 

is a countable 770-set, a set that is order-isomorphic to (for example) 
the set of all dyadic numbers. 

(1) If u^ is regular, then T^ is an rf^-set [9, Satz 1]. 

Let N o , the class of all surreal numbers, be defined to be the union 

of (Ta)aeOn (cf- t6' PP- 4> 151» I3]' a n d I5' 4 - 0 2 ] ) - F i r s t n o t e t h a t N o 

is a proper class. If a < /?, then Ta is a proper subset of Tß. Given 
x G N o , there exists a least ß G On, such that x G T]g+i, called the 
birthday of x, and denoted by b(x). Note b(x) is the unique element in 
On such that x G Tb^+i — T^xy The function ò is called the birth-
order function on No (cf. [2, Section 8], [3, p. 243], [4, p. 304], and 
[5, p. 360]). 

CONWAY'S SIMPLICITY THEOREM. Let L and R be subsets of No 
for which L < R, and let I = {y G No : L < {y} < R}. Then (i) J is 
non-empty, and (ii) there exists a unique x G / such that b(x) < b(y), 
for ally el (cf. [6, p. 23], [3, p. 243], [4, p. 304], and [5, p. 124]). 

Note that, in Conway's Simplicity Theorem, a unique element x is 
chosen having an interesting property. Following Conway's very useful 
compact notation [6, p. 4], let the element x, chosen in Conway's 
Simplicity Theorem, be denoted by {L\R}. Given such subsets L and R 
of N o , let xL denote a typical element of L, and let xR denote a typical 
element of R. Thus, given x G N o , x may be written as {xL\xR}. 
Further, L and R may always be chosen so that 6(L), b(R) < {b(x)} [5, 
p. 125]. 



568 N.L. ALLING 

Conway then made the following inductive definitions: (i) x + y = 
{xL + y,x + yL\xR + y,x + yR}, (ii) -x = {-xR\ - xL}, and (iii) 
xy = {xLy + xyL — xLyL,xRy 4- xyR — xRyR\xLy + £?/ß — xLyR, xRy + 
xt/L — x Ä ? / L } ; the induction being with respect to birth-order [6, p. 5]. 

Conway gives a brilliant series of brief proofs that show that N o is a 
real-closed field, having many additional interesting properties [6, pp. 
4-44]. (See [5, Chapters 4-6] for a more detailed analysis.) Note, e.g., 
tha t 0 = {0|0}, 1 = {{O}|0}, and thus - 1 = {0|{O}} [6, p. 7]. 

Let ( be a fixed ordinal number, with ( > 0 and uo^ regular. Let ( N o 
(first defined in [2, p. 381]) be defined to be T ^ [5, p. 191]. Among 
its properties are the following: 

(2) (i) ( N o is a real-closed field that is an rj^-set [5, pp. 246, 191]. 

(ii) Any ordered field K of power < LÜ^ can be embedded, by means of 
a strictly order-preserving homomorphism, in any real-closed field that 
is an rj^-set [8, p. 193]; thus in ( N o . 

(3) ( N o has a canonical valuation V, the u-valuation, whose value 
group is the additive group ( ( N o , + ) of ( N o . Finally, ( N o contains 
a canonical copy of R that maps onto its residue class field ([2, p. 382] 
and [5, pp. 191-196]). 

(4) ( N o has a canonical formal power series structure, under which it 
is R-isomorphic to the field ( i ? ( ( ( (No , +)) ) of all formal power series 
with coefficients in R, and exponents in ( ( N o , + ) , of length less than 
u)ç. Further, the isomorphism and the valuations commute [5, p. 246]. 
Finally, every pseudo-convergent sequence in ( N o of length less than 
UJ^ has a pseudo-limit in ( N o [5, 6.41]. 

(5) ( N o is order-isomorphic to Hausdorff's normal rj^-type [9,Satz 
9]. 

REMARK. It is well to note that the fact that the various structures 
cited in (3) (= displayed expression (3) above) and (4) are canonical 
follows from the Conway Simplicity Theorem, which may be derived 
from the birth-order structure on ( N o . Further, the canonical presence 
of these structures is very unusual and reflects the birth-order structure 
on N o . See also [4] and [5, 4.03 and 4.60], for other abstract definitions 
of classes of surreal numbers. 
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1. The (-topology on ( N o . Let (No ! be defined to be the union 
of (No and {zboo}, ordered so that —oo < x < -foe, for all x G ( N o . 
For a, b e (No! , let (a,b) = {x e (No : a < x < 6}, and let (a,6) 
be called a principal open interval in ( N o . Let B be the set of all 
principal open intervals in ( N o . Clearly B is a base for the interval 
topology on ( N o . 

The phrase "not too many" here will mean that the cardinal numbers 
of the sets in question are less than u>ç. A subset U of (No will be 
called a (-open subset of (No if it can be written as the union of not 
too many principal open intervals of ( N o . Although the set (£?, of 
all (-open subsets of ( N o , is not a topology on ( N o , it has many 
properties which resemble those of a topology. Let (J3 be defined to be 
the (- topology on (No generated by B. Many definitions and theorems 
from topology go over virtually verbatim to the theory of (-topologies. 
Among these are the definitions of the relative (-topology, (-connected 
spaces, and (-continuous maps, as well as the first few theorems about 
these ideas. (See [1] and [5, Chapters 2, 3] for details.) For example, 

(6) A subspace o / (No is ^-connected if and only if it is an interval 
([l]ond[5, 2.20]). 

A subclassX of (No is called (- compact if any cover of it by not too 
many (-open subsets of X has a finite subcover ([1], [5, p. 101]). 

(7) Let X be an interval in (No that either has a greatest (respectively 
least) element or has no cofinal (respectively coinitial) subset of power 
less than uo^; then X is ^-compact ([1] and [5, 2.30]). Hence all the 
intervals [a, 6], [a, ò), (a, b], and (a,b) m (No are (-compact. 

2. Neumann's theorem, and extensions. Let K be a field and 
let G be an ordered Abelian group, both being sets. Let F = K((G)) 
(respectively £K((G)) (4)); then F is a field with a valuation, having 
value group G, valuation ring A, maximal ideal M, and residue class 
field K. B.H. Neumann proved a much more general version of 

NEUMANN'S THEOREM. For all (an)n<u) in K, and all x E M, 
Yl^Loan ' xU ^s a wett-defined element in F, [12, 4.7]. (See also [5, 
7.22].) 
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For all x G M , we will say that the formal power series Yl™=o an * A n , 
defined above, is hyper-convergent. Neumann's Theorem admits further 
generalization. First of all, it may be generalized to formal power series 
in several variables [5, 7.41]. This method of evaluation of formal power 
series has many properties, e.g., [5, 7.41]. 

Since ( N o has a canonical power series structure (4), we may 
proceed as follows. Let C{X) = Efclo(£sum(v)=fc c(v)xv) b e i n 

( N o [[Xi,..., X n ] ] , the ring of formal power series in n determinates 
over ( N o . Since ( N o is R-isomorphic to ( i ? ( ( ( ( N o , +) ) ) (4), we may 
define the smallest convex subgroup B of ( ( N o , + ) (3), that contains 
all the exponents of the power series expansions of all of the C(v) 's . 
Since each | supp(C(v)) | < u^ and ( ( N o , - h ) is an r^-set, and since 
( > 0, B is a proper subgroup of ( ( N o , + ) . Since ( ( N o , + ) has a 
canonical Hahn group structure (3), we can define a canonical direct 
summand A of B in ( ( N o , + ) . Further, ( ( N o , + ) is canonically R-
isomorphic to the lexicographically ordered direct sum A + B [5, 7.80]. 
It is not difficult to prove that 

(8) ( N o is R-isomorphic to Ç(ÇR((B)){(A))), [5, 7.80]. 

Let P = {x G ( N o : {V(x)} > B} (3); then P is a non-zero 
(convex) prime ideal of A. On applying Neumann's Theorem to 
( ( (Ä( (£ ) ) ( (A) ) ) , we arrive at the 

MAIN THEOREM. For all x = ( # i , . . . , x n ) € Pn, the following is a 

well-defined element o / ( N o : SfcLo(Ssum(ü)=fc C(y)xv) [5, 7.82]. 

NOTE. This theorem is much more sweeping then the generalization 
of Neumann's Theorem to several variables mentioned above, in that 
the C(v) may be in ( N o , and are not restricted to lie in R. 

3 . Appl icat ions t o analysis . We know that , over the field of 
complex numbers, the following classical theorems hold. 

(A) Locally, the simple roots of a polynomial <ß(X) with coefficients 
in C, are analytic functions of these coefficients. 
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(B) Let (/)A(X,Y) e C[X,Y] be of degree m>OinY, and let x0 

and T/o be in C such that (d(j)*/dY)(xo,yo) ^ 07 and (ß(xo,yo) — 0. 
Then, locally about (xo,yo), the function y for which cf)(x,y) = 0, is an 
analytic function of x. 

(C) Let (/){,..., (j>n € C[Xi,..., Xn] define a map (j) from Cn to Cn, 
taking 0 to 0, that is non-singular at the origin. Then <$ has an analytic 
inverse, defined on some neighborhood of the origin in the range space. 

Let £Cx = £No(i), and let it be called a surcomplex number field. 
£Cx is an algebraically closed field, has a canonical copy of C in it 
which maps onto residue class field, and has ( (No, +) as its value 
group under the extension of the (^-valuation (3) to £Cx. Further, 
every pseudo convergent sequence in £Cx of length less than UJ^ has a 
pseudo-limit in £Cx [5, pp. 255-260]. 

Theorems A, B, and C all admit generalizations over the surcomplex 
number fields and-appropriately restricted-over the surreal number 
fields. 

The hyper-local versions of (A), (B), and (C) hold for a substantial 
class of formal power series fields, in particular for all surreal and 
surcomplex number fields. Extensions of these hyper-local results to 
local results (as measured in the residue class field) employ classical 
analytic function theory, and thus require that the complex field or the 
real field be the field of coefficients; which is the case for £Cx of ( N o . 

For the sake of simplicity, let F = £Cx (although some of this can be 
done under very much weaker assumptions, as we plan to show in a sub
sequent publication). Let A be the valuation ring of F, M its maximal 
ideal, and let p be the place associated with A. For a G i , let a — p(a). 
Clearly p extends to a C-linear homomorphism, also denoted by p, 
of A[X\,..., Xn] onto C[Xi,..., Xn], having kernel M[Xi,...,Xn). 
Let <ß(Xi,..., Xn) (or simply <j){X)) be in -A[Xi,..., Xn], of degree 
m > 0. Let <p(X) be defined to be p(<j>(X)). Note that <fi(X) is in 
C [ X i , . . . , X m ] . 0(X) and </>(X) in A[XU... ,Xm] will be called in
finitesimal perturbations of one another if (f{X) = <fi(X). Clearly the 
set of all such 0(X) is <fi[X)+M[Xi,..., Xn], a coset, in A[Xi,..., X m ] . 
Further, <fi(X) is a canonical representative of that coset. 
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Let us now give a proof of an extension of Theorem B. 

(9) Let <p(X,Y) = Ym + ETJoiE^o avX') ' y3 e A[X,Y\, such 
that aoi is a unit in A, and aoo is in M. 

Let A = {(z\j) : j e {0, . . . , r a - 1} and i e { 0 , . . . , n ( j ) }} , and let 

d be defined to be 5Zjl"o nU)m For i^J) ^ A, ^ a * / = CiJ ^ ^ a n (^ 
ßij = üij — Cij] then / i ^ G Af and a^ = Qj + / i ^ . Note also that , since 
aoi was assumed to be a unit in A and that aoo w a s assumed to be in 
M (9), then c0i ^ 0 and c0o = 0. 

(10) * ( ( X i . j ) ( i j - ) 6 A . X , i O = Ym+ET=0
1(Z^o\clJ+Xl])-X

i)-Y^, 
is in the polynomial ring, C[(Xij)^j^eA^X^Y]. 

(11) Clearly, 3>( (0) ( ? , j ) e A ,X ,F) = <fi(X,Y) and^((ßij){iJ)eA,X,Y)= 
<t>(X,Y). 

Hence $((0)(ij)eAi X,Y) and $((/ i i j )(^-)G A , A", Y) are infinitesimal 
perturbations of one another. Note also that (d^/dY)((0)^j)eA, 0,0) = 
coi T2 0, and that $((0)( ? , j )G A ,0 ,0) = c0o = 0. By the classical Im
plicit Mapping Theorem, there exists a (classical) polydisc U in G d + 1 , 
about the origin, and there exists a unique complex-valued function 
G((Xij)(ij)£&,X), analytic over [/, with G ( ( 0 Ì J ) ( ^ J ) G A > 0 ) = 0, such 
that the following identity holds: 

(12) ^((XlJ)iuj)eA,X,G((XlJ){uj)eA,X))=07 overU. 

Let U° be defined to be U + M d + 1 [5, 7.65]. Using Neumann's 
Theorem, we may extend G to form a mapping G°, which maps U° 
into £Gx [5, 7.65]. Further, using Theorem 7.41 [5], we know that $ 
and G° satisfy (12) over U°. We will denote this extended version of 
(12) by (12°). We then have 

THEOREM. 0 ( X , G O ( ( ^ J ) ( Î , J ) € A , ^ ) ) = 0, for all X e U°. 

PROOF. By (12°) and (11), 0 = *((M i j)(i . j)GA*, G ° ( ( / X 0 - ) ( M ) G A , * ) ) = 

0(X,G°( ( / i Z J ) ( ? , j ) G A ,X) ) , over U°. ü 

Let W° be the image of the projection of U° onto the last coordinate 
in £ C x d + 1 . Thus, the map X € W° -+ G 0 ( ( / X Ï J ) ( Î , J ) G A , X ) ) = Y is a 

map from W° to £Gx for which </>(X, Y) = 0. 



SURREAL NUMBER FIELDS 573 

This completes the proof of the extension of Theorem B to £Cx. D 

Bibliographic note. Part of the argument that Conway used on 
page 41 of [6] was very useful to the author in initiating the line of 
reasoning that led to this proof. 
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