BIVARIATE CARDINAL INTERPOLATION ON THE 3-DIRECTION MESH: ${ }^{\text {P}}$-DATA

KLAUS HÖLLIG, MARTIN MARSDEN, AND SHERMAN RIEMENSCHNEIDER

The analogue of the unvariate cardinal spline theory of Schoenberg has been successfully carried out for bivariate box splines on a three direction mesh $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}]$. However, there is one result that had eluded us: The convergence theory for bivariate cardinal spline operators from $l^{p}\left(\mathbf{Z}^{2}\right)$ to $L^{p}\left(\mathbf{R}^{2}\right)$. In [5] it was shown that the sequence of univariate cardinal spline interpolants, indexed by degree, has uniformly bounded norm when considered as a sequence of operators from $l^{p}(\mathbf{Z})$ to $L^{p}(\mathbf{R}), 1<p<\infty$, and that these operators converge strongly in $L^{p}(\mathbf{R})$ to the classical Whittaker cardinal series. The analogous result for the bivariate case has been established only in the relatively trivial case $p=2[1]$. The aim of this paper is to complete this result, at least in the case of equal direction multiplicities.
The (centered) box spline M_{n} corresponding to the three directions $e_{1}=(1,0), e_{2}=(0,1), e_{3}=e_{1}+e_{2}=(1,1)$ with equal multiplicities n may be defined by its Fourier transform,

$$
\hat{M}_{n}(x)=\prod_{\nu=1}^{3}\left(\operatorname{sinc}\left(x e_{\nu} / 2\right)\right)^{n}
$$

where $\operatorname{sinc}(t):=\sin t / t$. Thus, M_{n} is the n-fold convolution of the piecewise linear "hat-function" which indicates clearly the connection between box splines and univariate cardinal splines.

It was shown in [3] that the trigonometric polynomial

$$
P_{n}(x):=\sum_{j \in Z^{2}} M_{n}(j) e^{-i j x}=\sum_{j \in Z^{2}} \hat{M}_{n}(x+2 \pi j)
$$

is strictly positive and attains its minimum at $(2 \pi / 3,2 \pi / 3) \bmod 2 \pi \mathbf{Z}^{2}$. This implies that cardinal interpolation with the translates of the

[^0]

FIGURE 1.
box splines M_{n} is always well posed. That is, for given bounded data $y=\left\{y_{j}: j \in \mathbf{Z}^{2}\right\}$, there exists a unique bounded spline $I_{n} y \in S_{n}:=\operatorname{span}\left\{M_{n}(\cdot-j), j \in \mathbf{Z}^{2}\right\}$ which interpolates y at the lattice points

$$
I_{n} y(j)=y_{j}, \quad j \in \mathbf{Z}^{2}
$$

The cardinal spline interpolation operator I_{n} has the Lagrange representation

$$
I_{n} y(w)=\sum_{j \in Z^{2}} y_{j} L_{n}(w-j), \quad w \in \mathbf{R}^{2}
$$

where L_{n} is the fundamental spline defined via its Fourier transform as

$$
L_{n}(w):=\frac{1}{(2 \pi)^{2}} \int_{R^{2}} \frac{\hat{M}_{n}(x)}{P_{n}(x)} e^{i w x} d x
$$

Since P_{n} is a non-vanishing trigonometric polynomial, $\left|L_{n}(w)\right|$ has exponential decay as $|w| \rightarrow+\infty$. Hence, if $y \in l^{p}\left(\mathbf{Z}^{2}\right)$, then $I_{n} y \in$ $L^{p}\left(\mathbf{R}^{2}\right)$.
Denote by Ω the convex hull of $\pm(2 \pi / 3,2 \pi / 3), \pm(4 \pi / 3,-2 \pi / 3)$, $\pm(2 \pi / 3,-4 \pi / 3)$ (cf. Figure 1).

This set is a fundamental domain, i.e., its translates $2 \pi j+\Omega, j \in \mathbf{Z}^{2}$, form an essentially disjoint partition of \mathbf{R}^{2}. in $[\mathbf{1 , 2}]$ we showed that the cardinal interpolants of a function f converge, as the degree tends to infinity, if the Fourier transform of f is a distribution with support contained in the interior of Ω. Our main Theorem strengthens this result.

Theorem 1. The bivariate cardinal spline interpolation operators I_{n} have uniformly bounded norms as operators from $l^{p}\left(\mathbf{Z}^{2}\right)$ to $L^{p}\left(\mathbf{R}^{2}\right), 1<$ $p<+\infty$. Moreover, for each $y \in l^{p}\left(\mathbf{Z}^{2}\right)$,

$$
\left\|I_{n} y-W y\right\|_{p} \rightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

where $W: y \rightarrow \sum_{j \in Z^{2}} y_{j} \hat{\chi}_{\Omega}(\cdot-j)^{\prime}$ with χ_{Ω} the characteristic function of the set Ω. The Fourier transform of χ_{Ω} can be calculated explicitly,

$$
\begin{aligned}
\hat{\chi}_{\Omega}(w)= & \frac{-6}{(2 \pi)^{2}}\left[\frac{\cos 2 \pi\left(w_{1}+w_{2}\right) / 3}{\left(w_{1}-2 w_{2}\right)\left(w_{2}-2 w_{1}\right)}\right. \\
& \left.+\frac{\cos 2 \pi\left(w_{2}-2 w_{1}\right) / 3}{\left(w_{1}+w_{2}\right)\left(w_{1}-2 w_{2}\right)}+\frac{\cos 2 \pi\left(w_{1}-2 w_{2}\right) / 3}{\left(w_{1}+w_{2}\right)\left(w_{2}-2 w_{1}\right)}\right] .
\end{aligned}
$$

The proof of this theorem is based on estimates for certain derivatives of \hat{L}_{n}. To formulate these estimates we need some auxiliary notation (cf. [1]). For $x=(u, v)$ and $j=(k, l)$ we set

$$
a_{j}(x):=\frac{\hat{M}_{n}(x+2 \pi j)}{\hat{M}_{n}(x)}=\left(\frac{u}{u+k}\right)^{n}\left(\frac{v}{v+l}\right)^{n}\left(\frac{u+v}{u+v+k+l}\right)^{n} .
$$

By straightforward, but tedious, computation one verifies that

$$
\Omega=\left\{2 \pi x: 0 \leq a_{j}(x) \leq 1 \text { for } j \in J\right\},
$$

where $J=\left\{ \pm j_{\nu}: \nu=1,2,3\right\}$ with $j_{1}=(1,0), j_{2}=(0,1), j_{3}=(1,-1)$. The line segments $\Gamma_{j}, j \in J$, making up the boundary of Ω are subsets of $\left\{2 \pi x: a_{j}(x)=1\right\}$.
Because of the equal multiplicities, the box spline is invariant under linear changes of variables which do not alter the mesh generated by the
three directions e_{ν}. The group \mathbf{A} of such transformations is generated by the matrices

$$
\begin{array}{ll}
A_{(12)}^{+}:=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right), & A_{(13)}:=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right), \\
A_{(23)}:=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right), & A^{-}:=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
\end{array}
$$

Thus, any permutation σ of the three directions $\pm e_{\nu}$ corresponds to a linear transformation $A_{\sigma} \in \mathbf{A}$. It follows from the definitions that

$$
\hat{M}_{n}\left(A^{*} x\right)=\hat{M}_{n}(x), \quad \hat{L}_{n}\left(A^{*} x\right)=\hat{L}_{n}(x) .
$$

Moreover, if $R:=\{(u, v): u, v \geq 0\}$ denotes the positive orthant, then

$$
\Omega=\cup_{\sigma} \Omega \cap R_{\sigma}
$$

with $R_{\sigma}:=A_{\sigma} R$.
With this notation, we now state the estimates needed for the proof of Theorem 1.

Theorem 2. Let $R_{\sigma, \varepsilon}:=\left\{x: \operatorname{dist}\left(R_{\sigma}, x\right) \leq \varepsilon\right\}$ and let $D_{\sigma, 1}, D_{\sigma, 2}$ denote differentiation parallel to the two boundary segments of Ω which intersect R_{σ}. Then

$$
\sup _{n} \int_{R_{\sigma, \varepsilon}}\left|D_{\sigma, 1} D_{\sigma, 2} \hat{L}_{n}(x)\right| d x<\infty .
$$

Note that $D_{\sigma, \nu}=\left(A_{\sigma} \gamma_{\nu}\right) \cdot \nabla$ with $\gamma_{1}=(2,-1), \gamma_{2}=(1,-2)$.

Theorem 3. There exist positive constants c_{1} and c depending only on α such that

$$
\left|D^{\alpha}\left[\hat{L}_{n}(x)-\chi_{\Omega}(x)\right]\right| \leq \frac{c_{1} n^{|\alpha|}}{\left[1+c \operatorname{dist}(x, \partial \Omega)^{n}\right.}
$$

The proof of Theorem 3 is analogous to that of Theorem 3 in [2]. It uses the following estimates of the derivatives of a_{j}.

LEMMA 1. There exist positive constants c_{1} and c depending only on α such that, for $2 \pi x \in \Omega$,

$$
\left|D^{\alpha} a_{j}(x)\right| \leq c_{1} n^{|\alpha|}|j|^{|3 \alpha|}\left\{\begin{array}{l}
{\left[1+c \operatorname{dist}\left(x, \Gamma_{j}\right)\right]^{-n}, j \in J} \\
{[1+c|j|]^{-n}, j \in Z^{2} \backslash\{J \cup\{0\}\}}
\end{array} .\right.
$$

This Lemma is easily proved by induction using Leibnitz's rule. The improvement over the corresponding result in [2] is possible because the set Ω does not depend on n.

Lemma 2. Let $x^{\prime}=x+j, j \in \mathbf{Z}^{2} \backslash 0$, and let $2 \pi x \in \Omega$. There exist positive constants c_{1} and c depending only on α such that

$$
\left|D^{\alpha} a_{j}(x)\right| \leq c_{1} n^{|\alpha|}\left[1+c \operatorname{dist}\left(2 \pi x^{\prime}, \partial \Omega\right)\right]^{-n}
$$

Lemma 2 is a consequence of Lemma 1 and is used in turn to prove Theorem 3. The arguments follow those for the corresponding results in [2].

For the proof of Theorem 2 we need to examine the dependence of the estimates in Lemmas 1 and 2 on n more carefully.

Lemma 3. Denote by d_{i} the distance of x from $\Gamma_{j_{i}}$. Let $R_{\varepsilon}:=\{x$: $\operatorname{dist}(R, x) \leq \varepsilon\}$ and let D_{i} denote differentiation parallel to $\Gamma_{j_{i}}$. Then there exist positive constants c_{1} and c such that, for $2 \pi x \in \Omega$,

$$
\begin{aligned}
\left|a_{j_{i}}\right| & \leq \frac{c_{1}}{\left(1+c d_{i}\right)^{n}}, \quad i=1,2, \\
\left|D_{i} a_{j_{i}}\right| & \leq \frac{c_{1} n d_{i}}{\left(1+c d_{i}\right)^{n}}, \quad i=1,2, \\
\left|D_{k} a_{j_{i}}\right| & \leq \frac{c_{1} n}{\left(1+c d_{i}\right)^{n}}, \quad i=1,2, \quad k \frac{1}{\tau} i \\
\left|D_{k} D_{i} a_{j_{i}}\right| & \leq \frac{c_{1} n^{2} d_{i}+c_{1} n}{\left(1+c d_{i}\right)^{n}}, \quad i=1,2, \quad k \frac{1}{\tau} i
\end{aligned}
$$

Proof of Lemma 3. The first assertion follows from Lemma 1 with $\alpha=0$. We have

$$
a_{j_{1}}=\left(\frac{u}{1-u}\right)^{n}\left(\frac{u+v}{1-u-v}\right)^{n}
$$

$$
D_{1}=\frac{1}{\sqrt{5}}(1,-2) \cdot \nabla, \quad D_{2}=\frac{1}{\sqrt{5}}(2,-1) \cdot \nabla, \quad D_{3}=\frac{1}{\sqrt{2}}(1,-1) \cdot \nabla .
$$

Since

$$
(a, b) \cdot \nabla a_{j_{1}}=n\left[\frac{a}{u(1-u)}+\frac{a+b}{(u+v)(1-u-v)}\right] a_{j_{i}}
$$

it follows that

$$
\begin{aligned}
& D_{1} a_{j_{1}}=\frac{n c v(1-2 u-v)}{u(1-u)(u+v)(1-u-v)} a_{j_{1}}, \\
& D_{2} a_{j_{1}}=\frac{n c[3 u(1-u)+2 v(1-2 u-v)]}{u(1-u)(u+v)(1-u-v)} a_{j_{1}}, \\
& D_{3} a_{j_{1}}=\frac{n c}{u(1-u)} a_{j_{1}} .
\end{aligned}
$$

Since $d_{1}=\frac{2 \pi}{\sqrt{5}}|1-2 u-v|$, the two middle assertions hold for $a_{j_{1}}$. A similar analysis of $(a, b) \cdot \nabla\left(D_{1} a_{j_{1}}\right)$ gives the final assertion for $a_{j_{1}}$. The corresponding assertions for $a_{j_{2}}$ follow by symmetry.

Proof of Theorem 2. By Theorem 3 we may assume that x is within δ of the boundary of Ω. By symmetry, we may also assume that $R_{\sigma, \varepsilon}=R_{\varepsilon}$ and that $x \in R_{\varepsilon} \cap\{(u, v): v \leq u\}$.
(Proof inside Ω) We use the notation of Lemma 3. Since $\hat{L}_{n}=$ $1 / \sum a_{j}$, it follows that

$$
\begin{aligned}
D_{1} D_{2} \hat{L}_{n}= & \frac{2\left(D_{1} \sum a_{j}\right)\left(D_{2} \sum a_{j}\right)-\left(\sum a_{j}\right)\left(D_{1} D_{2} \sum a_{j}\right)}{\left(\sum a_{j}\right)^{3}} \\
= & O(1)\left[2\left(D_{1} a_{j_{1}}+D_{1} a_{j_{2}}\right)\left(D_{2} a_{j_{1}}+D_{2} a_{j_{2}}\right)\right. \\
& \left.-\left(1+a_{j_{1}}+a_{j_{2}}\right)\left(D_{1} D_{2} a_{j_{1}}+D_{1} D_{2} a_{j_{2}}\right)+O\left(\frac{c_{3} n^{2}}{\left(1+c_{2}\right)^{n}}\right)\right]
\end{aligned}
$$

for some positive c_{2}, c_{3} as $n \rightarrow+\infty$ in view of Lemma 1. Thus, as $n \rightarrow+\infty$, Lemma 3 implies

$$
\begin{gathered}
\left|D_{1} D_{2} \hat{L}_{n}\right| \leq c_{4}\left[\left(\frac{n d_{1}}{\left(1+c d_{1}\right)^{n}}+\frac{n}{\left(1+c d_{2}\right)^{n}}\right)\left(\frac{n}{\left(1+c d_{1}\right)^{n}}+\frac{n d_{2}}{\left(1+c d_{2}\right)^{n}}\right)\right. \\
\left.+\left(\frac{n^{2} d_{1}+n}{\left(1+c d_{1}\right)^{n}}+\frac{n^{2} d_{2}+n}{\left(1+c d_{2}\right)^{n}}\right)+O\left(\frac{c_{3} n^{2}}{\left(1+c_{2}\right)^{n}}\right)\right]
\end{gathered}
$$

for some positive c_{4}. Since

$$
\frac{n^{2}}{\left(1+c_{2}\right)^{n}}+\int_{0}^{\delta} \frac{n^{2} z}{(1+c z)^{n}} d z+\int_{0}^{\delta} \frac{n}{(1+c z)^{n}} d z=O(1)
$$

as $n \rightarrow+\infty$, the contribution to $\int_{R_{\varepsilon}}\left|D_{1} D_{2} \hat{L}_{n}\right|$ from within Ω is finite.
(Proof outside Ω). Let $x=(u, v)$ in $R_{\varepsilon} \cap\{(u, v): v \leq u\}$ and $\operatorname{dist}(2 \pi x, \partial \Omega) \leq \delta$, but $2 \pi x$ outside of Ω. Map x to $x^{\prime}=(u-1, v)$. Then $2 \pi x^{\prime}$ is inside Ω so that, for an appropriate permutation $\sigma, 2 \pi x^{\prime \prime}=$ $2 \pi A_{\sigma} x^{\prime}$ is in $R_{2 \varepsilon}$ with $\operatorname{dist}\left(2 \pi x^{\prime \prime}, \partial \Omega\right) \leq 2 \delta$ (The changes $\varepsilon \rightarrow 2 \varepsilon$ and $\delta \rightarrow 2 \delta$ allow for some distortion if $-\varepsilon<v<0$ or $1 / 3<v<u$.). Using the symmetries we have

$$
D_{1} D_{2} \hat{L}_{n}(x)=D_{1} D_{3}\left(a_{j_{1}}\left(x^{\prime \prime}\right) \hat{L}_{n}\left(x^{\prime \prime}\right)\right)
$$

Omitting the argument $x^{\prime \prime}$, we have

$$
\begin{aligned}
\left|D_{1} D_{3}\left(a_{j_{1}} \hat{L}_{n}\right)\right|= & \mid\left(D_{1} D_{3} a_{j_{1}}\right) \hat{L}_{n}+\left(D_{1} a_{j_{1}}\right) D_{3} \hat{L}_{n} \\
& +\left(D_{3} a_{j_{1}}\right) D_{1} \hat{L}_{n}+a_{j_{1}} D_{1} D_{3} \hat{L}_{n} \mid \\
\leq & c_{5}\left[\left(\frac{n^{2} d_{1}+n}{\left(1+c d_{1}\right)^{n}}\right)+\left(\frac{n d_{1}}{\left(1+c d_{1}\right)^{n}} n\right)\right. \\
& +\left(\frac{n}{\left(1+c d_{1}\right)^{n}}\left(\frac{n d_{1}}{\left(1+c d_{1}\right)^{n}}+\frac{n}{\left(1+c d_{2}\right)^{n}}\right)\right) \\
& \left.+\frac{1}{\left(1+c d_{1}\right)^{n}}\left(\frac{n^{2}}{\left(1+c d_{2}\right)^{n}}+\left(n^{2} d_{1}+n\right)\right)\right]
\end{aligned}
$$

so that the contribution to $\int_{R_{\varepsilon}}\left|D_{1} D_{2} \hat{L}_{n}\right|$ from outside Ω is also finite.

Proof of Theorem 1. Let $\left\{y_{i}\right\}=y \in l^{p}\left(\mathbf{Z}^{2}\right)$ be a finite sequence and g be a compactly supported function in $L^{q}\left(\mathbf{R}^{2}\right), 1 / p+1 / q=1$. For $w \in \mathbf{R}^{2}$, let $j(w)$ be uniquely defined by $w-j(w) \in[-1 / 2,1 / 2)^{2}$.

Then

$$
\begin{aligned}
& \left|\int_{R^{2}} g(w) \sum_{j \in Z^{2}} y_{j} L_{n}(w-j) d w\right| \\
& \quad \leq\left|\int_{R^{2}} g(w) y_{j(w)} L_{n}(w-j(w)) d w\right|+\left|\int_{R^{2}} g(w) \sum_{j \neq j(w)} y_{i} L_{n}(w-j) d w\right| \\
& \quad \leq\|y\|_{l^{p}\left(Z^{2}\right)}\|g\|_{L^{q}\left(R^{2}\right)}+\left|\int_{R^{2}} g(w) \sum_{j \neq j(w)} y_{j} L_{n}(w-j) d w\right|
\end{aligned}
$$

To estimate the second quantity we pass to the transform space. Let $\left\{\phi_{\sigma}\right\}$ be a smooth partition of unity for \mathbf{R}^{2} subordinate to $\left\{R_{\sigma, \varepsilon}\right\}$. Then, in view of the decay of \hat{L}_{n} and its derivatives at infinity, we have

$$
\begin{aligned}
\frac{1}{(2 \pi)^{2}} \int_{R^{2}} & \hat{L}_{n}(x) e^{i(w-j) x} d x \\
& =\frac{1}{(2 \pi)^{2}} \sum_{\sigma} \int_{R_{\sigma, \varepsilon}} \phi_{\sigma}(x) \hat{L}_{n}(x) e^{i(w-j) x} d x \\
& =\frac{c}{(2 \pi)^{2}} \sum_{\sigma} \int_{R_{\sigma, \varepsilon}} D_{\sigma, 1} D_{\sigma, 2}\left(\phi_{\sigma}(x) \hat{L}_{n}(x)\right) \frac{e^{i(w-j) x}}{\prod_{\nu=1}^{2} \gamma_{\sigma, \nu}(w-j)} d x
\end{aligned}
$$

where $\gamma_{\sigma, \nu}:=A \sigma \gamma_{\nu}$. Consequently, by Fubini's Theorem,

$$
\begin{aligned}
& \left|\int_{R^{2}} g(w) \sum_{j \neq j(w)} y_{i} L_{n}(w-j) d w\right| \\
& =\left|\int_{R^{2}} \sum_{j \neq j(w)} y_{i}\left(\frac{1}{(2 \pi)^{2}} \int_{R^{2}} \hat{L}_{n}(x) e^{i(w-j) x} d x\right) g(w) d w\right| \\
& \quad \leq \frac{1}{(2 \pi)^{2}} \sum_{\sigma} \int_{R_{\sigma, \varepsilon}}\left|D_{\sigma, 1} D_{\sigma, 2}\left(\phi_{\sigma}(x) \hat{L}_{n}(x)\right)\right| \\
& \quad \times\left|\int_{R^{2}} \sum_{j \neq j(w)} \frac{y_{j} e^{-i j x}}{\prod_{\nu=1}^{2} \gamma_{\sigma, \nu}(w-j)} e^{i w x} g(w) d w\right| d x
\end{aligned}
$$

Let

$$
H_{\sigma} y(w)=\sum_{j \neq j(w)} \frac{y_{j}}{\prod_{\nu=1}^{2} \gamma_{\sigma, \nu}(w-j)}
$$

denote the mixed bivariate Hilbert transform corresponding to independent directions $\gamma_{\sigma, 1}, \gamma_{\sigma, 2}$ in \mathbf{R}^{2}. Then H_{σ} is a bounded linear transformation from $l^{p}\left(\mathbf{Z}^{2}\right)$ to $L^{p}\left(\mathbf{R}^{2}\right)$ with norm $\left\|H_{\sigma}\right\|_{p}, 1<p<+\infty$. Therefore, in view of Theorems 2 and 3 we have

$$
\begin{aligned}
\left|\int_{R^{2}} g(w) I_{n} y(w) d w\right| & =\left|\int_{R^{2}} g(w) \sum_{j \in Z^{2}} y_{j} L_{n}(w-j) d w\right| \\
& \leq C\left(1+\sum_{\sigma}\left\|H_{\sigma}\right\|_{p}\right)\|y\|_{L p\left(Z^{2}\right)}\|g\|_{L^{q}\left(R^{2}\right)} .
\end{aligned}
$$

To show that $\left\|I_{n} y-W y\right\|_{p} \rightarrow 0$ as $n \rightarrow+\infty$, it is enough to show this for the sequences $y=\delta_{i}, i \in \mathbf{Z}^{2}$, where $\delta_{i}(j)=1$ if $j=i$ and is zero otherwise. Now

$$
\left\|I_{n} \delta_{i}-W \delta_{i}\right\|_{L^{p}\left(R^{2}\right)}=\left\|I_{n} \delta_{0}-W \delta_{0}\right\|_{L^{p}\left(R^{2}\right)}=\left\|L_{n}-\hat{\chi}_{\Omega}\right\|_{p} .
$$

Theorem 3 implies that $L_{n} \rightarrow \hat{\chi}_{\Omega}$ uniformly in \mathbf{R}^{2}. Finally

$$
\begin{aligned}
\left|L_{n}(w)\right| \leq & \frac{1}{(2 \pi)^{2}} \sum\left|\int_{R_{\sigma, \epsilon}} \phi_{\sigma}(x) \hat{L}_{n}(x) e^{i w x} d x\right| \\
\leq & \frac{1}{(2 \pi)^{2}} \sum_{\sigma} \frac{1}{\left|\prod_{\nu=1}^{2} \gamma_{\sigma, \nu} w\right|} \\
& \times \int_{R_{\sigma, \varepsilon}}\left|D_{\sigma, 1} D_{\sigma, 2} \hat{L}_{n}(x)\right| d x=O\left(\frac{1}{|w|^{2}}\right) \quad \text { for large }|w|
\end{aligned}
$$

allows the estimate

$$
\left|L_{n}(w)-\hat{\chi}_{\Omega}(w)\right|=O\left(\min \left(1,1 /|w|^{2}\right)\right) .
$$

Hence, $\left\|L_{n}-\hat{\chi}_{\Omega}\right\|_{p} \rightarrow 0$ by the dominated convergence theorem.

REFERENCES

1. C. de Boor, K. Höllig and S.D. Riemenschneider, Bivariate cardinal interpolation by splines on a three-direction mesh, Illinois J. Math. 29 (1985), 533-566.
2. \qquad
\qquad , and ——, Convergence of bivariate cardinal interpolation, Constructive Approximation 1 (1985), 183-193.
3. _, and -_, Some qualitative properties of bivariate EulerFrobenius polynomials, J. Approx. Th. 50 (1987), 8-17.

[^0]: Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, the International Business Machines Corporation, and National Science Foundation Grant No. DMS-8351187.

 Supported by NSERC Canada through Grant \#A7687.
 Received by the editors on September 5,1986 .
 Copyright ©1989 Rocky Mountain Mathematics Consortium

