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ON SOCLES OF ABELIAN P-GROUPS IN L

MANFRED DUGAS AND RENE VERGOHSEN

0. Introduction. All groups in this paper are (separable) abelian p-
groups. Our notations are standard as in [5]. For set theoretic notations
we refer to (2] or [8].

One of the most celebrated results in the theory of p-groups is Ulm’s
Theorem: Each countable p-group A is uniquely determined by its socle
Alp] = {z € A|pz = 0}, viewed as a valuated Z/pZ-vectorspace with
values induced by the height-function of A.

Since each countable, separable p-group is X-cyclic (i.e., a direct sum
of cyclics), Ulm’s Theorem doesn’t provide much information in the
case of separable p-groups. The X-cyclic and the torion-complete p-
groups are the only ones known to be determined by their socles in the
class of all separable p-groups. If we only want to deal with separable
p-groups of cardinality X,, a result due to Hill and Megibben [6] reads
as follows:

Assume 2% < 2% If A is neither I-cyclic nor torion-complete and A
has a countable basic subgroup, then there exists a group A’ such that
A and A’ are not isomorphic but the socles A[p] and A’[p] are isometric,
i.e., there exists a height-preserving isomorphism o : A[p] — A'[p].

Assuming that a consequence of Gédel’s axiom of constructibility
holds, namely, {(E) for each stationary subset E of N, we will show
that one may drop the countability condition in the Hill-Megibben
theorem:

THEOREM (V = L). Let A be a separable, abelian p-group of
cardinality Ry. If A is neither X-cyclic nor torion-complete, then there
exists a p-group A’ such that A= A’ but Alp] and A'[p] are isometric.

In our second chapter, we study (weakly) w;-separable p-groups A of
cardinality Ry, cf. [9]. Such a group has an w-filtration A = U, <, A,
into pure, countable subgroups A, such that A,,; is a summand of
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734 ABELIAN P-GROUPS IN L

A, for all v < p < w;. (w; denotes the first uncountable cardinal). If
A" = U,cu, 4!, is another such group, A and A’ are called filtration-
equivalent if for suitable filtrations of A and A’ we have isomorphisms
fu: A, — A, for all v < w; such that f,(A,) = A, for all 4 < v and

we call f, a level-preserving isomorphism on A,,.

If one only wants to construct a particular example rather than giving
a characterisation as in our theorem above, it suffices to have {(E)
available for a particular stationary set F. In our next result, a weak
diamond (cf. [1]) suffices and we only have to assume 2% < 281,
Then there erist w;-separable p-groups which are filtration-equivalent,
have isometric socles and isomorphic basic subgroups without being
themselves isomorphic (Theorem 2.2)

In analogy to [3, Def. 1.3] we say a w;-separable p-group A has type
Z(p™) if in a suitable filtration A = U, <, 4,, where A,,; always is
a summand of A,,p > v, we have Ay;1/A) = Z(p™) @ C) for some
Y-cyclic Cy, or Ay is a summand of A4 for all A < w;. Similar to [3,
Thm. 1.4] we obtain the

THEOREM. Let £,00 be the class of all wi-separable p-groups of type
Z(p™) and of cardinality ®,. If A, A" € {,o0 have isometric socles,
they are filtration-equivalent.

Unfortunately our proof is slightly more complicated than Eklof’s for
the torsion free case, since we cannot use the uniqueness of division by

.
Again extending a result of [3] to p-groups we obtain the

THEOREM. (M A + —~CH). Let A,A" € §{y00. Then A = A’ if and
only if Alp] and A'[p] are isometric.

Here we use the fact (cf. [9]) that assuming M A+ ~CH (=Martin’s
axiom and the denial oft he continuum hypothesis) w;-separable p-
groups are isomorphic if and only if they are filtration-equivalent.

Therefore it is undecidable in ZFC if groups in {,00 are determined
by their socles.
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Finally we will construct w;-separable p-groups (in ZFC) which
are not quotient equivalent (cf. [7] or [2, 3]) but have the same basic
subgroup, the same I'-invariant and isometric socles (Theorem 2.7).

1. Constructing abelian p-groups supported by the same
socle. In the following, each group will be an abelian p-group without
elements of infinite height. We omit the proof of the well-known

LEMMA 1.1. Let G and H be pure and dense subgroups of a torsion
complete p-group B. Then G and H are isomorphic iff there exists
¢ € Aut(B) such that (G) = H.

LEMMA 1.2. Let G be a p-group, n > 0 and H' C G[p™*!] such that
(a) G[p™*] = H' + p™G[p"*!|for allm € N.
(b) p™ G N H'[p"] C p(H' Np™G) for allm € N.

Then there exists a pure and dense subgroup H of G such that
H[p"*| = H'.

REMARK. If n = 0, one doesn’t need (b) and Lemma 1.2 is well known
in this case.

PROOF. Let H be a subgroup of G maximal with respect to H[p"*!] =
H'

CLAIM 1. H is pure in G:
Since obviously pG N H = pH we may assume
(1) p"GNH=pm"H.
Let ptle € pm*1G N H. If p™e € H, we use (1) and obtain a vy € H

such that p™e = p™~y and p™tle = p™*tly € p™t1H. Hence we may
assume

(2) pTe € H.
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Because of the maximality of H there is b € G[p"*!] and v € H such
that

(3) b=p"e+~y

We apply (a) and get p™e’ € p"G[p"*!] and v/ € H' = H[p"*!] such
that b = p™e’+v'. Hence p™e+vy—v' = p™e and y—v = —p™(e—¢€’) €
p"GNH=p"H.

Since p™*tle € H, we obtain p™*le + p(y — ') = p™*le’ € H and
pme’ € G[p"t!] implies p"tle’ € Gp" N H = H'[p"] and p™ e €
H'[p"] N p™*1G C p(H' N p™G) because of (b). Hence there exists
~" € H' N p™G such that p™*le’ = py” and therefore

(4) p"le=p(Y =) +pyY" =p(y —v+7")) and v’ ~v,7" € p"H.
Finally we get p™*le € p™*t!H and H is pure in G.

CLAIM 2. H is dense in G, i.e., G = H + p™@G for all m € N: We
will prove by induction that G[pf] C H + p™G for all £ and m € N.

Because of (a) we have G[p] C H + p™G for all m € N and all
£ <n+1. Suppose £ > n+ 2 and G[p°] C H + p™G for all s < £ and
all m € N.

Let b € G[pf] — G[p*~!] and m € N. Then we have 0 # pb € G[p*~!]
and we obtain p™tle € p™*+1G and vy € H such that pb = p™*le + 4.
Since H is pure in G, we find v/ € H with py’ = 7. Therefore
pb = p™*tle + py' and b = p™e + ' + a for some a € G[p]. By our
assumption we have a = v + p™e’ for some v’ € H,e' € G. Hence
b=+9"+4"+p"(e+€) € H+p™G and G[p] C H + p™G for all
¢,m € N and H is dense in G.

LEMMA 1.3. Let_P be a torsion complete p-group and G a pure and
dense subgroup of B. Let z € B[p] — G[p] and n € N. Moreover let H'
be a subgroup of B[p"*!| such that

(1) G S H' +(2)

(2) H'[p"] = G[p"]

(3) z is an element of the p-adic closure of H' N G[p] in B, i.e. there
exists a sequence {zm},, N such that z, € H'NG[p] and 2~z € p™B.
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Then H' satisfies the conditions (a) and (b) of Lemma 2.

PROOF. We first show (a): Let b € B[p"*!],0() = p*. Since G
is dense in B, we find g € G, ¥ € B such that b = g + p™¥, and
0 = p*b = pg +pm+sbl and p™tsy = —pg € pm+2’§m G = pm+2G‘
Therefore there exists ¢/ € G with p™tsb = p™*5¢’ and b = (g +
p™g’) + (p™b — p™g') € G + p™B[p"*!]. Since G[p"t!] C H'+ < z)
we get g € H',¢ € N such that g+ p™¢' = ¢+ £z and £z — (2, € p™B.
Therefore b = (g + £z,,) + (£2 — €2 +p™b — p™q') € H' + p™B[p"*1]
and B[p"*!] C H' + p™B[p"*!] is shown.

To prove (b), let p™*'b € H'[p"] = G[p"]. Since G is pure in B,
we get ¢ € G such that p™t'b = p™*lg and since p™g € G[p**!],
we obtain ¢ € H' and ¢ € N such that p™g = ¢ + £z and again
p? — (b2 = Lzm) = q + lay, € H' and hiz(q + L2) = hg(p™g — (L2 —
{(2m)) > min {hz(p™g), hg(lz — €zy)} > m. Therefore the p-height
of g+£zy, in B, hg(q+£z) > m and p(q+{zm) = p(p™q— (L2 —lz,)) =
p™*tlg = p™*1b and p™*ib € p(H' Np™B).

All the set theoretical notations we will use in this paper may be
found in P. Eklof’s remarkable paper [3] on w;-separable torsion free
groups.

LEMMA 1.4. Let G be a p-group of regular, uncountable cardinality k.
Then there exists a pure k-filtration G = Uy<xGo of G. (A k-filtration
is called pure, if all the G,’s are pure in G).

We’ll omit the routine proof.

DEFINITION 1.5. Let G = U,<xG, be a pure s-filtration of the
separable p-group G and m € N. G, is called not p™-closed if there
is a y € G such that 0(y) = p™, (y) N G4 = 0 and y € G4[p™] + p*G
for each k € N. Let v(G) = {a < k|lim(a) and G, is not p™-closed},
P(k)/ ~ the Boolean algebra P(x) modulo the ideal of non-stationary
subsets of k and I'"(G) = v(G)/ ~. Then I'*(G) is an invariant of G,
cf. [3] or [7].

REMARK 1.6. Let B be a torsion complete p-group of regular
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cardinality x and G a pure subgroup of B and |G| = k. Then there
exist pure n-ﬁlt@tions G = UgexGq and B = Ug<xB,y of G and B
such that G, C B, for each a < k.

DEFINITION 1.7. Let G be a pure subgroup of the separable p-
group A,|G| = & regular, G = Uy<xG, a pure s-filtration of G and
G, = G4[p"*!]. We may assume |G4| > R for all @ < 5. A subgroup
H of A[p™*!] is called (n, z, @)-admissible in G if z € A[p] — G and

() HN{(z)=0
(2) H[p"] C G[p"]

(3) HC G[p"'] + (2)

(4) |H|(x

(5) G, € H + G[p"] + (2).

LEMMA 1.8. Same notation as in 1.8. If H is a (n, z,a)-admissible
subgroup, then there ezists an (n, z,a + 1)-admissible subgroup H' such
that H + Go4+1[p"] C H'.

PROOF. Let M be the set of all subgroups H of H + G, ;1 such that:

(a) HN(z) =0

(b) H[p"] C G[p"]

() H+ (Gana[p"]) € H.

We will show that H + Go41[p"] € M.

We may assume n > 1. In order to show (a), let h+ g = kz €
(H + Go41[p™]) N (2) where h € H,g € Ga41[p"] and k € Z. Since
h e H[p"] C G[p"],h+ g =kz € GN{(z) =0 and (a) holds. To prove
(b), let a € (H+Go+a[p"])[p"],a = h+g with h € H and g € Ga41[p"]-
Again, 0(h) < p™ and a = h + g € G[p"]. This shows (b) and we have

M 3 0. Since the M is inductive, we may apply Zorn’s Lemma to
obtain a maximal element H’' in M.

Conditions (a), (b) and (c) imply (1), (2) of 1.8 and moreover
H + Ga+1[p"] C H'. Since H C G[p"+1] + (2),0(2) = p and
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Gl 11 C G[p"*'] we obtain H' C H + G, C G[p"*'] + (z). Hence
1.8(3) holds for H' as well and H' C A]p"*']. Now |H|(k,|Gl,,|(k
and |H'| < |H 4+ G| < |H| + |G, 41|(x. This implies 1.8(4). We
have to show G, , € H'+ G[p"] +(z). Let g € G|, ;. If 0(g) < p™ (c)
implies g € H'. Hence we may assume 0(g) = p"*! and g € H'. Then
we have H + Go41[p"] C H' + (9) and the maximality of H' implies
(H'+(9)N{(z) # 0or (H' +(9))[p"] € G[p"™]. We’ll consider two cases:

CASE 1. (H' + (g)) N {z) # 0.

Then there exists h € H' and k € Z such that z = h + kg. Since
Ga+1[p"] € H' and H'N(z) = 0,p doesn’t divide k and there exists k' €
Z with k'kg = g. This implies g = k'(2—h) € H'+(z) C H'G[p"]+ (7).

CasE 2. (' + (g))[p"] € Glp").

Here we have n > 1 and h € H',k € Z with h + kg € G[p"] and
0(h + kg) < p".

Since H' C H + G41 C G[p"*1!] + (2), there exists g € G[p"*'] and
£ € Z such that h + kg = g + ¢=.

Now 0 = p™(h + kg) = p™(g + £2),0(z) = p and n > 1 imply p"g =0
and hence § € G[p"].

We obtain
kg=—-h+g+4¢z€ H + G]p"] + (2).
If p does not divide k, we are finished. Suppose p divides k. Then
kg € G[p"] and O(h + kg) < p™ implies h € H'[p"], a contradiction to
our choice of h + kg.
This shows G, ; C H'+G[p"]+(z) and H' is (n, 2, a+1)-admissible.

In the next lemma, we use diamonds . (F), claiming the existence
of Jensen functions on the stationary subset of the regular cardinal x,

cf. ([2], [8])-

LEMMA 1.9. Assume O (I?H(G)) holds for some fized n € N and
let G be a separable abelian p-group of cardinality k. Moreover let
G # G be the torsion completion of G,I"*(G) # 0,z € G[p] — G[p]
and |G| = k. Then there exists H C G[p™+!] such that
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(@) Glp" '] + (2) = H + (2)

(b) G[p"] = H[p"]

() For all p € Aut(G), ¢(G[p"*']) # H.

(d) z is an element of the p-adic closure of HNG[p] in G.

PROOF. For each k € N take z; € G[p|] such that z — z;, € p*G and
a pure k-filtration G = Uy (.Go with 2, € G, for all k € N and a
k-filtration G = Uy(,Go such that Go C Ga, cf. (6). Let E = {a <
&| lim (@) and G, not p"*!-closed} and {f, : G4 — Gala € E} be a
collection of Jensen functions to witness {,(F).

By induction we will define a subgroup H = U, <, H, of G[p"*+!] such
that

(0) Hy = Go[p™tY] for a < w,

(1) Hg C H, for all 8 < a,

(2) Hy = Ug<oHp if a is a limit ordinal,
(3) z € Hq,

(4) Halp"] € Glp"],

(5) Ha C G[p"*'] + (2),

(6) [Ha| < &,

(Mo =p8+18¢€ E fs(Gslp"*"]) = Hg : fg = ¢ |
Gp for some ¢ € Aut(A) such that z € ¢(G), d(G[p"]) = (G[p"]) and
o(Gp"tY]) C GP"*'] + (2), let H, be defined by H, = Hg+
(¢(Y3) + 2) where

(7a) ys € G, the closure of G in G
(7b) 0(ys) = p"*
(7c) (yg > NG =0.

(8) f @ = 3+ 1 and (3 doesn’t fit into (7) we have G,[p"] C H, and
H, is a (n, z, a)-admissible subgroup.

For n < w let H,, = G,,[p"*!] and the H,,’s satisfy the conditions (0)
- (8). Let § > w and § < k. Suppose we have constructed H, for all
a < 6 satisfying (0) - (8).
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If 6 is a limit ordinal let Hs = Ug<sHg. Since x is regular and
|Hs| < k we have |Hg| < k. Conditions (2) -(5) for Hs are obvious.
Now assume § = 3 + 1.

CASE 1. [ satisfies (7). Since 8 € E, we find yg satisfying (7a) -
(7c). Let Hpy1 = Hp + (¢(Ys) + 2) and assume z € Hgii. Then
z=h+£4(¢(Yg) + 2) for some h € Hg, £ € Z and £ = 0 mod p. Hence
2(1 =€) = h+ £o(yg) and ¢~ (2(1 — £)) = ¢~ 1(h) + Lyg € G because
yp € G and ¢(Gg[p"*t]) = Hy. Therefore z(1—¢) € ¢(G) which implies
¢=1mod p. Now z = h+£(¢(ys)+2) = h+Lp(ys)+2z and £d(yg) € Hg.
Hence fyg € ¢~ 1(Hg) = Gs[p"*!] and by (7c) we get fys = 0. Now
z = h € Hg, a contradiction to (3). Therefore z ¢ Hgy; and we have to
show that Hp,q satisfies (4): Hgy1[p"] C G[p"]. Solet h € Hg, L € Z
such that p"x = 0 where x = h+¢(¢(yg)+2) € Hg41. This implies 0 =
p"r = p"h + p™lp(yg) and p"lyg € ¢~ 1(Hg) = Gs[p"*t!]. Therefore
p™lys = 0 and £ = 0 mod p and hence z = h + £¢(yg) € G[p™] because
0 = p"z = p"h, Halp"] C Glp"] and pé(yp) € H(Glp™]) = Glp"]. This
shows (4). Condition (5) is obvious because ¢(G[p"*!]) C G[p"*+!]+(z)
and Hg C G[p"T!]+(z). By the definition of Hg 1 we have Hg C Hgy1
and |Hgt1| < k.

CASE 2. =("+1 and #' is not a limit ordinal. Then 3’ € F and
Hpg is a (n, z, 3)-admissible subgroup. We may apply Lemma 1.8 to get
a (n, 2z, 3+ 1)-admissible subgroup Hg, with Hg +Gpi1[p"] € Hpy1-
This shows that Hg4 satisfies the conditions (0) - (8).

CASE 3. B =03 +1 and 3 is a limit ordinal. Since H,yo is a
(n, z,a + 2)-admissible subgroup for all & < §' we have Gg [p"*+!] C
Hg + G[p"] + (z). Therefore Gg [p"*!] C Hg + G[p"] + () and with
(3) - (6) for Hg we have Hg is (n, z, 3')-admissible. Now apply Lemma
1.9 two times to obtain a (n, z, 8 + 1)-admissible subgroup Hgy; such
that Hﬁ + Gﬂ+1[pn] Q Hg.;,_l.

This completes our construction. We will show that H satisfies (a),
(b), (c) and (d). Condition (b) is obvious because of (4) and (8) and
H + (2) C G[p"t!] + (z) follows from (5). Since Hy42 is a (n, z,a + 2)-
admissible subgroup for all @ < x and (b) we have G[p"*!] C H + (2).
This shows (a) and since Z is in the closure of G,[p"*!] = H, we
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obtain (d).

To prove (c), let ¢ € Aut(G) such that p(G[p"*!]) = H. Since
C = {a < klp(Ga[p"tY]) = Ha} isa cub and S = {a|p | Ga = fa}
is stationary we have a limit ordinal 3 € C N S.p(G[p"]) = G[p"] is
obvious because of (b) and ¢(G[p"*!]) C G[p"*!] + (2) follows from
(a). Since z € H 2 ¢(G[p]) we have z € ¢(G). Therefore ¢ satisfies
condition (7). But ¢(Y3) € ¢(G[pP*!]) = H and if ¢ € Aut(G) is the
map used in the definition on Hg,, we have ¢ [ Gg = fzs = ¢ | 55
and ¢(Yg) = ¢(Y3) because of the continuity of automorphisms. But
Ys € G[p™*'] implies 6(Y3) = ¢(Ys) € H and ¢(Yg) + 2 € H by
construction, so we obtain the contradiction z € H. This proves (c).

We are now able to prove our main result.

THEOREM 1.10. (V' = L). Let G be a separable p-group of regular
cardinality k, G its torsion-completion and T (G) # 0 and G # G.
Then there exists a subgroup H C G such that

(i) H is pure and dense in G

(ii) Glp"] = H[p"]
(i) H = G.

PROOF. We apply Lemma 1.9 and get H C G[p"t!] satisfying (1.9a),
(1.9b) (1.9¢c) and (1.9d). Now apply Lemma (1.2) and (1.3) to obtain

a pure and dense subgroup H of G such that H = H[p"*!] and
Glp"] = H[p"] = H[p"].

Assume G = H. Then there exists a ¢ € Aut(G) such that p(G) = H
and hence (G[p"*1]) = H[p"*!] = H contradicting (1.9c).

THEOREM 1.11. (V = L). Let n € N and G a separable p-group
of cardinality R, such that G is neither X-cyclic nor torsion-complete.
Then there ezists a separable p-group H such that H is not isomorphic
to G but there exists a height-preserving isomorphism ¢ : H[p| — G|[p).

For the proof of (1.11) we need
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LEMMA 1.12. Let H be a separable p-group, C' a subgroup of H and
S a dense subsocle of H (cf. [5]). If C'[p] C S then there exists a pure
subgroup H of H such that C' < H,H[p| = S and H/H is divisible.

Let

Me = {H < H|H[p) = S and C’' < H} and
M = {H < H|H[p| = S}. Obviously C' + S € M¢c: C M

because C’'[p] C S. Since M¢r is inductive, we may apply Zorn’s
Lemma to obtain a maximal element H in M¢:. Then H is a maximal
element in M. By [5, 66.3] we have that H is pure and dense in H.
This shows (1.12).

PROOF OF (1.11). Let G be the torsion-completion of G. Since G
is not torsion-complete we have G # G. If I'§ (G) # 0 then (1.10)
implies that there is a pure and dense subgroup H such that H = G
and H[p] = G[p]. It is obvious that the identity map on the socles of H
and G is an isometry because H and G are pure subgroups of G. This
shows (1.11) in the case T} (G) # 0.

Now assume I'; (G) = 0. Since G is not T-cyclic we have I'y (G) # 0,
cf. [4].

We will show that there is a subgroup H of G such that (a) H is pure
in G, (b) H[p] = G[p] and (c) I‘gfl(H) # 0 for all n € N. Let G[p| =
Un<w, Sa be an wi-filtration of G[p] (with So = 0) and for a < wy let
Sa be the closure of S, in G. Then S, < S, < Glp],Sp < S, for
all 8 < a and G[p] = Ug<w, Sa. By induction we will define for each
a < w subgroups H, and H, such that

(1) Hg < Hy for all B < o,

(1 )H3<H for all 8 < a,

) H

(2
®) Ha is a pure subgroup of H,,
(3) Halp] = S.

(3) Halp] = S,

(4) H, is pure in G,

= Ug<aHp if o is a limit ordinal
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(4) H, is pure in G,

(5) Hy/H, is divisible.

Let Hy = 0 and Hy = 0. Since G is separable and Sy = 0 we have
So = 0. Hence Hy and Hy satisfy the conditions (1)-(5) and (1)-(4).
Let § > 0 and § < w;. Suppose we have constructed H, and H, for all
a > 0 satisfying (1)-(5) and (1)-(4).

Let C = Ua<sHs. Then C is a pure subgroup of G because of (1)
and (4) for all @ < 6. Since S, is contained in Ss for all a < § we have
Clpl = (Ua<sHo)[p] = UacsSa < Ss. By [5, 74 (e) and 74 1] we get a
pure subgroup Hjs of G such that C < H; and H(s[p] . Hence Hj
satisfies the conditions (1), (3) and (4). Now we have to construct H;.

Let C' = Us<sHa- Then C'[p] = (Ug<sHa[p] = Ua<sSa < Sy <
H;slp) and C = UgcsHo < UacsHy < Hs. Condition (1) and (4) for
all @ < 6§ imply that C' is a pure subgroup of G. Therefore C’ is a
pure subgroup of Hs. Next we show that Hs[p] = S5 + png[p] for all
k € N. Let k € N. Since G and H, are pure subgroups of G,8s <G
and S5 = Hs[p] < Hs, we have

kaﬂ_S-b‘ Zpk_éﬂGﬂgs =pkaﬂ§5 zpkaﬂﬁgﬂgg =
=p*HsNSs =p*Hs N ffé[l’] = Pkffa[P]~

Therefore, since S; is the closure of S5 in G, H [p] = Ss = Ss+ (p*GnN
Ss) = Ss + p*Hs[p|. Now we may apply (1. 12) to get a pure subgroup
Hj of Hs such that C' < Hs Hs[p] = S5 and H,/H, is divisible. Since
H; is pure in H5 and H5 is pure in G, we have Hjs is pure in G.
Hence H, and H, satisfy the conditions (1)-(5) and (1)-(4) and our
construction works.

Let H = Uq<,, H,. Condition (1), (4) and (3) imply that H is a pure
subgroup of G and ‘

H[p] = (Ua<uJ1 Ha)[p] Ua<un = G[p}

This shows (a) and (b).

From (1), (4), (3) and (2) we conclude that Uy<., Ho is a pure
subgroup of G, (Ua,w, Ho)[p] = G[p] and Uag<w, Ho < H. Therefore
H([p] = (Ua<w, Ha)[p] and Ug<w, Hq is a pure subgroup in H. By [5, 26
(3), p- 115] we have H = Ug<u, Hy. Since |S,| < wy and Hy[p] = So
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we infer that |H,| < wi. Now in view of (1) and (2) we have that
H = Uycw, Hy is a wy-filtration of H. Let E = {a < w;|S, is not
closed in g} and G = Uy<w, Go a pure wi-filtration of G. Then

E/ ~ = {a < wi|Gq[p] is not closed in G}/ ~
= {a < w1|Gy is not p — closed in G}/ ~=T} (G) #0

Hence E is a stationary subset of w;. Let @ € E and n € N. Then
Sa F* =S, and therefore Ha / Ha # 0. Since H o/ He is divisible and H,
is pure in H, we find a y,, € H, such that 0(y,) = p"**, (y,) N Hy =0
and y, € Ho[p"t] + p*H, C Ho[p"™] + p*H for all k € N. This
shows that a € E,+1 = {a < wi|H, is not p"*1-closed in H}. Hence
F;;;H(H ) 5= 0, because E is stationary in w;. This shows (¢). Since
G and H are pure subgroups of G and G[p| = H|[p|, the groups have
isometric socles. But G = H because I'y (G) = 0 and '} (H) # 0.

This completes the proof of (1.11).

2. wi-separable p-groups with equal socles. In this chapter we
will construct - using weak diamonds - wj-separable p-groups having
isometric socles. Similar constructions may be found in (3], [4].

Let B be X-cyclic p-group, B = @®a<w, Pn<w (@,n)Z such that
0(a,n) = p™** for all @ < w; and some fixed k € N. We fix a stationary
subset E C w; such that F C {a < wi]| lim (&)}, i.e., all elements of E
are limit ordinals.

For each )\ € F fix a ladder {)‘"}nEN’ ie, Ay < Apy1 foralln e N
and A = sup{\,|n € N}. Moreover we choose %, ) € Z such that
Z(xn) = 1 mod pk. For A\ < wy let By = ®acr Bnew (a, n)Z and B,
the torsion-completion of By and if lim (1)), let BA = Uy <rBa. For each
X € E, define X, = Z,,5,n (A, n)p" ™ € By — B,. Define z(\, n) to be
1if n is odd and 2(),2n) = 2(\,n) and assume #(A\,n) = 1 mod p*+1.
Let AL, = Zn>m(An,n)2(A,n)p"~™. Observe that for € = 0,1 we have
PAS,p1 — A5, € By and A3 = A for all A € E. Set Go = (Bq, A5, |lm <
w,e € {0,1},A < ). Then G = Uscw, Go is an wi-filtration of the
pure subgroup G of B := B,

We will need the following.

LEMMA 2.1. Let Ao, A1 be pure subgroups of By such that By C
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Ag N Ay and Ag[p*] = Ai[p*]. Let A5 = (A, X |m < w),e = 0,1
Then A%, A are pure subgroups of By such that A°[p*] = A'[p*] and
A®N A = (Ag N Ay) + A%[p¥).

PROOF. Since A¢/A, is divisible and A, pure in B,\, AF is pure in B)\.
If r € A°[pX],x = ap + A%, for some ag € Ag.m < w and 7 € Z.

Since ay € B, we obtain (An,n)p"~™pF = 0 for almost all n and
p" ™*tkr = 0 mod p"t* and hence r = 0 mod p™. This implies
x € Ag[pF] @ (\J) and a similar argument shows A![p*] = A;[p*]® (\})
and the above remarks show A°[p*] = Al[p*]. Take now any = €
AN A, Then x = ap + A\o%r = a; + Al, where a. € A, 1,5 €
Z and m < w. This implies a9 — af = —A\,7 + A\ps and again
(An,n) ("~ ™2(A,p) — p"~™r) = 0 for almost all n < w, which implies
sz(A, 1) = r mod p™** for almost all n < w.

Therefore sz(\,n) = sz(\,n') mod p™** if n,n’ > ny. By our choice
1 = z(\,n) mod p* if nis odd and 2(\,n) £ z(\,n+1) mod p**+! which
implies s = 0 mod p™ and r = 0 mod p™. Therefore z = ag + \2, €
Ao + A[p*] and A\or = Al s also implies ap = a1 € Ag N A; and
T € (AgN Ay) + A%pF] = A°n AL

Recall that a stationary subset E C w; is non-small, if the weak
diamond ¢,,(E) holds. (cf. [ 1])

THEOREM 2.2. (2% < 2%1). Let E be a non-small subset of w;.
There ezxist 28 many w, -separable p-groups A,, o < 281, such that

(0) ['(An) = E for all a < 281,

(1) Aa = Ay if a £ B,

(2) Aq[p*] = Ag[p¥] are isometric ,

(3) For all a, 3 < 281, A, and Ag are filtration-equivalent.

PROOF. Since 2% < 281 there exists a partition E = Uy<,, E, into
non-small subsets E,. (c.f. [1]).

For each 1 € “*2 we define a group A, = U<, Anra such that

() Afyro =0and Aypx C By,
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(l.]) lim ()‘) = An[)\ = Ua<>\Anraa
(HJ) v é E = An[u+1 = A"q

(iv) If v € E, Aypuy1 = 45, =n(v +1)

according to Lemma 2.1 (so we have A),, NAL,, = Ay, +Af”,,[pk]).

For each § € F define a partition function Ps: If £,p € w; and
BT 0. 40 0
hi A — A, ot P(é,p’h):{l if h lifts to h”: A — A)
0 otherwise

Let 9o be the function provided by ¢x, (E,), i.e., {v € Ey|to(v) =
Py(s | vt | v,g)} is stationary for each s,t < wy and g : A, — A;.
Take ¥ < P(N;) such that S =T if S, TeXand SCTorT C S. We
may choose a¥ s.t. |T| = 2.
Yo(b)ifé6 € E,and a € S
0 otherwise ’

Take Ag := Aps = Ua<w, Apsia- By our construction, obviously
As[p*] = Ar[p*] and elements have equal heights. This implies (2).
Let S,T € ¥,5 5 T and assume h : Ag — Ap is an isomorphism.
Then the set C = {v < Ry|h(Ayg1,) = Ag, v} is a cub.

Take any a € T — S and A € E,NC. Setn = ps | A\ =
or | A0 = h | A, Since A € Eg for all B € S,ps5(X) =
0,%a(X) = Puy(n,p,0) and w.lo.g. 0 lifts to a 0 : Ag = Ao 1041) —

O . .
Aprtnt1) = Azf['.,,\) because A, t(a+1)(Apr1(r+1)) is the p-adic closure

of Ay (A,) in As(Ar). Therefore ¥,()) = 1 and 8 is a 1-1 map
of AjontoA] N AD 1\ = (Aprta N Aprpa) + A,ria[p¥] which is
impossible. Therefore Ag 2 Ar and (1) is shown. (3) will be an
immediate consequence of our next, more general, result. Observe that

Apstont1)/Apsia = Lpo if A€ E.

Now define g5 € 2% such that pg(6) = {

DEFINITION 2.3. (I) A separable abelian p-group A is weakly w;-
separable if each countable subgroup B of A is contained in a countable
w1-pure subgroup C of A, i.e., if C C C' C A and C’ is countable, then
C is a summand of C’.

(IT) A weakly w;-separable p-group A is of type Z(p*), if A admits

a pure filtration A = Uy« Ao such that Aay; is wi-pure in A for all
a < w; and if X is a limit ordinal, Ay is also w;-pure or Ayy1/Ay is
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isomorphic to Z(p*).

We will adopt parts of the proof of 1.4 Theorem in [3, p. 506] to
show

THEOREM 2.4. Let A, A’ be weakly wy-separable p-groups of cardinal-
ity wr and of type Z(p>). If there exists a height-preserving isomor-
phism o : A[p] — A'[p], then A and A’ are filtration-equivalent.

PROOF. We first show that A and A’ have pure w;-filtrations A =
Up<w, A A" = Uy, A, such that o(A,[p]) = A} [p] and A, 1(4],)
are wi-pure in A(A’):

Let A = U,,<u,1AU,A’ = Upcuw, Af, be pure w;-filtrations such that
Au+1/Au(AL+1/AL) are either 3-cyclic or & Z(p™) and A,,H(ALH)
are all w;-pure in A(A’). The set C = {v|o(A,[p]) = A’ [p]} is a cub in
wy. Let vg min C.

If A,, is w)-pure in A, fif,o is wi-pure as well (apply o) and we may
set Ag = A,,o and A} = ALO. If Ayo is not wy-pure in A,A,,Oﬂ[p] is the
p-adic closure of A,,[p] in Alp] which implies vp + 1 € C and we can
take Ag = Ay 41 and Ay = A}, ;. Suppose we have defined A,, A,
for all o < 8. If B is a limit, take Ag = Ua<pAqs. Suppose B =7y +1
is a successor and A, = A, . Let v,4; = min {p € C|p > v,} and
repeat the argument used at the beginning of our induction.

Hence we may assume A = Uy, Ay and A’ = Uy<,, A), are pure
wy-filtrations, Aq41(Al, ;) are wi-pure in A(A’) and for A € E < w;
we have Axy1/Ax = Ay, /A\ = Z(p™) ® Cy where Cy is X-cyclic.
(Observe that a height-preserving isomorphism on the socles of X-
cyclic p-groups is always induced by some isomorphism of the groups).
For A € E, let Ayy1 = Al @ By where Ay, C A}, A}/A\ = Z(p™)
and By & C,. Moreover we fix wy € A¢[p|(w) € A’; [p]) such that
Axi1[p] = Ax[p] ® (wy) ® Ba[p] and o(wy) = w). (The element wy has
infinite height in Ax+1[p]/Ax[p])-

Consider the sequence h* = (hg, /4, (wx + Ay)|lv < A). This is an

unbounded, increasing sequence of natural numbers. We say that the
sequence h* has a gap at v if h*(u) < h*(v) for all u < v. Since



M. DUGAS AND R. VERGOHSEN 749

h*(v) are finite heights, gaps don’t occur at limit ordinals. Therefore
we find a strictly increasing sequence of successor ordinals A, such
that for h,, = h’\()\n) we have hy < hy < -+- < hy < hpy1 and
A= sup {M\|n < w}. Each A, is a summand of Ay and if we define
hl,, A, for w) + A}, the existence of o implies h,, = h], and A\, = A},.

We will now study the embedding of A, into A%, where again
Axy1 = A} @ By and A%/A, = Z(p™). Let h, = ha,/ay, (wx+ Ay,).
By induction we define elements w,, € A¢ such that

(1) phw,, = wy + an, an € Ay, [p],

(2) ph"+1wn =0,

(3) p2,+2 = hpWny1 — Wy = ay € A)\n,

(4) ' +1a, = 0 and p"ra, ) = Gng1 — @n,

(5) hay/a,(ans1+Ay) =0 for all Ay v < Apyy.

We easily find u,, € A‘)’\ such that p'ru, —wy = @, € Ay, [p] and
p"*2u,, = 0. Since AY/A\ = Z(p™) we have A = (A) U {un|
n € N}) and phn+i=hny, = u,, + b, for some b, € Aj.

We have to adjust the u,’s to obtain (3):

Assume we have define wy, ..., w,. If A, is the torsion completion
of Ay we have Ay C A‘ﬁ C A, and we may choose a natural basis B of
Ay, i.e., B contains a basis B, of Ay, and B = U, B,,.

Now assume b, € Ay — A, ,, i.e., there exists some e € B — By
such that b, (e) 7 0.

We distinguish two cases

CASE 1. wy(e) # 0.
Since hAAi/A (wx) = min {hsz(wr(f))|f € B — By}, we have
An

hez(x(€)) > hny1, and pie+iu, g = pPruy, +phnb, implies @pq1 —an =
p'nb, € A,,,, and therefore p"~b,(e) = 0. Since h(wr(e)) > hnt1
and wy(e) # 0, we get 0(e) > p*»+1T1. This implies he,(by(e)) >
O(e)p‘h" > phnt1=ha+tl and there exists an z. € Z such that b,(e) =
eph"“‘h"z,,.

Let wpt1 = Upy1 = Leeze. Since the sum is finite we have again
w € A¢

n+1 '’
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CASE 2. wy(e) = 0.

Here we correct u,+; and u, such that u,;1(e) = 0 = u,(e). This
finally shows (3). (4) is obvious.

We have hiy1 = hA/\(w,\ + (~lk+1) = hAf\/AAkJ,] (w,\ + A,\k+1) >
ha,/a, (wr+Ay)+H(@rs1+A,)) > min{ha, /4, (wr+A4,),ha, 4, (@re1+
A))} = min{hg,ha, a,(@rs1 + A))}if Xy < v < Apg1. Assume
hy > hA,\/A.,(&k+l + A,). Then we have hpyy < hA’\/Ay(w,\ + apy1 +
Ay) = ha,ja,(arq1 + A)) < hp a contradiction. Therefore h; <
hayja, @k + Au) = hayja, (@rsr — @k + Ay) = ha,/a, (P™arqr +
A,,) < hi and hA,\/AV(ak.H + Ay) =0.

This implies
(%) ar4+1 + A, generates a cyclic summand of Ay, /A,

for all A\, < v < Ay

It is routine to verify

If ¢ : Ay — A is an isomorphism such that yp(a,) = al,

for n > ng, then ¢ lifts to an isomorphism ¢’ : Ay;; — Axy1.
Now let o < A (w.log. p < A) and let f : A, — A, be a
level preserving isomorphism such that f [ A,[p] = o | A,[pl
Using induction we may show that f extends to some level preserving
f'+ A, — Aj where \y = p/+1. Since a+ Ay, (a'+A) ) generate cyclic
summands of Ay, /A, (A}, /A,) and o(p"a) = 0(a1) = @) = p"*a}, we
can extend f to f' such that f'(a;) = a}. Assume we already found
gn + Ay, — A, extending gn_1(f =: g — 1). Again (*) implies that
we may extend g, to g,41 @ Ay — AC\,,H being a level preserving
isomorphism.

n+1

We may now repeat Eklof’s argument [3, p. 507] to obtain a level
preserving isomorphism f, : A, — A} for all v < w;.

COROLLARY 2.5 (MA + =CH). Two w;-separable p-groups of car-
dinality Ry are isomorphic if they are both of type Z(p™) and have
isometric socles.

PROOF. Assumption of Martin’s axiom and the denial of the contin-
uum hypothesis makes all weakly w;-separable p-groups wj-separable,
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(c.f. [9, Thm 2.2]) and filtration-equivalence means isomorphic, c.f. [9,
Thm 4.1] or [2] in the torsion free case.

Combining 2.2 and 2.5 we obtain

COROLLARY 2.6. The question “Are wi-separable p-groups of type
Z(p®) determined - up to isomorphism - by their socles” is undecidable
in ZFC.

We will conclude our paper with a construction which answers a
question of M. Huber [7, p. 316] and also provides a proof of an
assertion of Megibben’s [9]. Consult [7, p. 312] for the definition of
quotient-equivalence.

THEOREM 2.7 Let E be a stationary subset of wy. Then there exist
w1 -separable p-groups A, A' of cardinality Ry such that

(a) A[pland A'[p|are isometric.

(b) [(4) =T(4") =

(c) A and A’ have the same basic subgroup.
(

d) A and A’ are not quotient-equivalent.

PROOF. Let B = @&{(a,n,&)Zja < f,n < w,e € {0,1}} and
B = Ug<w, Bg where 0(a,n,¢) = p"“‘ By induction on A € E we
define )\, < w; such that

(I) A« is a limit ordinal and A\, > A.

(IT) sup{p«|ir < A} < As.

We may choose for each A € E a ladder \,, A} of successor ordinals
such that sup{\.|n < w} = A\ sup{\?n < w} = A, and X0 >
sup{p.lp < A\}. For A € E, let Way = 3o, (An,n,0)p"* and
W*'\’k = Wi + Viax where V) = Zzo=k__1()\f,n,l)p"_k+l for k> 1
and Vyo = 0. Then we have p*Wy = Wyo — Zfz—ol()\i,i,O)pi =
pkW,.f\ * for all A\ € E and k € N. Moreover, the elements W*’\‘k, k>1
are independent modulo Ay + 1.

Define A, = ((v,n,e), Waxlv < a,n <w,a>A€ E,k<w,e=0,1)
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and A, = (v,n,e), W v < a,n <w,a > A€ Bk <w,e=0,1).

For A € E, we have Ay;1/Ay = Z(p™) and A&+1/A’ >~ P the
reduced Priifer-group, ie., P = ((Wi*k < w) + A\)/ AL Plp] =
(W20 4 A}) and P/P[p] = &2 (W)* + A}). Observe that A}, +
B, /B,, is divisible and the identity serves as a height-preserving
isomorphism of Aj41([p] onto A}, [p]. This implies that A = Uy<y, Aa
and A’ = Ug<o, 4., are the desired groups. We leave the details to the
reader.
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