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on his retirement from the University of Alberta. 

1. Introduction. Our motivation for the research in this paper 
arose from two recent papers by Beauzamy and Enfio [2] and Beauzamy 
[3], which are connected with polynomials and the classical Jensen in­
equality. To describe their results, let P(z) = XlJLo0 .?2^" Yl^=oajzJ 

where aj := 0 for j = m+1, ra + 2 , . . . ) be a complex polynomial (^ 0), 
let d be a number in (0,1), and let A: be a nonnegative integer. Then 
(cf. [2, 3]), P(z) is said to have concentration d at degrees at most k if 

(l.i) EKI>df>| . 
3=0 j=0 

(Later, we shall discuss functions which are not polynomials, yet for 
which (1.1) holds. This accounts for our use of the symbol, oo, in 
(l.i).) 

Beauzamy and Enfio showed (cf. [3, Theorem 1]) that there exists a 
constant Cd,*, depending only on d and A:, such that, for any polynomial 
P(z) satisfying (1.1), it is true that 

(1.2) ^J l o g | P ( e ^ ) | ^ - l o g ( ^ K | ) > C ^ . 

For our purposes here, Cd,k will denote the largest such constant 
possible in (1.2), i.e., 

CdM : = inf { — / log\P{eie)\d6 - log ( ] T h i ) : 
(1.3) l 2 7 r y o \ = o J 

P(z) is a polynomial satisfying (1.1) >. 
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354 JENSEN INEQUALITY 

In [3], Beauzamy showed that 

(1.4) Cd, > Cd, := ^ {t log ( ( f _ 1 ) ( ( g ) t + 1 _ 1 ) ) } , 

for all d G (0,1) and all k — 0,1, In particular, as d G (0,1), it 

follows from (1.4) that 

(1.5) Cd,o = logd. 

It was also shown in [3] that, for d — 1/2, 

(1.6) lim % H = _2 , 

and that 

(1-7) C 1 / 2 . f c < - ( 2 f c + l ) l o g 2 (k = 0 , 1 , . . . ). 

It follows from (1.5) and (1.7) that 

C 
(1-8) Ci/2.0 = - l o g 2 and l i m s u p - ^ < -21og 2. 

k—»oc ^ 

To make a connection between Jensen's inequality and inequality 
(1.2), let f(z) = Y^=NaJz^ w i t n ax T" 0> D e analytic in |^| < 1. 
Let Z/^(f) denote the zeros o f / ( z ) i n 0 < | 2 | < l , with multiple zeros 
being repeated. Then, Jensen's formula (cf. Ahlfors [1, p. 207]) is 

( L 9 ) 7^ [7riog\f(ew)\dO = \og\aN\+ Yl log( l / | ^ | ) . 
° zj£ZA(f) 

Since the sum above either is not there (when no zeros exist) or is 
positive, one obtains the Jensen inequality 

(1.10) ^ / ' l o g l / ^ l d f f ^ l o g M -

Further, since f(z) is analytic in \z\ < R for some R > 1, then 
S j l j v K I < °°î t n^ s m e a n s the final sum in (1.1) is finite. Now, 
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suppose that (1.1) is valid for f(z) for some d in (0,1) and for k — 0 (so 
that TV = 0), even though f(z) is not necessarily a polynomial. Then, 
Jensen's inequality (1.10) (with TV = 0) implies inequality (1.2) with 
Cd.o = logd (cf. (1.5)). Conversely, if (1.1) holds with equality for f(z) 
for the case A: = 0, then inequality (1.2), with Cd.o = l°grf, implies 
Jensen's inequality (1.10) (with TV = 0). In this sense, inequality (1.2) 
can be viewed as a generalization of Jensen's inequality. 

To go beyond functions analytic in \z\ < 1, let f(z) = J2^=oaJzJ ^ e 

analytic in \z\ < 1, and set 

Mp(r;f) - = {^ f* \f{rew)\vd0}l,\ for 0 < p < oc 

/j Hi and 0 < r < 1, 

Mx{r;f):= max \f(rew)l for 0 < r < 1. 

0 < 6 K 2 T T 

As usual (cf. Düren [5, p. 2]), for 0 < p < oc, let 

Hp := {g(z) :g is analytic in \z\ < 1 
and Mp(r;g) is bounded as r —> 1-}. 

If the final sum in (1.1) is finite for f(z), i.e., ]T*L0 K l < oc, it is clear 
that 

oc oc 

Mx(r;f) < ] T \aj\rJ < £ |a,| < +00. 

Hence, from definition (1.12), f(z) € Hx. If g(z) 6 # ' ' for 0 < p < 00, 
it is known (cf. [5, p. 17]) that g(z) can be extended to \z\ = 1 by 
means of a function g(e,e), defined on [0, 2TT], for which 

{ g(ew) = l im r _i_0(re ' e ) a.e. in [0,2TT], 

g(eie) e L"[0,2ir], and, 
if g(z) =É 0, then log|ff(e'e)| € L1{0,2TT}-

With this notation, for any f(z) = Y.J=oaJz^ ( ^ w h i c h i s a n a l y t i c 

in \z\ < 1 with J2f=o K'l < °°> J t follows f r o m ( 1 1 3 ) t h a t 

(1.14) J(f) := i - / 2 % o g | / V e ) l ^ - l o g ( f > | ) 

file:///aj/rJ
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is well-defined and finite. We now redefine the constants Cd.k so that 

Cd.k : = inf{J(f) : f(z) € H™ 

and 
(1.15) 

f(z) = Y^a3z3& 0) satisfies (1.1)}. 

This is an extension of our previously discussed largest constants, Cd k 
(cf. (1.3)). 

We remark that if f(z) — J27LN
 ajz^ aN T" 0, is analytic in \z\ < 1, 

then it follows from Jensen's formula (1.9) that 

oc 

(1.16) J(f) = log (\aN\/(( [J M ) ] > > , | ) ) . 
Zj6ZA(f) j = N 

This will be used later. 

In what follows, we investigate the nature of the constants Cd.k-, a s 

well as the nature of extremal functions, i.e., f(z) ( ^ 0 ) satisfying 
(1.1) and for which 

(1.17) J(f) = Cd,k. 

Our results are stated in §2, along with additional necessary background 
and notation, while the proofs of our results are given in §3. 

2. Statement of results. As background for our first result, let 
f(z) — ]CJLN a>jZJ{aN ̂  0) be in Hp', where 0 < p < oo, and let Z&(f) 
again denote the collection of its zeros in 0 < \z\ < 1, with multiple 
zeros being repeated. Then 

(2.1) B W ^ / ^ n , ^ / ) 1 ^ ^ ) . if ZM) is not empty, 
\zN, if Z A ( / ) is empty, 

is the Blaschke product associated with f(z). It is known B(z) e H°° 
(cf. Rudin [10, p. 302]). Next (cf. (1.13) for the definition o f / ) , 

(2.2) F(z) :=exp{^ jf2'^log|/V)l*} 



A.K. RIGLER, S.Y. TRIMBLE AND R.S. VARGA 357 

is the outer function associated with f(z). It is known F(z) G Hp (cf. 
[10, p. 331]). Continuing, the function 

(2.3) S(z) := f(z)/(B(z)F(z)) 

is called the singular inner function associated with f(z). We empha­
size that the only zeros of f(z) in 0 < \z\ < 1 are the zeros of its 
Blaschke product, B(z), of (2.1). The product, B(z)S(z), is called the 
associated inner function of f(z) (cf. [5, §2.4] and [10,p. 338]). 

Our first result is 

THEOREM l. (k = 0). Let f(z) = YlJLoaJzi(^ °) be analvtic in 

\z\ < 1, let d E (0,1), and assume that 

oc 

(2.4) |oo|><*X>jl-

Then, f(z) e H°° and 

(2.5) J ( / ) > l o g d = Cd.o. 

Equality holds in (2.5) if and only if f(z) is its own associated outer 
function multiplied by a constant of modulus one and equality holds in 
(2.4). Consequently, a function which is analytic in \z\ < 1 (the closed 
disk) is extremal if and only if it has no zeros in \z\ < 1 (the open disk) 
and equality holds in (2.4). 

Suppose 1/2 < d < 1. Let f(z) = ET=oaJzJ& °) b e a n a l y t i c 

in |*| < 1 and satisfy \a0\ = d £ £ o M - I f \z\ < h then \f(z)\ > 

l«o| - I ET=i aJzJ\ > M - £ £ i 1^1 = (2 - l/d)\ao\ > 0. So, f(z) has 
no zeros in \z\ < 1. It follows from Theorem 1 that f(z) is extremal. 
This shows there is a very simple mechanism for generating extremal 
functions if k — 0 and 1/2 < d < 1. 

To give an explicit extremal polynomial for the remaining case, 
namely 0 < d < 1/2, let n be the positive integer such that 2" n < d < 
2~ n + 1 , let p := d2n-l/(l-d2n-1), and define f(z) := (p+zXl + z )" - 1 . 
Calculations based on (1.16) then show that J(f) = logrf. Further, 
(2.4) holds with equality. 
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For our next result, let Z(f) denote all zeros (with multiple zeros 
being repeated) of f(z), and let 
(2.6) 

« : = {/(*)= J! (l-f):^#Oforall j , 
Zj£Z(f) 

where Zj € Z(f) implies Re(zj) < 0 and Jj G Z(f) >. 

< oo, 
\zi' 

Each element in H is an entire function of exponential type 0 (cf. Boas 
[4, p. 29]). If f(z) e H and if Z{f) is a finite set, then f(z) is a real 
polynomial, all of whose zeros lie in Re(z) < 0. Such polynomials are 
called Hurwitz polynomials (cf. Marden [8, p. 181]), and this accounts 
for the use of the symbol H in (2.6). We also remark that the functional 
J(f) of (1.16) is well-defined for any f(z) in H. In analogy with (1.15), 
set 

oc 

(2.7) C%k := inf | j ( / ) : f{z) = J2aJzJ i s i n H a n d satisfies (1.1)}. 
j=0 

An extremal function in H is a function, f(z), in H satisfying (1.1) and 
for which 

(2-8) J(f) = C & . 

We need the following construction. For a (fixed) d G (0,1) and a 
(fixed) nonnegative integer k, we claim (cf. Lemma 3 of §3) that there 
is a unique positive integer n (dependent on d and k) such that 

With this definition of n, set 

(n-n 
(2.10) p := —r i-£-i 1. 

Et-oCT1)-*2"-1 
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As we shall see (cf. Lemma 3 of §3), p satisfies 1 < p < oo. Note that, 
if d = 1/2, then n = 2k + 1 and p = 1. 

THEOREM 2. (A* > 0). For d m (0,1) and for a positive integer k, 
let n and p be defined from (2.9) and (2.10). Then, for any f(z) in H 
satisfying (1.1), 

(2J1) ^(/)>iog(^^r) = cî,. 

Set QnAz) := (1 + Z / P H 1 + 2)"" 1 . T/ien, / (z) satisfying (1.1) zs an 
extremal element in H if and only if f(z) = Qn.p(z). 

Now, (2.9) and (2.10) make sense when k = 0. In this case, 
a computation shows that p/((p + l )2 n _ 1 ) = d. Theorem 1 then 
establishes the truth of (2.11) even when k — 0. However, Theorems 
1 and 2 also show that the extremal functions in H for the two cases, 
k = 0 and k > 0, are vastly different. There is an infinite number in 
the former case but precisely one in the latter. 

Finally, we turn to the asymptotic behavior of C^. , k > 0, as either 
d —+ 0+ or k —• -foe. 

THEOREM 3. For a fixed positive integer k, 

(2.12) lim 7-^ = 1, 
rf—o+ Ioga 

and, for a fixed d in (0,1), 

(2.13) lim - £ i = - 2 log 2. 

It follows from (1.15) and (2.7) that 

(2.14) Crf,A: < C2k (for all d € (0,1), fe = 0 ,1 , . 

On applying (2.12) and (2.14), we have, for a fixed A:, 

(2.15) l < l i m i n f ^ 3 , 
d-+o+ Ioga 
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and, on applying (2.13) and (2.14), we have, for a fixed d, 

(2.16) lim sup - ^ - < - 2 log 2. 

In §3, we use these and (1.4) to prove the following 

COROLLARY. For a fixed positive integer k, 

(2.17) lim ^ = 1, 
d->o+ logd 

and, for a fixed d in (0,1), 

(2.18) - 2 < liminf ^ < l i m s u p ^ < -21og2.cf. (2.16) 
k—»oc K A:—>oc ™ 

We conjecture that Cd.k — C^h. 

3. Proofs. With the definitions of the spaces, Hp(0 < p < oo), in 
(1.12) and the function, f(e70), of (1.13), we begin with the 

PROOF OF THEOREM 1. Assume f(z) = Y<f=oajzJ (^ °) i s analytic 
in \z\ < 1, and satisfies 

OC 

(3.1) M>d£]M-

As previously remarked in §1, the fact that YlTLo \aj\ iS n n ^ e implies 
f(z) e Hx, as claimed in Theorem 1. Next, it follows from (3.1) that 
\a0\ > 0, since f(z) ̂  0. Applying Theorem 17.17 of [10, p. 338], 

(3-2) ±j\og\f(eie)\de>\og\a0\, 

with equality holding if and only if the associated inner function for f(z) 
is constant. Finally, using the functional J(f) of (1.14), inequalities 
(3.1) and (3.2) imply 

oc 

(3.3) ^(/) > lQglaol - log (5Z Kl) ^loSd> 
j=0 
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the desired result of (2.5) of Theorem 1. Moreover, equality holds 
throughout (3.3) if and only if equality holds in both (3.1) and (3.2). 
If f(z) is analytic in \z\ < 1, then Jensen's formula, (1.9), shows that 
equality in (3.2) is equivalent to there being no zeros of f(z) in \z\ < 1. 
From this, Theorem 1 follows, o 

It is useful now to list some properties of elements in H. Let 

f(z) = ET=o ajzJ b e i n W- Th^n: 
(i) a0 = 1 and a, > 0 for all j = 1,2,... . 

(ii) If \Z(f)\ denotes the cardinality of Z(f), i.e., the number of its 
elements, then CLJ > 0 for all j — 0 , 1 , . . . , |Z( / ) | , and dj = 0 for all 

j > W ) | . 
(iii) If f(p) = 0 where p < 0, then / (*) \ (1 - z/p) is in H. 

(iv) If p < 0, then f(z)(l - 2/p) is in H. 

(v) If /(p) = 0 where p is nonreal, then f(z)/((l - z/p){\ - z/p)) is 
inW. 

Because of (i), we note that / ( l ) = Y<T=QaJ = ^7=o K'l- H e n c e (cf-
(1.16)), 

(3.4) J(f) = - l o g ( n ^ € ^ ( / ) | ^ | • / ( I ) ) (/(*) G W). 

It is convenient to define the numbers 

k oc 

(3.5) M / ) : = £ K | / I > , I , for fc = 0,1,... . 
j=0 j=0 

Note that (1.1) holds if and only if 

(3.6) 6k(f) > d. 

LEMMA 1. Suppose f(z) = £ J 1 N
 ajzJi where a»> r1 0. (We a//tfw Me 

aj to be complex.) Then 

(3.7) J ( / ) > - m log 2, 

untt equality if and only if N = 0 and f(z) = a0(C-^)m> öftere Kl = 1-



362 JENSEN INEQUALITY 

PROOF. Let g(z) := Y1T=N bjzj D e t n e polynomial obtained from f(z) 
by requiring that g{ — \(\) = 0 if and only if /(£) = 0 (with matching 
multiplicities) and by requiring that 6m = |am | . Since the a, and bj 
are symmetric functions of the zeros of f(z) and g(z), respectively, 
it follows that \aj\ < \bj\ for all j . The definition of g(z) and (1.9) 
imply that ^ \og\f{elB)\dO = /Q

2,rlog|5(e")|<W. So, J(g) < J(f) (cf. 
(1.14)). Further, if J(g) = J ( / ) , then \a,j\ = bj for all j ; in particular, 
\am-\/ani\ — bm-i/bm. Since a m _ i / a m and bm-\/bm are the sums of 
the zeros of f(z) and g(z), respectively, it follows from the definition 
of g(z) that, if J(g) = J ( / ) , then the zeros of f(z) must all have the 
same argument, i.e., they must all lie on a single ray emanating from 
the origin. 

Write g(z) = bj^zN YlT=i (1 ~~ zlzj)- ^ 1S geometrically evident that 
0 < \zj\ < 1 implies \zj\ • |1 - l/zj\ = \ZJ - 1| < 2, and similarly, that 
\zj\ > 1 implies \1 — l/zj\ < 2, with equality if and only if Zj = —1. 

Since J?!LN \bj\ = g(l) = \g(l)\ = \bN\UTZN l 1 " 1 / ^ ! , ^ follows from 
(1.16) that 

j(,)=-u*(n N- n hh\- n |i-fl) 
\Zj\<\ \ZJ\<1 J \Z3\>\ J 

=-ìo g ( (nN- | .4 i ) (n ii-ii)) 
V | ^ | < i J \zj\>\ J / 

> -(m- N)log2, 

with equality if and only if all Zj = —1. Since m — N < m, we have 
(3.7). Further, if J(f) = —m log 2, the preceding remarks show that 
f(z) must be of the form, ao(C — z)in, for some |£| = 1. A calculation 
based on (1.16) shows that, in fact, J(ao(Ç-z)m) = - m log2 if |Ç| = 1. 
This completes the proof of the lemma. D 

We note that Mahler [6] obtained the inequality, (3.7) (see (4) of his 
paper). His method of proof was different, and he does not discuss 
when equality holds in (3.7). For related results, see Mahler [7]. 

LEMMA 2. Let k be a positive integer, let f(z) be in H, suppose 
\Z{f)\ > k + 1, and suppose that z\ and 22 are any two (not necessarily 
distinct) zeros of f(z), i.e., 21,2:2 £ <£(/)• Unless Z\ and 22 are real 
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with z\ = — 1 and 22 < —1 (or vice-versa), there exists an h(z) G H 
such that 

(3.8) 

and (cf. (3.5)) 

(3.9) 

J(f) > J(h) 

h{h) > 4 ( / ) . 

PROOF. First, suppose that at least one of Im(zi) and Im(z2) is not 
zero, say, Im(zi) ^ 0. From the hypotheses and the definition of H in 
(2.6), we know that f(zx) = 0. Let g(z) and h(z) be defined by 

f{z) := i1 - f ) 0 - r)9{zh where ̂  := £ ò^ 
1 1 j=o 

and 

ft(z) := (1 + - J #(2), where p > 1. 

From the previously listed properties of H, g(z) and /*(2) are in H. 

A calculation shows that 

k-\ 

Sk(f) = ( j > + (|zi|26, - 6ib_i)/|l - zi\2)/g(l) 
j=o 

and 
k-i 

h{h) = ( 5 > + (P2h - 6*-i)/(l +P)2) /5(1)-

Thus, 4( / i ) > £fc(/) if and only if 

(3.10) bkJ—± *—) > bk(-&£ ^—). 

With Z&(f) again denoting the zeros of / of moduli less than 1, set 
z' •= £ A ( / ) \ { Z I , Z I } . Then, from (1.16), 

V 3 ( i ) i i - 2 i i 2 n c e z ' i < i y 
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and 
^2 

J(/ì) = logU(i+p)2nc^ici)-
Thus, J(f) > J{h) if and only if 

(3.11) m a " { l ^ l l ; 1 } > -£-. 
V ' | l - * i | 1 + p 

If \z\\ < 1, then 1/2 < 1/|1 - z\\ < 1 because Re(zi) < 0. Hence, 
there is a p > 1 such that 

1 > _ ^ _ > Nil 
| l - Z l | 1 + p | l - 2 l | * 

The left inequality above shows that (3.11) holds and, as p > 1, also 
shows that 1/|1 — z\\ > 1/(1 + /)). Thus, the coefficient of òjt-i in 
(3.10) is positive. On the other hand, the right inequality above shows 
that the coefficient of bk in (3.10) is negative. Since |Z ( / ) | > h + 1 
by hypothesis, it follows that 6^_i > 0. From the previously listed 
properties of W, it follows that bk > 0. So (3.10) is valid. 

If \z\\ > 1, then 1/2 < \z\\/\l - z\\ < 1 because Re(zi) < 0 and 
z\ ^ —1. Hence, there is a p\ > 1 such that 

Nil Pi 
| l - z i | 1 + pi 

So 1 + 1/pi = |1 - l/zi\ < 1 -h l / |^ i | . This implies that px > \z\\ 
which, in turn, implies that 1/|1 — z\\ > l / ( l + p i ) . Thus, the right 
side of (3.10) is zero if p = p\ and the left side is positive. It follows 
by continuity that there is some p in ( l ,p i ) such that both (3.10) and 
(3.11) hold. 

Now, suppose that Im(zi) = Im(z2) = 0. There are three cases. 
First, suppose one of z\ and 22 is in the open interval (—1,0), e.g., 
- 1 < z\ < 0. Redefine g(z) and h(z) by 

00 

f(z) : ( = (1 - f)g(z), where g(z) := J > V , 
1 j=o 
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and 

h(z):=(l + z)g(z). 

A calculation shows that 
k-i 

àk(f) = (^2bJ-z1bk/(l-zl))/g(l) 
j=0 

and 
fc-i 

*fc(Ä)=(x;6i+w2)/^(i). 
i=o 

Thus, (5fc(/i) > <Sfc(/) if and only if 1/2 > - z i / ( l - 21), which is always 
true for zx in ( -1,0) . Redefine Z' := ZA(f)\{zi}. From (1.16), 

J ( / ) = l o g( , ( i)( i- , !)nC 6 . ici) 
and 

J{h)=log (2,(1) n U KI)-
Thus, J ( / ) > J(/i) if and only if l / ( l - z i ) > 1/2, and the last inequality 
is certainly true. This completes the first case. 

Next, suppose that Im(zi) = lm(z2) = 0 and that both z\ and z2 are 
in the interval (-00, - 1 ) . In addition, suppose that 

(3.12) 1 - zi - z2 - zxz2 > 0. 

Redefine g(z) and h(z) by 

00 

f(z) := ( l - - ) (l - - W where g(z) := ] T bjz*, 
\ z\r\ z2> ~T0 

and 
h(z) := (1 + z)(l + -)ff(z), where p>\. 

As in the derivation of (3.10), 6k(h) > 6k(f) if and only if 

bk-1((l-z1)(l-z2) ' W+7)' 
. . /___ü£2 P \ 
> °H(1 - Zl)(l - z2) 2(1 + p)J-

(3.13) 
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As in the derivation of (3.11), J(f) > J(h) if and only if 

(l-Zl)(l-z2) 2(1+p)' 

If equality holds in (3.12), then the left side of (3.14) becomes equal 
to 1/2, and (3.14) is true for all p > 1. Further, since the coefficient 
of bk in (3.13) is positive and tends to zero as p —» oo and since, as 
mentioned before, bk-i > 0, it follows that (3.13) can be made true by 
choosing p sufficiently large. 

So, suppose strict inequality holds in (3.12). From the fact that z\ and 

z2 are in (—oo, - 1 ) , we have that 1/4 < z\Z2/((\ - z\){\ - 22 ) ) < 1/2. 

Consequently, there is a p2 > 1 such that 

Z\Z2 P2 

(i-Zl)(i-z2) 2(1 + p2y 

In turn, this implies that 

1 _ 2 - ( * i + l)(*2 + l) 
< 2(1 + p2) 2(1 - Zl)(l - z2) (1 - Zl)(l - z2) ' 

Thus, the right side of (3.13) is zero if p — p2 and, since 6fc_i > 0 as 
before, the left side of (3.13) is positive. It follows by continuity that 
there is some p in (1,P2) such that both (3.13) and (3.14) hold. 

Finally, suppose that Im(zi) = Im(z2) = 0, that Z\ and z2 are in 
( - o o , - l ) , but that (3.12) does not hold. Leave g(z) and {6j}|L0 as 
last defined, but redefine h(z) by h(z) := (1 + z/p)g(z),p > 1. Then 
6k(h) > Sk(f) if and only if 

(3-15) (i-zx)(i-z2)>bkHi-zi)(i-z2)-î^)1 

and J(f) > J(h) if and only if 

(3.16) _ _ £ l £ H - > " 
(l-zl){l-z2) 1 + p" 
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It follows from the assumption of the falsity of (3.12) that 1/2 < 

2i*2/((l - zi)(l - Z2H < I- So, there is a p3 > 1 such that 

Z\22 P3 

(1-ZÌ)(1-Z2) 1+P3 

By continuity, there is some p in (1, p3) such that both (3.15) and (3.16) 
hold. D 

LEMMA 3. Ford in (0,1) and for a nonnegative integer, k, there is a 
unique positive integer, n, dependent on d and k, such that 

Moreover, if the number p is defined by 

(3.18) p:=—E M 1, 
Ej=o("J)-rf2B-1 

£fterc p > 1. 

PROOF. Given any nonnegative integer k, consider the sequence 

whose initial term is unity. We claim that this sequence is strictly 
decreasing and has limit zero. To see this, for convenience set 

(3.20) a< :=?èQ (' = *.*+!.-)• 

Since 
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it follows from (3.20) that 

ai+i = ai - g m f k ) (z = *>fe + *> • • • )' 

which implies that (3.19) is strictly decreasing. Next, as a consequence 
of the Central Limit Theorem (cf. Patel and Read [9, pp. 169-170]), 
we have 

(3.22) — / 
(2fc+l-Z)M , 

al 7= I e 

\fïâ J-oc I Vi 
0.28 

< 

for all / > max{fc; 1}. As A: is fixed, (3.22) shows that a/ —• 0 as / —• oo. 
(It is certainly the case that there are simpler ways of showing a/ —• 0 
than by using (3.22). However, (3.22) is used in an important way later 
to establish the falsity of (3.32) and (3.33).) 

So, for d in (0,1), the strictly decreasing nature of the a/ of (3.20) 
implies there is a unique positive integer n, with n > k + 1, such that 
(3.17) is satisfied. It follows directly from (3.17) and (3.21) that p, 
defined in (3.18), satisfies p > 1. G 

PROOF OF THEOREM 2. Since the right side of (2.11) is monotone 
increasing in p > 1, and bounded above by — (n — l)log2, it follows 
from Lemma 1 that there is no need to consider polynomials in H of 
degree less than n. It follows (cf. (3.19)) from the definition of n in 
(2.9), that n > k + 1. Lemma 2 then implies that it is sufficient to 
suppose that f(z) = (1 + Z/P)(l + z)m~l, where m > n and p' > 1. 
Since this f(z) must satisfy (1.1), it can be shown that m <n, and if 
m = n, then p < p', where p is defined now in (2.10). Thus, we need 
only consider the case when m = n and p < p'. A computation based 
on (3.4) shows that 

We note that the quantity inside the logarithm is a strictly increasing 
function of pf. Consequently, with 

QnJz):=(l + -)(l + z)n-\ 
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we have that 

J(Qn,p) = min{J(f) : f(z) e H and f(z) satisfies(l.l)}. 

This establishes (2.11) and completes the proof of Theorem 2. a 

P R O O F OF THEOREM 3. We first prove (2.12). Let A: be a fixed 
positive integer. For each d in (0,1), let n and p be defined from (2.9) 
and (2.10). From Theorem 2, we have (cf. (2.11)) 

(3-23) C%k = log ( r ^ - ) - (n - l)log2. 

Since 1 < p < oo, it follows that - log 2 < log(p/(l + p)) < 0. So 

- n l o g 2 < C & < - ( n - l ) l o g 2 . 

Write n = n(d) to denote the dependence of n on d. Then the above 
inequalities become 

(3.24) - ( n ( d ) - l ) l o g 2 < Ç^ < -n(rf)log2 
loge? logrf ~~ logd 

Thus, to prove limd_^0+(C^/logd) = 1, i.e., (2.12), it suffices to show 

(3.25) lim - " W W = L 
d-+o+ log a 

From the definition of a/ in (3.20) and from (3.17), we have that 

(3.26) logan(d ) < logd < logan ( d )_!. 

Short calculations based on the definition of a\ establish both 

(3.27) lim ! ^ ± i = 1 
/—oo log a\ 

and 

(3.28) lim f - i j l ü L ) = 1. 



370 JENSEN INEQUALITY 

It follows from (3.26) and (3.27) that 

(3.29) lim ^ # = 1. 
d^o+ log a 

Combining (3.28) and (3.29) then gives (3.25). 

To establish (2.13) of Theorem 3, fix d in (0,1) and consider C%k as 
k —• oo. Again, let n and p be defined by (2.9) and (2.10), and write 
n — rik to denote the dependence of n on k. Then (3.23) can be written 
as 

(3.30) C«fc = l o g ( r ^ ) - n f c l o g 2 , 

and (3.26) becomes 
flnfc < d < a n f c _ i . 

Thus, 

(3.31) limsupanjfc < d < liminf anfc_i. 
fc —oc fc-*°° 

Now, suppose that 

(3.32) l i m i n f ^ < 1. 
k-+oc 2k 

Then, there is an e > 0 and a sequence of positive integers {ki}j*Lx with 
lim/^oo ki = oo such that 

Ä £ , - . (1 = 1.2.-)-

For ease of notation, write n(ki) = rikr Then the above inequality 
implies that 

2kl + l-n(kl) l + 2ski 
===== > — = —• + oo, as / —> oo. 

^ÜM) - y/2{\ - e)h 
With / replaced by n(ki) in (3.22), (3.22) can be used to show that 
an(ki) —> 1> which contradicts (3.31). Thus, (3.32) is false. Similarly, 
assuming that 

(3.33) lim sup — > 1, 
k —>oo *k 
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(3.22) can now be used to show that an(fc,) —> 0, again contradicting 
(3.31). Hence, (3.33) is also false. This proves 

(3.34) lim J£ = 1. 
*—-oc 2k 

Now, divide by k in (3.30). Noting that 0 < log(2p/(l + p)) < log2 
and using (3.34), it follows that 

lim - f £ = -2log2, 
fc—»oc A: 

the desired result, (2.13), of Theorem 3. D 

PROOF OF COROLLARY. TO establish (2.17), it follows from (2.15) 
that it is enough to show that 

(3.35) l i m s u p ^ 4 < l . 
d^o+ logrf 

Let t0 > 1. Using (1.4), 

fa l o g 2 ) - to log ( ( ^ - ^ ( ( f ^ ) ^ 1 - ! ) ) 

l ogo? Kt<oc Ì l o g r f 

kA:+l 

Hence, 

logrf 

lim sup 7-^-7 < £o-
rf-o+ logo 

Since the only restriction on t0 was that £0 > 1, it follows that (3.35) 
must hold. 

To establish (2.18), it follows from (2.16) that it is enough to show 
that 

(3.36) l i m i n f ^ > - 2 . 
k-+oc k 
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Let ti > 1. Using (1.4), 

Cä±> s u plog (2^-1)) Hog((f±i)"+1-l) 

k i<t<oo I k k 

h log (2d/(h - i)) ti log ( ( f ^ r ) f c + 1 - i) 

Hence, 

--<• * ( ! # ) • 

Letting ti —• oo, we get (3.36). a 
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