ON SOCLES OF ABELIAN P-GROUPS IN L

MANFRED DUGAS AND RENÉ VERGOHSEN

0. Introduction. All groups in this paper are (separable) abelian p-groups. Our notations are standard as in [5]. For set theoretic notations we refer to [2] or [8].

One of the most celebrated results in the theory of p-groups is Ulm's Theorem: Each countable p-group A is uniquely determined by its socle $A[p] = \{x \in A | px = 0\}$, viewed as a valuated Z/pZ-vectorspace with values induced by the height-function of A.

Since each countable, separable p-group is Σ -cyclic (i.e., a direct sum of cyclics), Ulm's Theorem doesn't provide much information in the case of separable p-groups. The Σ -cyclic and the torion-complete p-groups are the only ones known to be determined by their socles in the class of all separable p-groups. If we only want to deal with separable p-groups of cardinality \aleph_1 , a result due to Hill and Megibben [6] reads as follows:

Assume $2^{\aleph_0} < 2^{\aleph_1}$. If A is neither Σ -cyclic nor torion-complete and A has a *countable* basic subgroup, then there exists a group A' such that A and A' are not isomorphic but the socles A[p] and A'[p] are isometric, i.e., there exists a height-preserving isomorphism $\sigma: A[p] \to A'[p]$.

Assuming that a consequence of Gödel's axiom of constructibility holds, namely, $\Diamond(E)$ for each stationary subset E of \aleph_1 , we will show that one may drop the countability condition in the Hill-Megibben theorem:

THEOREM (V = L). Let A be a separable, abelian p-group of cardinality \aleph_1 . If A is neither Σ -cyclic nor torion-complete, then there exists a p-group A' such that $A \cong A'$ but A[p] and A'[p] are isometric.

In our second chapter, we study (weakly) ω_1 -separable *p*-groups A of cardinality \aleph_1 , cf. [9]. Such a group has an ω_1 -filtration $A = \bigcup_{\nu < \omega_1} A_{\nu}$ into *pure*, countable subgroups A_{ν} such that $A_{\nu+1}$ is a summand of

 A_{μ} for all $\nu < \mu < \omega_1$. (ω_1 denotes the first uncountable cardinal). If $A' = \bigcup_{\nu < \omega_1} A'_{\nu}$ is another such group, A and A' are called filtration-equivalent if for suitable filtrations of A and A' we have isomorphisms $f_{\nu}: A_{\nu} \to A'_{\nu}$ for all $\nu < \omega_1$ such that $f_{\nu}(A_{\mu}) = A_{\mu}$ for all $\mu \leq \nu$ and we call f_{ν} a level-preserving isomorphism on A_{μ} .

If one only wants to construct a particular example rather than giving a characterisation as in our theorem above, it suffices to have $\diamondsuit(E)$ available for a particular stationary set E. In our next result, a weak diamond (cf. [1]) suffices and we only have to assume $2^{\aleph_0} < 2^{\aleph_1}$. Then there exist ω_1 -separable p-groups which are filtration-equivalent, have isometric socles and isomorphic basic subgroups without being themselves isomorphic (Theorem 2.2)

In analogy to [3, Def. 1.3] we say a ω_1 -separable p-group A has type $Z(p^{\infty})$ if in a suitable filtration $A = \bigcup_{\nu < \omega_1} A_{\nu}$, where $A_{\nu+1}$ always is a summand of $A_{\mu}, \mu > \nu$, we have $A_{\lambda+1}/A_{\lambda} = Z(p^{\infty}) \oplus C_{\lambda}$ for some Σ -cyclic C_{λ} , or A_{λ} is a summand of $A_{\lambda+1}$ for all $\lambda < \omega_1$. Similar to [3, Thm. 1.4] we obtain the

THEOREM. Let $\xi_p \infty$ be the class of all ω_1 -separable p-groups of type $Z(p^{\infty})$ and of cardinality \aleph_1 . If $A, A' \in \xi_p \infty$ have isometric socles, they are filtration-equivalent.

Unfortunately our proof is slightly more complicated than Eklof's for the torsion free case, since we cannot use the uniqueness of division by p.

Again extending a result of [3] to p-groups we obtain the

THEOREM. $(MA + \neg CH)$. Let $A, A' \in \xi_p \infty$. Then $A \cong A'$ if and only if A[p] and A'[p] are isometric.

Here we use the fact (cf. [9]) that assuming $MA + \neg CH$ (=Martin's axiom and the denial oft he continuum hypothesis) ω_1 -separable p-groups are isomorphic if and only if they are filtration-equivalent.

Therefore it is undecidable in ZFC if groups in $\xi_p \infty$ are determined by their socles.

Finally we will construct ω_1 -separable p-groups (in ZFC) which are not quotient equivalent (cf. [7] or [2, 3]) but have the same basic subgroup, the same Γ -invariant and isometric socles (Theorem 2.7).

1. Constructing abelian p-groups supported by the same socle. In the following, each group will be an abelian p-group without elements of infinite height. We omit the proof of the well-known

LEMMA 1.1. Let G and H be pure and dense subgroups of a torsion complete p-group \overline{B} . Then G and H are isomorphic iff there exists $\varphi \in Aut(\overline{B})$ such that $\varphi(G) = H$.

LEMMA 1.2. Let G be a p-group, $n \ge 0$ and $H' \subseteq G[p^{n+1}]$ such that

- (a) $G[p^{n+1}] = H' + p^m G[p^{n+1}]$ for all $m \in N$.
- (b) $p^{m+1}G \cap H'[p^n] \subset p(H' \cap p^mG)$ for all $m \in N$.

Then there exists a pure and dense subgroup H of G such that $H[p^{n+1}] = H'$.

REMARK. If n = 0, one doesn't need (b) and Lemma 1.2 is well known in this case.

PROOF. Let H be a subgroup of G maximal with respect to $H[p^{n+1}] = H'$.

CLAIM 1. H is pure in G:

Since obviously $pG \cap H = pH$ we may assume

$$(1) p^m G \cap H = p^m H.$$

Let $p^{m+1}e \in p^{m+1}G \cap H$. If $p^me \in H$, we use (1) and obtain a $\gamma \in H$ such that $p^me = p^m\gamma$ and $p^{m+1}e = p^{m+1}\gamma \in p^{m+1}H$. Hence we may assume

$$(2) p^m e \notin H.$$

Because of the maximality of H there is $b \in G[p^{n+1}]$ and $\gamma \in H$ such that

$$(3) b = p^m e + \gamma$$

We apply (a) and get $p^me' \in p^mG[p^{n+1}]$ and $\gamma' \in H' = H[p^{n+1}]$ such that $b = p^me' + \gamma'$. Hence $p^me + \gamma - \gamma' = p^me'$ and $\gamma - \gamma' = -p^m(e - e') \in p^mG \cap H = p^mH$.

Since $p^{m+1}e \in H$, we obtain $p^{m+1}e + p(\gamma - \gamma') = p^{m+1}e' \in H$ and $p^me' \in G[p^{n+1}]$ implies $p^{m+1}e' \in Gp^n \cap H = H'[p^n]$ and $p^{m+1}e' \in H'[p^n] \cap p^{m+1}G \subseteq p(H' \cap p^mG)$ because of (b). Hence there exists $\gamma'' \in H' \cap p^mG$ such that $p^{m+1}e' = p\gamma''$ and therefore

(4)
$$p^{m+1}e = p(\gamma' - \gamma) + p\gamma'' = p(\gamma' - \gamma + \gamma'')$$
 and $\gamma' - \gamma, \gamma'' \in p^m H$.

Finally we get $p^{m+1}e \in p^{m+1}H$ and H is pure in G.

CLAIM 2. H is dense in G, i.e., $G = H + p^m G$ for all $m \in \mathbb{N}$: We will prove by induction that $G[p^{\ell}] \subseteq H + p^m G$ for all ℓ and $m \in \mathbb{N}$.

Because of (a) we have $G[p^{\ell}] \subseteq H + p^m G$ for all $m \in \mathbb{N}$ and all $\ell \leq n+1$. Suppose $\ell \geq n+2$ and $G[p^s] \subseteq H + p^m G$ for all $s < \ell$ and all $m \in \mathbb{N}$.

Let $b \in G[p^\ell] - G[p^{\ell-1}]$ and $m \in \mathbb{N}$. Then we have $0 \neq \mathrm{pb} \in G[p^{\ell-1}]$ and we obtain $p^{m+1}e \in p^{m+1}\overline{G}$ and $\gamma \in H$ such that $\mathrm{pb} = p^{m+1}e + \gamma$. Since H is pure in G, we find $\gamma' \in H$ with $p\gamma' = \gamma$. Therefore $pb = p^{m+1}e + p\gamma'$ and $b = p^me + \gamma' + a$ for some $a \in G[p]$. By our assumption we have $a = \gamma'' + p^me'$ for some $\gamma'' \in H, e' \in G$. Hence $b = \gamma' + \gamma'' + p^m(e + e') \in H + p^mG$ and $G[p^\ell] \subseteq H + p^mG$ for all $\ell, m \in \mathbb{N}$ and H is dense in G.

LEMMA 1.3. Let \overline{B} be a torsion complete p-group and G a pure and dense subgroup of \overline{B} . Let $z \in \overline{B}[p] - G[p]$ and $\eta \in \mathbb{N}$. Moreover let H' be a subgroup of $\overline{B}[p^{n+1}]$ such that

- $(1) G[p^{n+1}] \subseteq H' + \langle z \rangle$
- $(2) H'[p^n] = G[p^n]$
- (3) z is an element of the p-adic closure of $H' \cap G[p]$ in \overline{B} , i.e. there exists a sequence $\{z_m\}_{m \in \mathbb{N}}$ such that $z_m \in H' \cap G[p]$ and $z z_m \in p^m \overline{B}$.

Then H' satisfies the conditions (a) and (b) of Lemma 2.

PROOF. We first show (a): Let $b\in \overline{B}[p^{n+1}], 0(b)=p^s$. Since G is dense in \overline{B} , we find $g\in G$, $b'\in \overline{B}$ such that $b=g+p^mb'$, and $0=p^sb=p^sg+p^{m+s}b'$ and $p^{m+s}b'=-p^sg\in p^{m+2}\overline{B}\cap G=p^{m+2}G$. Therefore there exists $g'\in G$ with $p^{m+s}b'=p^{m+s}g'$ and $b=(g+p^mg')+(p^mb'-p^mg')\in G+p^m\overline{B}[p^{n+1}]$. Since $G[p^{n+1}]\subseteq H'+< z\rangle$ we get $g\in H', \ell\in N$ such that $g+p^mg'=q+\ell z$ and $\ell z-\ell z_m\in p^m\overline{B}$. Therefore $b=(q+\ell z_m)+(\ell z-\ell z_m+p^mb'-p^mq')\in H'+p^m\overline{B}[p^{n+1}]$ and $\overline{B}[p^{n+1}]\subseteq H'+p^m\overline{B}[p^{n+1}]$ is shown.

To prove (b), let $p^{m+1}b \in H'[p^{\eta}] = G[p^{\eta}]$. Since G is pure in \overline{B} , we get $g \in G$ such that $p^{m+1}b = p^{m+1}g$ and since $p^mg \in G[p^{u+1}]$, we obtain $q \in H'$ and $\ell \in N$ such that $p^mg = q + \ell z$ and again $p^g - (\ell z - \ell z_m) = q + \ell a_m \in H'$ and $h_{\overline{B}}(q + \ell z_m) = h_{\overline{B}}(p^mg - (\ell z - \ell z_m)) \ge \min \{h_{\overline{B}}(p^mg), h_{\overline{B}}(\ell z - \ell z_m)\} \ge m$. Therefore the p-height of $q + \ell z_m$ in $\overline{B}, h_{\overline{B}}(q + \ell z_m) \ge m$ and $p(q + \ell z_m) = p(p^mq - (\ell_z - \ell z_m)) = p^{m+1}g = p^{m+1}b$ and $p^{m+1}b \in p(H' \cap p^m\overline{B})$.

All the set theoretical notations we will use in this paper may be found in P. Eklof's remarkable paper [3] on ω_1 -separable torsion free groups.

LEMMA 1.4. Let G be a p-group of regular, uncountable cardinality κ . Then there exists a pure κ -filtration $G = \bigcup_{\alpha < \kappa} G_{\alpha}$ of G. (A κ -filtration is called pure, if all the G_{α} 's are pure in G).

We'll omit the routine proof.

DEFINITION 1.5. Let $G = \bigcup_{\alpha < \kappa} G_{\alpha}$ be a pure κ -filtration of the separable p-group G and $m \in \mathbb{N}$. G_{α} is called not p^m -closed if there is a $y \in G$ such that $0(y) = p^m, \langle y \rangle \cap G_{\alpha} = 0$ and $y \in G_{\alpha}[p^m] + p^k G$ for each $k \in \mathbb{N}$. Let $\gamma(G) = \{\alpha < \kappa | \text{lim}(\alpha) \text{ and } G_{\alpha} \text{ is not } p^m\text{-closed}\}$, $P(\kappa)/\sim$ the Boolean algebra $P(\kappa)$ modulo the ideal of non-stationary subsets of κ and $\Gamma^m_{\kappa}(G) = \gamma(G)/\sim$. Then $\Gamma^m_{\kappa}(G)$ is an invariant of G, cf. [3] or [7].

REMARK 1.6. Let \overline{B} be a torsion complete p-group of regular

cardinality κ and G a pure subgroup of \overline{B} and $|G| = \kappa$. Then there exist pure κ -filtrations $G = \bigcup_{\alpha < \kappa} G_{\alpha}$ and $\overline{B} = \bigcup_{\alpha < \kappa} \overline{B}_{\alpha}$ of G and \overline{B} such that $G_{\alpha} \subseteq \overline{B}_{\alpha}$ for each $\alpha < \kappa$.

DEFINITION 1.7. Let G be a pure subgroup of the separable p-group $A, |G| = \kappa$ regular, $G = \bigcup_{\alpha < \kappa} G_{\alpha}$ a pure κ -filtration of G and $G'_{\alpha} = G_{\alpha}[p^{n+1}]$. We may assume $|G_{\alpha}| \geq \aleph_0$ for all $\alpha < \kappa$. A subgroup H of $A[p^{n+1}]$ is called (n, z, α) -admissible in G if $z \in A[p] - G$ and

- (1) $H \cap \langle z \rangle = 0$
- (2) $H[p^n] \subseteq G[p^n]$
- $(3)\ H\subseteq G[p^{n+1}]+\langle z\rangle$
- (4) $|H|\langle \kappa$
- (5) $G'_{\alpha} \subseteq H + G[p^n] + \langle z \rangle$.

LEMMA 1.8. Same notation as in 1.8. If H is a (n, z, α) -admissible subgroup, then there exists an $(n, z, \alpha + 1)$ -admissible subgroup H' such that $H + G_{\alpha+1}[p^n] \subseteq H'$.

PROOF. Let \mathcal{M} be the set of all subgroups \tilde{H} of $H + G'_{\alpha+1}$ such that:

- (a) $\tilde{H} \cap \langle z \rangle = 0$
- (b) $\tilde{H}[p^n] \subseteq G[p^n]$
- (c) $H + (G_{\alpha+1}[p^n]) \subseteq \tilde{H}$.

We will show that $H + G_{\alpha+1}[p^n] \in \mathcal{M}$.

We may assume $n \geq 1$. In order to show (a), let $h + g = kz \in (H + G_{\alpha+1}[p^n]) \cap \langle z \rangle$ where $h \in H, g \in G_{\alpha+1}[p^n]$ and $k \in \mathbb{Z}$. Since $h \in H[p^n] \subseteq G[p^n], h + g = kz \in G \cap \langle z \rangle = 0$ and (a) holds. To prove (b), let $a \in (H + G_{\alpha+a}[p^n])[p^n], a = h + g$ with $h \in H$ and $g \in G_{\alpha+1}[p^n]$. Again, $0(h) \leq p^n$ and $a = h + g \in G[p^n]$. This shows (b) and we have $\mathcal{M} \neq \emptyset$. Since the \mathcal{M} is inductive, we may apply Zorn's Lemma to obtain a maximal element H' in \mathcal{M} .

Conditions (a), (b) and (c) imply (1), (2) of 1.8 and moreover $H + G_{\alpha+1}[p^n] \subseteq H'$. Since $H \subseteq G[p^{n+1}] + \langle z \rangle, 0(z) = p$ and

 $G'_{\alpha+1}\subseteq G[p^{n+1}]$ we obtain $H'\subseteq H+G'_{\alpha+1}\subseteq G[p^{n+1}]+\langle z\rangle$. Hence 1.8(3) holds for H' as well and $H'\subseteq A[p^{n+1}]$. Now $|H|\langle \kappa, |G'_{\alpha+1}|\langle \kappa$ and $|H'|\le |H+G'_{\alpha+1}|\le |H|+|G'_{\alpha+1}|\langle \kappa$. This implies 1.8(4). We have to show $G'_{\alpha+1}\subseteq H'+G[p^n]+\langle z\rangle$. Let $g\in G'_{\alpha+1}$. If $0(g)\le p^n$ (c) implies $g\in H'$. Hence we may assume $0(g)=p^{n+1}$ and $g\notin H'$. Then we have $H+G_{\alpha+1}[p^n]\subseteq H'+\langle g\rangle$ and the maximality of H' implies $(H'+\langle g\rangle\cap \langle z\rangle\ne 0$ or $(H'+\langle g\rangle)[p^n]\subseteq G[p^n]$. We'll consider two cases:

CASE 1.
$$(H' + \langle g \rangle) \cap \langle z \rangle \neq 0$$
.

Then there exists $h \in H'$ and $k \in \mathbf{Z}$ such that z = h + kg. Since $G_{\alpha+1}[p^n] \subseteq H'$ and $H' \cap \langle z \rangle = 0$, p doesn't divide k and there exists $k' \in \mathbf{Z}$ with k'kg = g. This implies $g = k'(z-h) \in H' + \langle z \rangle \subseteq H'G[p^n] + \langle z \rangle$.

CASE 2.
$$(H' + \langle g \rangle)[p^n] \subseteq G[p^n]$$
.

Here we have $n \geq 1$ and $h \in H', k \in \mathbf{Z}$ with $h + kg \notin G[p^n]$ and $0(h + kg) \leq p^n$.

Since $H' \subseteq H + G_{\alpha+1} \subseteq G[p^{n+1}] + \langle z \rangle$, there exists $g \in G[p^{n+1}]$ and $\ell \in \mathbf{Z}$ such that $h + kg = \tilde{g} + \ell z$.

Now $0 = p^n(h + kg) = p^n(\tilde{g} + \ell z), 0(z) = p$ and $n \ge 1$ imply $p^n \tilde{g} = 0$ and hence $\tilde{g} \in G[p^n]$.

We obtain

$$kg = -h + \tilde{g} + \ell z \in H' + G[p^n] + \langle z \rangle.$$

If p does not divide k, we are finished. Suppose p divides k. Then $kg \in G[p^n]$ and $0(h + kg) \leq p^n$ implies $h \in H'[p^n]$, a contradiction to our choice of h + kg.

This shows $G'_{\alpha+1} \subseteq H' + G[p^n] + \langle z \rangle$ and H' is $(n, z, \alpha+1)$ -admissible.

In the next lemma, we use diamonds $\diamondsuit_{\kappa}(E)$, claiming the existence of Jensen functions on the stationary subset of the regular cardinal κ , cf. ([2], [8]).

LEMMA 1.9. Assume $\diamondsuit_{\kappa}(\Gamma_{\kappa}^{n+1}(G))$ holds for some fixed $n \in \mathbb{N}$ and let G be a separable abelian p-group of cardinality κ . Moreover let $G \neq \overline{G}$ be the torsion completion of $G, \Gamma_{\kappa}^{n+1}(G) \neq 0, z \in \overline{G}[p] - G[p]$ and $|\overline{G}| = \kappa$. Then there exists $H \subseteq \overline{G}[p^{n+1}]$ such that

- (a) $G[p^{n+1}] + \langle z \rangle = H + \langle z \rangle$
- (b) $G[p^n] = H[p^n]$
- (c) For all $\varphi \in \operatorname{Aut}(\overline{G}), \ \varphi(G[p^{n+1}]) \neq H$.
- (d) z is an element of the p-adic closure of $H \cap G[p]$ in \overline{G} .

PROOF. For each $k \in \mathbb{N}$ take $z_k \in G[p]$ such that $z - z_k \in p^k G$ and a pure κ -filtration $G = \bigcup_{\alpha \in \kappa} G_{\alpha}$ with $z_k \in G_{\omega}$ for all $k \in \mathbb{N}$ and a κ -filtration $\overline{G} = \bigcup_{\alpha \in \kappa} \overline{G}_{\alpha}$ such that $G_{\alpha} \subseteq \overline{G}_{\alpha}$, cf. (6). Let $E = \{\alpha < \kappa | \text{ lim } (\alpha) \text{ and } G_{\alpha} \text{ not } p^{n+1}\text{-closed}\}$ and $\{f_{\alpha} : \overline{G}_{\alpha} \to \overline{G}_{\alpha} | \alpha \in E\}$ be a collection of Jensen functions to witness $\diamondsuit_{\kappa}(E)$.

By induction we will define a subgroup $H=\cup_{\alpha<\kappa}H_\alpha$ of $\overline{G}[p^{n+1}]$ such that

- (0) $H_{\alpha} = G_{\alpha}[p^{n+1}]$ for $\alpha < \omega$,
- (1) $H_{\beta} \subseteq H_{\alpha}$ for all $\beta \leq \alpha$,
- (2) $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$ if α is a limit ordinal,
- (3) $z \notin H_{\alpha}$,
- $(4) H_{\alpha}[p^n] \subseteq G[p^n],$
- (5) $H_{\alpha} \subseteq G[p^{n+1}] + \langle z \rangle$,
- (6) $|H_{\alpha}| < \kappa$,
- (7) If $\alpha = \beta + 1, \beta \in E$, $f_{\beta}(G_{\beta}[p^{n+1}]) = H_{\beta}$: $f_{\beta} = \phi \upharpoonright \overline{G_{\beta}}$ for some $\phi \in \operatorname{Aut}(\overline{A})$ such that $z \notin \phi(G), \phi(G[p^{n}]) = (G[p^{n}])$ and $\phi(G[p^{n+1}]) \subseteq G[p^{n+1}] + \langle z \rangle$, let H_{α} be defined by $H_{\alpha} = H_{\beta} + \langle \phi(Y_{\beta}) + z \rangle$ where
 - (7a) $y_{\beta} \in \hat{G}_{\beta}$, the closure of G_{β} in G
 - (7b) $0(y_{\beta}) = p^{n+1}$
 - (7c) $\langle y_{\beta} \rangle \cap G_{\beta} = 0$.
- (8) If $\alpha = \beta + 1$ and β doesn't fit into (7) we have $G_{\alpha}[p^n] \subseteq H_{\alpha}$ and H_{α} is a (n, z, α) -admissible subgroup.

For $n < \omega$ let $H_n = G_n[p^{n+1}]$ and the H_n 's satisfy the conditions (0) - (8). Let $\delta \geq \omega$ and $\delta < \kappa$. Suppose we have constructed H_{α} for all $\alpha < \delta$ satisfying (0) - (8).

If δ is a limit ordinal let $H_{\delta} = \bigcup_{\beta < \delta} H_{\beta}$. Since κ is regular and $|H_{\beta}| < \kappa$ we have $|H_{\delta}| < \kappa$. Conditions (2) -(5) for H_{δ} are obvious. Now assume $\delta = \beta + 1$.

CASE 1. β satisfies (7). Since $\beta \in E$, we find y_{β} satisfying (7a) -(7c). Let $H_{\beta+1} = H_{\beta} + \langle \phi(Y_{\beta}) + z \rangle$ and assume $z \in H_{\beta+1}$. Then $z = h + \ell(\phi(Y_{\beta}) + z)$ for some $h \in H_{\beta}, \ell \in \mathbf{Z}$ and $\ell \equiv 0 \mod p$. Hence $z(1-\ell) = h + \ell \phi(y_{\beta})$ and $\phi^{-1}(z(1-\ell)) = \phi^{-1}(h) + \ell y_{\beta} \in G$ because $y_{\beta} \in G$ and $\phi(G_{\beta}[p^{n+1}]) = H_{\beta}$. Therefore $z(1-\ell) \in \phi(G)$ which implies $\ell \equiv 1 \mod p$. Now $z = h + \ell(\phi(y_{\beta}) + z) = h + \ell\phi(y_{\beta}) + z$ and $\ell\phi(y_{\beta}) \in H_{\beta}$. Hence $\ell y_{\beta} \in \phi^{-1}(H_{\beta}) = G_{\beta}[p^{n+1}]$ and by (7c) we get $\ell y_{\beta} = 0$. Now $z = h \in H_{\beta}$, a contradiction to (3). Therefore $z \notin H_{\beta+1}$ and we have to show that $H_{\beta+1}$ satisfies (4): $H_{\beta+1}[p^n] \subseteq G[p^n]$. So let $h \in H_{\beta}, \ell \in \mathbf{Z}$ such that $p^n x = 0$ where $x = h + \ell(\phi(y_\beta) + z) \in H_{\beta+1}$. This implies 0 = 0 $p^n x = p^n h + p^n \ell \phi(y_\beta)$ and $p^n \ell y_\beta \in \phi^{-1}(H_\beta) = G_\beta[p^{n+1}]$. Therefore $p^n \ell y_{\beta} = 0$ and $\ell \equiv 0 \mod p$ and hence $x = h + \ell \phi(y_{\beta}) \in G[p^n]$ because $0 = p^n x = p^n h$, $H_{\beta}[p^n] \subseteq G[p^n]$ and $p\phi(y_{\beta}) \in \phi(G[p^n]) = G[p^n]$. This shows (4). Condition (5) is obvious because $\phi(G[p^{n+1}]) \subseteq G[p^{n+1}] + \langle z \rangle$ and $H_{\beta} \subseteq G[p^{n+1}] + \langle z \rangle$. By the definition of $H_{\beta+1}$ we have $H_{\beta} \subseteq H_{\beta+1}$ and $|H_{\beta+1}| < \kappa$.

CASE 2. $\beta = \beta' + 1$ and β' is not a limit ordinal. Then $\beta' \notin E$ and H_{β} is a (n, z, β) -admissible subgroup. We may apply Lemma 1.8 to get a $(n, z, \beta + 1)$ -admissible subgroup $H_{\beta+1}$ with $H_{\beta} + G_{\beta+1}[p^n] \subseteq H_{\beta+1}$. This shows that $H_{\beta+1}$ satisfies the conditions (0) - (8).

CASE 3. $\beta = \beta' + 1$ and β' is a limit ordinal. Since $H_{\alpha+2}$ is a $(n, z, \alpha + 2)$ -admissible subgroup for all $\alpha < \beta'$ we have $G_{\beta'}[p^{n+1}] \subseteq H_{\beta'} + G[p^n] + \langle z \rangle$. Therefore $G_{\beta'}[p^{n+1}] \subseteq H_{\beta} + G[p^n] + \langle z \rangle$ and with (3) - (6) for H_{β} we have H_{β} is (n, z, β') -admissible. Now apply Lemma 1.9 two times to obtain a $(n, z, \beta + 1)$ -admissible subgroup $H_{\beta+1}$ such that $H_{\beta} + G_{\beta+1}[p^n] \subseteq H_{\beta+1}$.

This completes our construction. We will show that H satisfies (a), (b), (c) and (d). Condition (b) is obvious because of (4) and (8) and $H + \langle z \rangle \subseteq G[p^{n+1}] + \langle z \rangle$ follows from (5). Since $H_{\alpha+2}$ is a $(n, z, \alpha+2)$ -admissible subgroup for all $\alpha < \kappa$ and (b) we have $G[p^{n+1}] \subseteq H + \langle z \rangle$. This shows (a) and since Z is in the closure of $G_{\omega}[p^{n+1}] = H_{\omega}$ we

obtain (d).

To prove (c), let $\varphi \in \operatorname{Aut}(\overline{G})$ such that $\varphi(G[p^{n+1}]) = H$. Since $C = \{\alpha < \kappa | \varphi(G_{\alpha}[p^{n+1}]) = H_{\alpha}\}$ is a cub and $S = \{\alpha | \varphi \upharpoonright \overline{G}_{\alpha} = f_{\alpha}\}$ is stationary we have a limit ordinal $\beta \in C \cap S.\varphi(G[p^n]) = G[p^n]$ is obvious because of (b) and $\varphi(G[p^{n+1}]) \subseteq G[p^{n+1}] + \langle z \rangle$ follows from (a). Since $z \notin H \supseteq \varphi(G[p])$ we have $z \notin \varphi(G)$. Therefore φ satisfies condition (7). But $\varphi(Y_{\beta}) \in \varphi(G[p^{p+1}]) = H$ and if $\varphi \in \operatorname{Aut}(\overline{G})$ is the map used in the definition on $H_{\beta+1}$ we have $\varphi \upharpoonright \overline{G}_{\beta} = f_{\beta} = \varphi \upharpoonright \overline{G}_{\beta}$ and $\varphi(Y_{\beta}) = \varphi(Y_{\beta})$ because of the continuity of automorphisms. But $Y_{\beta} \in G[p^{n+1}]$ implies $\varphi(Y_{\beta}) = \varphi(Y_{\beta}) \in H$ and $\varphi(Y_{\beta}) + z \in H$ by construction, so we obtain the contradiction $z \in H$. This proves (c).

We are now able to prove our main result.

THEOREM 1.10. (V = L). Let G be a separable p-group of regular cardinality κ , \overline{G} its torsion-completion and $\Gamma_{\kappa}^{n+1}(G) \neq 0$ and $G \neq \overline{G}$. Then there exists a subgroup $H \subseteq \overline{G}$ such that

- (i) H is pure and dense in \overline{G}
- (ii) $G[p^n] = H[p^n]$
- (iii) $H \cong G$.

PROOF. We apply Lemma 1.9 and get $\tilde{H} \subseteq \overline{G}[p^{n+1}]$ satisfying (1.9a), (1.9b) (1.9c) and (1.9d). Now apply Lemma (1.2) and (1.3) to obtain a pure and dense subgroup H of \overline{G} such that $\tilde{H} = H[p^{n+1}]$ and $G[p^n] = \tilde{H}[p^n] = H[p^n]$.

Assume $G \cong H$. Then there exists a $\varphi \in \operatorname{Aut}(\overline{G})$ such that $\varphi(G) = H$ and hence $\varphi(G[p^{n+1}]) = H[p^{n+1}] = \tilde{H}$ contradicting (1.9c).

THEOREM 1.11. (V = L). Let $n \in \mathbb{N}$ and G a separable p-group of cardinality \aleph_1 such that G is neither Σ -cyclic nor torsion-complete. Then there exists a separable p-group H such that H is not isomorphic to G but there exists a height-preserving isomorphism $\varphi: H[p] \to G[p]$.

For the proof of (1.11) we need

LEMMA 1.12. Let \tilde{H} be a separable p-group, C' a subgroup of \tilde{H} and S a dense subsocle of \tilde{H} (cf. [5]). If $C'[p] \subseteq S$ then there exists a pure subgroup H of \tilde{H} such that $C' \subseteq H$, H[p] = S and \tilde{H}/H is divisible.

Let

$$\mathcal{M}_{C'} = \{ H \leq \tilde{H} | H[p] = S \text{ and } C' \leq H \} \text{ and } \mathcal{M} = \{ H \leq \tilde{H} | H[p] = S \}. \text{ Obviously } C' + S \in \mathcal{M}_{C'} \subseteq \mathcal{M}$$

because $C'[p] \subseteq S$. Since $\mathcal{M}_{C'}$ is inductive, we may apply Zorn's Lemma to obtain a maximal element H in $\mathcal{M}_{C'}$. Then H is a maximal element in \mathcal{M} . By [5, 66.3] we have that H is pure and dense in \tilde{H} . This shows (1.12).

PROOF OF (1.11). Let \overline{G} be the torsion-completion of G. Since G is not torsion-complete we have $G \neq \overline{G}$. If $\Gamma^2_{\aleph_1}(G) \neq 0$ then (1.10) implies that there is a pure and dense subgroup H such that $H \cong G$ and H[p] = G[p]. It is obvious that the identity map on the socles of H and G is an isometry because H and G are pure subgroups of \overline{G} . This shows (1.11) in the case $\Gamma^2_{\aleph_1}(G) \neq 0$.

Now assume $\Gamma^2_{\aleph_1}(G)=0$. Since G is not Σ -cyclic we have $\Gamma^1_{\aleph_1}(G)\neq 0$, cf. [4].

We will show that there is a subgroup H of \overline{G} such that (a) H is pure in \overline{G} , (b) H[p] = G[p] and (c) $\Gamma_{\aleph_1}^{n+1}(H) \neq 0$ for all $n \in \mathbb{N}$. Let $G[p] = U_{\alpha < \omega_1} S_{\alpha}$ be an ω_1 -filtration of G[p] (with $S_0 = 0$) and for $\alpha < \omega_1$ let S_{α} be the closure of S_{α} in G. Then $S_{\alpha} \leq \overline{S}_{\alpha} \leq G[p], \overline{S}_{\beta} \leq \overline{S}_{\alpha}$ for all $\beta < \alpha$ and $G[p] = \bigcup_{\alpha < \omega_1} \overline{S}_{\alpha}$. By induction we will define for each $\alpha < \omega_1$ subgroups H_{α} and H_{α} such that

- (1) $H_{\beta} \leq H_{\alpha}$ for all $\beta \leq \alpha$,
- (1) $\tilde{H}_{\beta} \leq \tilde{H}_{\alpha}$ for all $\beta \leq \alpha$,
- (2) $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$ if α is a limit ordinal
- $(\tilde{2})$ H_{α} is a pure subgroup of \tilde{H}_{α} ,
- $(3) H_{\alpha}[p] = S_{\alpha},$
- $(\tilde{3}) \ \tilde{H}_{\alpha}[p] = \overline{S}_{\alpha},$
- (4) H_{α} is pure in \overline{G} ,

- $(\tilde{4}) \ \tilde{H}_{\alpha}$ is pure in \overline{G} ,
- (5) $\tilde{H}_{\alpha}/H_{\alpha}$ is divisible.

Let $H_0 = 0$ and $\tilde{H}_0 = 0$. Since G is separable and $S_0 = 0$ we have $\overline{S}_0 = 0$. Hence H_0 and \tilde{H}_0 satisfy the conditions (1)-(5) and ($\tilde{1}$)-($\tilde{4}$). Let $\delta > 0$ and $\delta < \omega_1$. Suppose we have constructed H_{α} and \tilde{H}_{α} for all $\alpha > 0$ satisfying (1)-(5) and ($\tilde{1}$)-($\tilde{4}$).

Let $C = \bigcup_{\alpha < \delta} \tilde{H}_{\delta}$. Then C is a pure subgroup of \overline{G} because of $(\tilde{1})$ and $(\tilde{4})$ for all $\alpha < \delta$. Since \overline{S}_{α} is contained in \overline{S}_{δ} for all $\alpha < \delta$ we have $C[p] = (\bigcup_{\alpha < \delta} \tilde{H}_{\alpha})[p] = \bigcup_{\alpha < \delta} \overline{S}_{\alpha} \leq \overline{S}_{\delta}$. By [5, 74 (e) and 74.1] we get a pure subgroup \tilde{H}_{δ} of \overline{G} such that $C \leq \tilde{H}_{\delta}$ and $\tilde{H}_{\delta}[p] = \overline{S}_{\delta}$. Hence \tilde{H}_{δ} satisfies the conditions $(\tilde{1})$, $(\tilde{3})$ and $(\tilde{4})$. Now we have to construct H_{δ} .

Let $C' = \bigcup_{\alpha < \delta} H_{\alpha}$. Then $C'[p] = (\bigcup_{\alpha < \delta} H_{\alpha}[p] = \bigcup_{\alpha < \delta} S_{\alpha} \leq S_{\sigma} \leq \overline{H}_{\delta}[p]$ and $C = \bigcup_{\alpha < \delta} H_{\alpha} \leq \bigcup_{\alpha < \delta} \tilde{H}_{\alpha} \leq \tilde{H}_{\delta}$. Condition (1) and (4) for all $\alpha < \delta$ imply that C' is a pure subgroup of \overline{G} . Therefore C' is a pure subgroup of \tilde{H}_{δ} . Next we show that $H_{\delta}[p] = S_{\delta} + p^{k} \tilde{H}_{\delta}[p]$ for all $k \in \mathbb{N}$. Let $k \in \mathbb{N}$. Since G and \tilde{H}_{δ} are pure subgroups of \overline{G} , $\overline{S}_{\delta} \leq G$ and $\overline{S}_{\delta} = \tilde{H}_{\delta}[p] \leq \tilde{H}_{\delta}$, we have

$$p^{k}G \cap \overline{S}_{\delta} = p^{k}\overline{G} \cap G \cap \overline{S}_{\delta} = p^{k}\overline{G} \cap \overline{S}_{\delta} = p^{k}\overline{G} \cap \tilde{H}_{\delta} \cap \overline{S}_{\delta} = p^{k}\tilde{H}_{\delta} \cap \overline{S}_{\delta} = p^{k}\tilde{H}_{\delta} \cap \overline{S}_{\delta} = p^{k}\tilde{H}_{\delta} \cap \tilde{H}_{\delta}[p] = p^{k}\tilde{H}_{\delta}[p].$$

Therefore, since \overline{S}_{δ} is the closure of S_{δ} in G, $\tilde{H}_{\delta}[p] = \overline{S}_{\delta} = S_{\delta} + (p^k G \cap \overline{S}_{\delta}) = S_{\delta} + p^k \tilde{H}_{\delta}[p]$. Now we may apply (1.12) to get a pure subgroup H_{δ} of \tilde{H}_{δ} such that $C' \leq H_{\delta'}H_{\delta}[p] = S_{\delta}$ and $\tilde{H}_{\sigma}/H_{\sigma}$ is divisible. Since H_{δ} is pure in \tilde{H}_{δ} and \tilde{H}_{δ} is pure in \overline{G} , we have H_{δ} is pure in \overline{G} . Hence H_{σ} and \tilde{H}_{σ} satisfy the conditions (1)-(5) and (1)-(4) and our construction works.

Let $H = \bigcup_{\alpha < \omega_1} \tilde{H}_{\alpha}$. Condition (1), (4) and (3) imply that H is a pure subgroup of G and

$$H[p] = (\cup_{\alpha < \omega_1} H_\alpha)[p] = \cup_{\alpha < \omega_1} \overline{S}_\alpha = G[p].$$

This shows (a) and (b).

From (1), (4), (3) and ($\tilde{2}$) we conclude that $\bigcup_{\alpha<\omega_1}H_{\alpha}$ is a pure subgroup of \overline{G} , $(\bigcup_{\alpha,\omega_1}H_{\alpha})[p]=G[p]$ and $\bigcup_{\alpha<\omega_1}H_{\alpha}\leq H$. Therefore $H[p]=(\bigcup_{\alpha<\omega_1}H_{\alpha})[p]$ and $\bigcup_{\alpha<\omega_1}H_{\alpha}$ is a pure subgroup in H. By [5, 26 (j), p. 115] we have $H=\bigcup_{\alpha<\omega_1}H_{\alpha}$. Since $|S_{\alpha}|<\omega_1$ and $H_{\alpha}[p]=S_{\alpha}$

we infer that $|H_{\alpha}| < \omega_1$. Now in view of (1) and (2) we have that $H = \bigcup_{\alpha < \omega_1} H_{\alpha}$ is a ω_1 -filtration of H. Let $E = \{\alpha < \omega_1 | S_{\alpha} \text{ is not closed in } g\}$ and $G = \bigcup_{\alpha < \omega_1} G_{\alpha}$ a pure ω_1 -filtration of G. Then

$$E/\sim = \{\alpha < \omega_1 | G_{\alpha}[p] \text{ is not closed in } G\}/\sim$$

= $\{\alpha < \omega_1 | G_{\alpha} \text{ is not } p - \text{closed in } G\}/\sim = \Gamma^1_{\aleph_1}(G) \neq 0$

Hence E is a stationary subset of ω_1 . Let $\alpha \in E$ and $n \in \mathbb{N}$. Then $S_{\alpha} \neq \overline{S}_{\alpha}$ and therefore $\tilde{H}_{\alpha}/H_{\alpha} \neq 0$. Since $\tilde{H}_{\alpha}/H_{\alpha}$ is divisible and H_{α} is pure in \tilde{H}_{α} we find a $y_n \in \tilde{H}_{\alpha}$ such that $0(y_n) = p^{n+1}, \langle y_n \rangle \cap H_{\alpha} = 0$ and $y_n \in H_{\alpha}[p^{n+1}] + p^k \tilde{H}_{\alpha} \subseteq H_{\alpha}[p^{n+1}] + p^k H$ for all $k \in \mathbb{N}$. This shows that $\alpha \in E_{n+1} = \{\alpha < \omega_1 | H_{\alpha} \text{ is not } p^{n+1}\text{-closed in } H\}$. Hence $\Gamma_{\aleph_1}^{n+1}(H) \neq 0$, because E is stationary in ω_1 . This shows (c). Since G and H are pure subgroups of \overline{G} and G[p] = H[p], the groups have isometric socles. But $G \cong H$ because $\Gamma_{\aleph_1}^2(G) = 0$ and $\Gamma_{\aleph_1}^2(H) \neq 0$. This completes the proof of (1.11).

2. ω_1 -separable *p*-groups with equal socles. In this chapter we will construct - using weak diamonds - ω_1 -separable *p*-groups having isometric socles. Similar constructions may be found in [3], [4].

Let B be Σ -cyclic p-group, $B = \bigoplus_{\alpha < \omega_1} \bigoplus_{n < \omega} (\alpha, n) \mathbf{Z}$ such that $0(\alpha, n) = p^{n+k}$ for all $\alpha < \omega_1$ and some fixed $k \in \mathbb{N}$. We fix a stationary subset $E \subseteq \omega_1$ such that $E \subseteq \{\alpha < \omega_1 | \text{lim } (\alpha)\}$, i.e., all elements of E are limit ordinals.

For each $\lambda \in E$ fix a ladder $\{\lambda_n\}_{n \in \mathbb{N}}$, i.e., $\lambda_n < \lambda_{n+1}$ for all $n \in \mathbb{N}$ and $\lambda = \sup\{\lambda_n | n \in \mathbb{N}\}$. Moreover we choose $\tilde{z}_{(\lambda,n)} \in \mathbb{Z}$ such that $\tilde{z}_{(\lambda,n)} \equiv 1 \mod p^k$. For $\lambda < \omega_1$ let $B_\lambda = \bigoplus_{\alpha < \lambda} \bigoplus_{n < \omega} (\alpha,n) \mathbb{Z}$ and \hat{B}_λ the torsion-completion of B_λ and if $\lim_{\alpha \to \infty} (\lambda)$, let $\tilde{B}_\lambda = \bigcup_{\alpha < \lambda} \hat{B}_\alpha$. For each $\lambda \in E$, define $\lambda_m^\circ = \sum_{n \geq m} (\lambda_n, n) p^{n-m} \in \tilde{B}_\lambda - \tilde{B}_\lambda$. Define $z(\lambda, n)$ to be 1 if n is odd and $z(\lambda, 2n) = \tilde{z}(\lambda, n)$ and assume $\tilde{z}(\lambda, n) \equiv 1 \mod p^{k+1}$. Let $\lambda_m^1 = \sum_{n \geq m} (\lambda_n, n) z(\lambda, n) p^{n-m}$. Observe that for $\varepsilon = 0, 1$ we have $p\lambda_{m+1}^\varepsilon - \lambda_m^\varepsilon \in B_\lambda$ and $\lambda_0^\circ = \lambda_0^1$ for all $\lambda \in E$. Set $G_\alpha = \langle B_\alpha, \lambda_m^\varepsilon | m < \omega, \varepsilon \in \{0, 1\}, \lambda < \alpha \rangle$. Then $G = \bigcup_{\alpha < \omega_1} G_\alpha$ is an ω_1 -filtration of the pure subgroup G of $\hat{B} := \hat{B}_{\omega_1}$.

We will need the following.

LEMMA 2.1. Let A_0, A_1 be pure subgroups of \tilde{B}_{λ} such that $B_{\lambda} \subseteq$

 $A_0 \cap A_1$ and $A_0[p^k] = A_1[p^k]$. Let $A^{\varepsilon} = \langle A_{\varepsilon}, \lambda_m^{\varepsilon} | m < \omega \rangle, \varepsilon = 0, 1$. Then A^0, A^1 are pure subgroups of \hat{B}_{λ} such that $A^0[p^k] = A^1[p^k]$ and $A^0 \cap A^1 = \langle A_0 \cap A_1 \rangle + A^0[p^k]$.

PROOF. Since $A^{\varepsilon}/A_{\varepsilon}$ is divisible and A_{ε} pure in \hat{B}_{λ} , A^{ε} is pure in \hat{B}_{λ} . If $x \in A^{0}[p^{k}], x = a_{0} + \lambda_{m}^{0}r$ for some $a_{0} \in A_{0}, m < \omega$ and $r \in \mathbf{Z}$.

Since $a_0 \in \tilde{B}_{\lambda}$ we obtain $(\lambda_n,n)p^{n-m}p^k=0$ for almost all n and $p^{n-m+k}r\equiv 0$ mod p^{n+k} and hence $r\equiv 0$ mod p^m . This implies $x\in A_0[p^k]\oplus \langle \lambda_0^0\rangle$ and a similar argument shows $A^1[p^k]=A_1[p^k]\oplus \langle \lambda_0^1\rangle$ and the above remarks show $A^0[p^k]=A^1[p^k]$. Take now any $x\in A^0\cap A^1$. Then $x=a_0+\lambda_m^0r=a_1+\lambda_m^1$ where $a_\varepsilon\in A_\varepsilon, r,s\in Z$ and $m<\omega$. This implies $a_0-a_1'=-\lambda_mr+\lambda_ms$ and again $(\lambda_n,n)(p^{n-m}z(\lambda,\eta)-p^{n-m}r)=0$ for almost all $n<\omega$, which implies $sz(\lambda,\eta)\equiv r \mod p^{m+k}$ for almost all $n<\omega$.

Therefore $sz(\lambda,n)\equiv sz(\lambda,n') \bmod p^{m+k}$ if $n,n'\geq n_0$. By our choice $1\equiv z(\lambda,n) \bmod p^k$ if n is odd and $z(\lambda,n)\not\equiv z(\lambda,n+1) \bmod p^{k+1}$ which implies $s\equiv 0 \bmod p^m$ and $r\equiv 0 \bmod p^m$. Therefore $x=a_0+\lambda_m^0\in A_0+A^0[p^k]$ and $\lambda_m^0r=\lambda_m^1s$ also implies $a_0=a_1\in A_0\cap A_1$ and $x\in (A_0\cap A_1)+A^0[p^k]=A^0\cap A^1$.

Recall that a stationary subset $E \subseteq \omega_1$ is non-small, if the weak diamond $\phi_{\omega}(E)$ holds. (cf. [1])

THEOREM 2.2. $(2^{\aleph_0} < 2^{\aleph_1})$. Let E be a non-small subset of ω_1 . There exist 2^{\aleph_1} many ω_1 -separable p-groups A_{α} , $\alpha < 2^{\aleph_1}$, such that

- (0) $\Gamma(A_{\alpha}) = E \text{ for all } \alpha < 2^{\aleph_1}$
- (1) $A_{\alpha} \cong A_{\beta}$ if $\alpha \neq \beta$,
- (2) $A_{\alpha}[p^k] \cong A_{\beta}[p^k]$ are isometric,
- (3) For all $\alpha, \beta < 2^{\aleph_1}, A_{\alpha}$ and A_{β} are filtration-equivalent.

PROOF. Since $2^{\aleph_0} < 2^{\aleph_1}$, there exists a partition $E = \bigcup_{\alpha < \omega_1} E_{\alpha}$ into non-small subsets E_{α} . (c.f. [1]).

For each $\eta \in {}^{\omega_1}2$ we define a group $A_{\eta} = \cup_{\alpha < \omega_1} A_{\eta \restriction \alpha}$ such that

(j) $A_{f\eta\uparrow 0} = 0$ and $A_{\eta\uparrow\lambda} \subseteq \hat{B}_{\lambda}$,

- (ij) $\lim_{\lambda \to A_{\eta \uparrow \lambda}} = \bigcup_{\alpha < \lambda} A_{\eta \uparrow \alpha}$,
- (iij) $\nu \notin E \Rightarrow A_{\eta \upharpoonright \nu + 1} = A_{\eta}$
- (iv) If $\nu \in E$, $A_{\eta \upharpoonright \nu+1} = A_{\eta \upharpoonright \nu'}^{\varepsilon} \varepsilon = \eta(\nu+1)$

according to Lemma 2.1 (so we have $A^0_{\eta \uparrow \nu} \cap A^1_{\eta \uparrow \nu} = A_{\eta \uparrow \nu} + A^{\varepsilon}_{\eta \uparrow \nu}[p^k]$).

For each $\delta \in E$ define a partition function P_{δ} : If $\xi, \rho \in \omega_1$ and $h: A_{\xi} \to A_{\rho}$, let $P(\xi, \rho, h) = \begin{cases} 1 & \text{if } h \text{ lifts to } h^0: A_{\xi}^0 \to A_{\rho}^0 \\ 0 & \text{otherwise} \end{cases}$.

Let ψ_{α} be the function provided by $\phi_{\aleph_1}(E_{\alpha})$, i.e., $\{\nu \in E_{\alpha} | \psi_{\alpha}(\nu) = P_{\alpha}(s \upharpoonright \nu, t \upharpoonright \nu, g)\}$ is stationary for each $s, t < \omega_1$ and $g : A_s \to A_t$. Take $\Sigma \leq P(\aleph_1)$ such that S = T if $S, T \in \Sigma$ and $S \subseteq T$ or $T \subset S$. We may choose $a\Sigma$ s.t. $|\Sigma| = 2^{\aleph_1}$.

Now define $\varphi_S \in 2^{\aleph_1}$ such that $\varphi_S(\delta) = \begin{cases} \psi_{\alpha}(\delta) \text{ if } \delta \in E_{\alpha} \text{ and } \alpha \in S \\ 0 \text{ otherwise} \end{cases}$.

Take $A_S := A_{\varphi_S} = \bigcup_{\alpha < \omega_1} A_{\varphi_S \upharpoonright \alpha}$. By our construction, obviously $A_S[p^k] = A_T[p^k]$ and elements have equal heights. This implies (2). Let $S, T \in \Sigma, S \neq T$ and assume $h : A_S \to A_T$ is an isomorphism. Then the set $C = \{\nu < \aleph_1 | h(A_{\psi_S \upharpoonright \nu}) = A_{\varphi_t \upharpoonright \nu}\}$ is a cub.

Take any $\alpha \in T - S$ and $\lambda \in E_{\alpha} \cap C$. Set $\eta = \varphi_{S} \upharpoonright \lambda, \varphi = \varphi_{T} \upharpoonright \lambda, \theta = h \upharpoonright A_{\eta}$. Since $\lambda \notin E_{\beta}$ for all $\beta \in S, \varphi_{S}(\lambda) = 0, \psi_{\alpha}(\lambda) = P_{\alpha}(\eta, \rho, \theta)$ and w.l.o.g. θ lifts to a $\tilde{\theta} : A_{\eta}^{0} = A_{\varphi_{S} \upharpoonright (\lambda+1)} \to A_{\varphi_{T} \upharpoonright (\lambda+1)} = A_{\varphi_{T} \upharpoonright \lambda}^{\psi \alpha' (\lambda)}$ because $A_{\varphi_{S} \upharpoonright (\lambda+1)}(A_{\varphi_{T} \upharpoonright (\lambda+1)})$ is the p-adic closure of $A_{\eta}(A_{\rho})$ in $A_{S}(A_{T})$. Therefore $\psi_{\alpha}(\lambda) = 1$ and $\tilde{\theta}$ is a 1-1 map of A_{η}^{0} onto $A_{\varphi_{T} \upharpoonright \lambda}^{0} \cap A_{\varphi_{T} \upharpoonright \lambda}^{0} = (A_{\varphi_{T} \upharpoonright \lambda} \cap A_{\varphi_{T} \upharpoonright \lambda}) + A_{\varphi_{T} \upharpoonright \lambda}[p^{k}]$ which is impossible. Therefore $A_{S} \not\simeq A_{T}$ and (1) is shown. (3) will be an immediate consequence of our next, more general, result. Observe that $A_{\varphi_{S} \upharpoonright (\lambda+1)}/A_{\varphi_{S} \upharpoonright \lambda} = \mathbf{Z}_{p^{\infty}}$ if $\lambda \in E$.

DEFINITION 2.3. (I) A separable abelian p-group A is weakly ω_1 -separable if each countable subgroup B of A is contained in a countable ω_1 -pure subgroup C of A, i.e., if $C \subseteq C' \subseteq A$ and C' is countable, then C is a summand of C'.

(II) A weakly ω_1 -separable p-group A is of type $Z(p^{\infty})$, if A admits a pure filtration $A = \bigcup_{\alpha < \omega_1} A_{\alpha}$ such that $A_{\alpha+1}$ is ω_1 -pure in A for all $\alpha < \omega_1$ and if λ is a limit ordinal, A_{λ} is also ω_1 -pure or $A_{\lambda+1}/A_{\lambda}$ is

isomorphic to $\mathbf{Z}(p^{\infty})$.

We will adopt parts of the proof of 1.4 Theorem in $[\mathbf{3},\ \mathbf{p}.\ 506]$ to show

THEOREM 2.4. Let A, A' be weakly ω_1 -separable p-groups of cardinality ω_1 and of type $Z(p^{\infty})$. If there exists a height-preserving isomorphism $\sigma: A[p] \to A'[p]$, then A and A' are filtration-equivalent.

PROOF. We first show that A and A' have pure ω_1 -filtrations $A = \bigcup_{\nu < \omega_1} A_{\nu'} A' = \bigcup_{\nu < \omega_1} A'_{\nu}$ such that $\sigma(A_{\nu}[p]) = A'_{\nu}[p]$ and $A_{\nu+1}(A'_{\nu+1})$ are ω_1 -pure in A(A'):

Let $A = \bigcup_{\nu < \omega_1} \tilde{A}_{\nu}$, $A' = \bigcup_{\nu < \omega_1} \tilde{A}'_{\nu}$ be pure ω_1 -filtrations such that $\tilde{A}_{\nu+1}/\tilde{A}_{\nu}(\tilde{A}'_{\nu+1}/\tilde{A}'_{\nu})$ are either Σ -cyclic or $\cong Z(p^{\infty})$ and $\tilde{A}_{\nu+1}(\tilde{A}'_{\nu+1})$ are all ω_1 -pure in A(A'). The set $C = \{\nu | \sigma(\tilde{A}_{\nu}[p]) = \tilde{A}'_{\nu}[p]\}$ is a cub in ω_1 . Let ν_0 min C.

If \tilde{A}_{ν_0} is ω_1 -pure in A, \tilde{A}'_{ν_0} is ω_1 -pure as well (apply σ) and we may set $A_0 = \tilde{A}_{\nu_0}$ and $A'_0 = \tilde{A}'_{\nu_0}$. If \tilde{A}_{ν_0} is not ω_1 -pure in A, $\tilde{A}_{\nu_0+1}[p]$ is the p-adic closure of $\tilde{A}_{\nu_0}[p]$ in A[p] which implies $\nu_0 + 1 \in C$ and we can take $A_0 = A_{\nu_0+1}$ and $A'_0 = \tilde{A}'_{\nu_0+1}$. Suppose we have defined A_α, A'_α for all $\alpha < \beta$. If β is a limit, take $A_\beta = \bigcup_{\alpha < \beta} A_\alpha$. Suppose $\beta = \gamma + 1$ is a successor and $A_\gamma = \tilde{A}_{\nu_\gamma}$. Let $\nu_{\gamma+1} = \min \{ \rho \in C | \rho > \nu_\gamma \}$ and repeat the argument used at the beginning of our induction.

Hence we may assume $A = \bigcup_{\alpha < \omega_1} A_{\alpha}$ and $A' = \bigcup_{\alpha < \omega_1} A'_{\alpha}$ are pure ω_1 -filtrations, $A_{\alpha+1}(A'_{\alpha+1})$ are ω_1 -pure in A(A') and for $\lambda \in E \leq \omega_1$ we have $A_{\lambda+1}/A_{\lambda} \cong A'_{\lambda+1}/A'_{\lambda} \cong Z(p^{\infty}) \oplus C_{\lambda}$ where C_{λ} is Σ -cyclic. (Observe that a height-preserving isomorphism on the socles of Σ -cyclic p-groups is always induced by some isomorphism of the groups). For $\lambda \in E$, let $A_{\lambda+1} = A^d_{\lambda} \oplus B_{\lambda}$ where $A_{\lambda} \subseteq A^d_{\lambda}, A^d_{\lambda}/A_{\lambda} \cong Z(p^{\infty})$ and $B_{\lambda} \cong C_{\lambda}$. Moreover we fix $w_{\lambda} \in A^d_{\lambda}[p](w'_{\lambda} \in A'^d_{\lambda}[p])$ such that $A_{\lambda+1}[p] = A_{\lambda}[p] \oplus \langle w_{\lambda} \rangle \oplus B_{\lambda}[p]$ and $\sigma(w_{\lambda}) = w'_{\lambda}$. (The element w_{λ} has infinite height in $A_{\lambda+1}[p]/A_{\lambda}[p]$).

Consider the sequence $h^{\lambda} = (h_{A_{\lambda}/A_{\nu}}(w_{\lambda} + A_{\nu})|\nu < \lambda)$. This is an unbounded, increasing sequence of natural numbers. We say that the sequence h^{λ} has a gap at ν if $h^{\lambda}(\mu) < h^{\lambda}(\nu)$ for all $\mu < \nu$. Since

 $h^{\lambda}(\nu)$ are finite heights, gaps don't occur at limit ordinals. Therefore we find a strictly increasing sequence of successor ordinals λ_n such that for $h_n = h^{\lambda}(\lambda_n)$ we have $h_1 < h_2 < \cdots < h_n < h_{n+1}$ and $\lambda = \sup \{\lambda_n | n < \omega\}$. Each A_{λ_n} is a summand of A_{λ} and if we define h'_n, λ'_n for $w'_{\lambda} + A'_{\nu}$, the existence of σ implies $h_n = h'_n$ and $\lambda_n = \lambda'_n$.

We will now study the embedding of A_{λ} into A_{λ}^d , where again $A_{\lambda+1} = A_{\lambda}^d \oplus B_{\lambda}$ and $A_{\lambda}^d/A_{\lambda} \cong Z(p^{\infty})$. Let $h_n = h_{A_{\lambda}/A_{\lambda_n}}(w_{\lambda} + A_{\lambda_n})$. By induction we define elements $w_n \in A_{\lambda}^d$ such that

- $(1) p^{h_n} w_n = w_{\lambda} + \tilde{a}_n, \tilde{a}_n \in A_{\lambda_n}[p],$
- (2) $p^{h_n+1}w_n = 0$,
- (3) $p_{n+2}^h h_n w_{n+1} w_n = a_n \in A_{\lambda_n}$,
- (4) $p^{h_{n+1}}a_n = 0$ and $p^{h_n}a_{n+1} = \tilde{a}_{n+1} \tilde{a}_n$,
- (5) $h_{A_{\lambda}/A_{\nu}}(a_{n+1} + A_{\nu}) = 0$ for all $\lambda_n \leq \nu < \lambda_{n+1}$.

We easily find $u_n \in A^d_{\lambda}$ such that $p^{h_n}u_n - w_{\lambda} = \tilde{a}_n \in A_{\lambda_n}[p]$ and $p^{h_n+2}u_n = 0$. Since $A^d_{\lambda}/A_{\lambda} \cong Z(p^{\infty})$ we have $A^d_{\lambda} = \langle A_{\lambda} \cup \{u_n | n \in \mathbb{N}\} \rangle$ and $p^{h_{n+1}-h_n}u_{n+1} = u_n + b_n$ for some $b_n \in A_{\lambda}$.

We have to adjust the u_n 's to obtain (3):

Assume we have define w_1, \ldots, w_n . If A_{λ} is the torsion completion of A_{λ} we have $A_{\lambda} \subseteq A_{\lambda}^d \subseteq \hat{A}_{\lambda}$ and we may choose a natural basis B of A_{λ} , i.e., B contains a basis B_n of A_{λ_n} and $B = \bigcup_n B_n$.

Now assume $b_n \in A_{\lambda} - A_{\lambda_{n+1}}$, i.e., there exists some $e \in B - B_{n+1}$ such that $b_n(e) \neq 0$.

We distinguish two cases

CASE 1. $w_{\lambda}(e) \neq 0$.

Since $h_{A^d_{\lambda/A_{\lambda_n}}}(w_{\lambda}) = \min\{h_{fZ}(w_{\lambda}(f))| f \in B - B_n\}$, we have $h_{eZ}(\lambda(e)) \geq h_{n+1}$, and $p^{h_{n+1}}u_{n+1} = p^{h_n}u_n + p^{h_n}b_n$ implies $\tilde{a}_{n+1} - \tilde{a}_n = p^{h_n}b_n \in A_{\lambda_{n+1}}$ and therefore $p^{h_n}b_n(e) = 0$. Since $h(w_{\lambda}(e)) \geq h_{n+1}$ and $w_{\lambda}(e) \neq 0$, we get $0(e) \geq p^{h_{n+1}+1}$. This implies $h_{eZ}(b_n(e)) \geq 0(e)p^{-h_n} \geq p^{h_{n+1}-h_{n+1}}$ and there exists an $z_e \in Z$ such that $b_n(e) = ep^{h_{n+1}-h_n}z_e$.

Let $w_{n+1} = u_{n+1} = \Sigma_e e z_e$. Since the sum is finite we have again $w_{n+1} \in A^d_{\lambda}$.

CASE 2. $w_{\lambda}(e) = 0$.

Here we correct u_{n+1} and u_n such that $u_{n+1}(e) = 0 = u_n(e)$. This finally shows (3). (4) is obvious.

We have $h_{k+1} = h_{A_{\lambda}}(w_{\lambda} + \tilde{a}_{k+1}) = h_{A_{\lambda}/A_{\lambda_{k+1}}}(w_{\lambda} + A_{\lambda_{k+1}}) \geq h_{A_{\lambda}/A_{\nu}}((w_{\lambda} + A_{\nu}) + (\tilde{a}_{k+1} + A_{\nu})) \geq \min\{h_{A_{\lambda}/A_{\nu}}(w_{\lambda} + A_{\nu}), h_{A_{\lambda}/A_{\nu}}(\tilde{a}_{k+1} + A_{\nu})\} = \min\{h_{k}, h_{A_{\lambda}/A_{\nu}}(\tilde{a}_{k+1} + A_{\nu})\} \text{ if } \lambda_{n} \leq \nu < \lambda_{n+1}. \text{ Assume } h_{k} > h_{A_{\lambda}/A_{\nu}}(\tilde{a}_{k+1} + A_{\nu}). \text{ Then we have } h_{k+1} \leq h_{A_{\lambda}/A_{\nu}}(w_{\lambda} + \tilde{a}_{k+1} + A_{\nu}) = h_{A_{\lambda}/A_{\nu}}(\tilde{a}_{k+1} + A_{\nu}) < h_{k} \text{ a contradiction. Therefore } h_{k} \leq h_{A_{\lambda}/A_{\nu}}(\tilde{a}_{k+1} + A_{\nu}) = h_{A_{\lambda}/A_{\nu}}(\tilde{a}_{k+1} - \tilde{a}_{k} + A_{\nu}) = h_{A_{\lambda}/A_{\nu}}(p^{h_{k}}a_{k+1} + A_{\nu}) \leq h_{k} \text{ and } h_{A_{\lambda}/A_{\nu}}(a_{k+1} + A_{\nu}) = 0.$

This implies

(*)
$$a_{k+1} + A_{\nu}$$
 generates a cyclic summand of $A_{\lambda_{n+1}}/A_{\nu}$ for all $\lambda_n \leq \nu < \lambda_{n+1}$

It is routine to verify

If $\varphi: A_{\lambda} \to A'_{\lambda}$ is an isomorphism such that $\varphi(a_n) = a'_n$ for $n \ge n_0$, then φ lifts to an isomorphism $\varphi': A_{\lambda+1} \to A_{\lambda+1}$.

Now let $\mu < \lambda$ (w.l.o.g. $\mu < \lambda_1$) and let $f: A_\mu \to A_\mu$ be a level preserving isomorphism such that $f \upharpoonright A_\mu[p] = \sigma \upharpoonright A_\mu[p]$. Using induction we may show that f extends to some level preserving $f': A'_\mu \to A'_\mu$ where $\lambda_1 = \mu' + 1$. Since $a + A_{\lambda_1}(a' + A'_{\lambda_1})$ generate cyclic summands of $A_{\lambda_1}/A_{\mu'}(A'_{\lambda_1}/A'_\mu)$ and $\sigma(p^{h_1}a) = \sigma(\tilde{a}_1) = \tilde{a}'_1 = p^{h_1}a'_1$, we can extend f to f' such that $f'(a_1) = a'_1$. Assume we already found $g_n: A_{\lambda_n} \to A'_{\lambda_n}$ extending $g_{n-1}(f=:g-1)$. Again (*) implies that we may extend g_n to $g_{n+1}: A_{\lambda_{n+1}} \to A'_{\lambda_{n+1}}$ being a level preserving isomorphism.

We may now repeat Eklof's argument [3, p. 507] to obtain a level preserving isomorphism $f_{\nu}: A_{\nu} \to A'_{\nu}$ for all $\nu < \omega_1$.

COROLLARY 2.5 $(MA + \neg CH)$. Two ω_1 -separable p-groups of cardinality \aleph_1 are isomorphic if they are both of type $Z(p^{\infty})$ and have isometric socles.

PROOF. Assumption of Martin's axiom and the denial of the continuum hypothesis makes all weakly ω_1 -separable p-groups ω_1 -separable,

(c.f. [9, Thm 2.2]) and filtration-equivalence means isomorphic, c.f. [9, Thm 4.1] or [2] in the torsion free case.

Combining 2.2 and 2.5 we obtain

COROLLARY 2.6. The question "Are ω_1 -separable p-groups of type $Z(p^{\infty})$ determined - up to isomorphism - by their socles" is undecidable in ZFC.

We will conclude our paper with a construction which answers a question of M. Huber [7, p. 316] and also provides a proof of an assertion of Megibben's [9]. Consult [7, p. 312] for the definition of quotient-equivalence.

THEOREM 2.7 Let E be a stationary subset of ω_1 . Then there exist ω_1 -separable p-groups A, A' of cardinality \aleph_1 such that

- (a) A[p] and A'[p] are isometric.
- (b) $\Gamma(A) = \Gamma(A') = E$.
- (c) A and A' have the same basic subgroup.
- (d) A and A' are not quotient-equivalent.

PROOF. Let $B_{\beta} = \bigoplus \{(\alpha, n, \varepsilon) \mathbf{Z} | \alpha < \beta, n < \omega, \varepsilon \in \{0, 1\}\}$ and $B = \bigcup_{\beta \leq \omega_1} B_{\beta}$ where $0(\alpha, n, \varepsilon) = p^{n+1}$. By induction on $\lambda \in E$ we define $\lambda_* < \omega_1$ such that

- (I) λ_* is a limit ordinal and $\lambda_* > \lambda$.
- (II) $\sup\{\mu_*|\mu<\lambda\}<\lambda_*$.

We may choose for each $\lambda \in E$ a ladder λ_n, λ_n^n of successor ordinals such that $\sup\{\lambda_n|n<\omega\}=\lambda, \sup\{\lambda_*^n|n<\omega\}=\lambda_*$ and $\lambda_*^0>\sup\{\mu_*|\mu<\lambda\}$. For $\lambda \in E$, let $W_{\lambda,k}=\sum_{n=k}^\infty (\lambda_n,n,0)p^{n-k}$ and $W_*^{\lambda,k}=W_{\lambda,k}+V_{\lambda,k}$ where $V_{\lambda,k}=\sum_{n=k-1}^\infty (\lambda_*^n,n,1)p^{n-k+1}$ for $k\geq 1$ and $V_{\lambda,0}=0$. Then we have $p^kW_{\lambda,k}=W_{\lambda,0}-\sum_{i=0}^{k-1}(\lambda_i,i,0)p^i=p^kW_*^{\lambda,k}$ for all $\lambda \in E$ and $k\in \mathbf{N}$. Moreover, the elements $W_*^{\lambda,k},k\geq 1$ are independent modulo $A_\lambda+1$.

Define $A_{\alpha} = \langle (\nu, n, \varepsilon), W_{\lambda, k} | \nu < \alpha, n < \omega, \alpha > \lambda \in E, k < \omega, \varepsilon = 0, 1 \rangle$

and $A'_{\alpha} = \langle (\nu, n, \varepsilon), W_*^{\lambda, k} | \nu < \alpha, n < \omega, \alpha > \lambda \in E, k < \omega, \varepsilon = 0, 1 \rangle.$

For $\lambda \in E$, we have $A_{\lambda+1}/A_{\lambda} \cong Z(p^{\infty})$ and $A'_{\lambda+1}/A'_{\lambda} \cong P$, the reduced Prüfer-group, i.e., $P = (\langle W^{\lambda,k}_{*}|k < \omega \rangle + A'_{\lambda})/A'_{\lambda}, P[p] = \langle W^{\lambda,0}_{*} + A'_{\lambda} \rangle$ and $P/P[p] \cong \bigoplus_{k=1}^{\infty} \langle W^{\lambda,k}_{*} + A'_{\lambda} \rangle$. Observe that $A'_{\lambda+1} + B_{\lambda_{\star}}/B_{\lambda_{\star}}$ is divisible and the identity serves as a height-preserving isomorphism of $A_{\lambda+1}[p]$ onto $A'_{\lambda+1}[p]$. This implies that $A = \bigcup_{\alpha < \omega_{1}} A_{\alpha}$ and $A' = \bigcup_{\alpha < \omega_{1}} A'_{\alpha}$ are the desired groups. We leave the details to the reader.

REFERENCES

- 1. K. Devlin and S. Shelah, A Weak Version of \diamondsuit which follows from $2^{\aleph_0} < 2^{\aleph_1}$, Israel J. Math. **29** (1978), 239-247.
- 2. P. Eklof, Set Theoretic Methods in Homological Algebra and Abelian Groups, Presses Univ. Montréal, Montréal 1980.
- 3. ——, The Structure of ω_1 -separable Groups, Trans. AMS. **279** (1983), 497-523.
- **4.** —— and M. Huber, On ω -filtered Vector Spaces and Their Applications to Abelian p-groups, to appear.
- ${\bf 5.}$ L. Fuchs, Infinite~Abelian~Groups, Vol. I and II, Academic Press, New York, 1973.
- 6. P. Hill and C. Megibben, On Primary Groups with Countable Basic Subgroups, Trans. AMS. 124 (1966), 159-168.
- 7. M. Huber, On the Abundance of Primary Abelian Groups, Proceedings of the Honolulu Conference, Springer LNM 1006 (1983).
 - 8. T. Jech, Set Theory, Academic Press, New York, 1978.
 - **9.** C. Megibben, ω_1 -separable p-groups, manuscript.
- 10. E.A. Walker, On n-extensions of Abelian Groups, Ann. Univ. Sci. Budapest 8 (1965), 71-74.

BAYLOR UNIVERSITY, WACO, TEXAS 76798

Fb. 6-MATHEMATIK, UNIVERSITÄT ESSEN-GHS, D-4300 ESSEN 1, FEDERAL REPUBLIC OF GERMANY