ON SOCLES OF ABELIAN P-GROUPS IN L

MANFRED DUGAS AND RENÉ VERGOHSEN

0. Introduction. All groups in this paper are (separable) abelian p groups. Our notations are standard as in [5]. For set theoretic notations we refer to [2] or [8].

One of the most celebrated results in the theory of p-groups is Ulm's Theorem: Each countable p-group A is uniquely determined by its socle $A[p]=\{x \in A \mid p x=0\}$, viewed as a valuated $Z / p Z$-vectorspace with values induced by the height-function of A.

Since each countable, separable p-group is Σ-cyclic (i.e., a direct sum of cyclics), Ulm's Theorem doesn't provide much information in the case of separable p-groups. The Σ-cyclic and the torion-complete p groups are the only ones known to be determined by their socles in the class of all separable p-groups. If we only want to deal with separable p-groups of cardinality \aleph_{1}, a result due to Hill and Megibben [6] reads as follows:
Assume $2^{\aleph_{0}}<2^{\aleph_{1}}$. If A is neither Σ-cyclic nor torion-complete and A has a countable basic subgroup, then there exists a group A^{\prime} such that A and A^{\prime} are not isomorphic but the socles $A[p]$ and $A^{\prime}[p]$ are isometric, i.e., there exists a height-preserving isomorphism $\sigma: A[p] \rightarrow A^{\prime}[p]$.

Assuming that a consequence of Gödel's axiom of constructibility holds, namely, $\diamond(E)$ for each stationary subset E of \aleph_{1}, we will show that one may drop the countability condition in the Hill-Megibben theorem:

Theorem $(V=L)$. Let A be a separable, abelian p-group of cardinality \aleph_{1}. If A is neither Σ-cyclic nor torion-complete, then there exists a p-group A^{\prime} such that $A \cong A^{\prime}$ but $A[p]$ and $A^{\prime}[p]$ are isometric.

In our second chapter, we study (weakly) ω_{1}-separable p-groups A of cardinality \aleph_{1}, cf. [9]. Such a group has an ω_{1}-filtration $A=\cup_{\nu<\omega_{1}} A_{\nu}$ into pure, countable subgroups A_{ν} such that $A_{\nu+1}$ is a summand of
A_{μ} for all $\nu<\mu<\omega_{1}$. (ω_{1} denotes the first uncountable cardinal). If $A^{\prime}=\cup_{\nu<\omega_{1}} A_{\nu}^{\prime}$ is another such group, A and A^{\prime} are called filtrationequivalent if for suitable filtrations of A and A^{\prime} we have isomorphisms $f_{\nu}: A_{\nu} \rightarrow A_{\nu}^{\prime}$ for all $\nu<\omega_{1}$ such that $f_{\nu}\left(A_{\mu}\right)=A_{\mu}$ for all $\mu \leq \nu$ and we call f_{ν} a level-preserving isomorphism on A_{μ}.

If one only wants to construct a particular example rather than giving a characterisation as in our theorem above, it suffices to have $\diamond(E)$ available for a particular stationary set E. In our next result, a weak diamond (cf. [1]) suffices and we only have to assume $2^{\aleph_{0}}<2^{\aleph_{1}}$. Then there exist ω_{1}-separable p-groups which are filtration-equivalent, have isometric socles and isomorphic basic subgroups without being themselves isomorphic (Theorem 2.2)

In analogy to [3, Def. 1.3] we say a ω_{1}-separable p-group A has type $Z\left(p^{\infty}\right)$ if in a suitable filtration $A=\cup_{\nu<\omega_{1}} A_{\nu}$, where $A_{\nu+1}$ always is a summand of $A_{\mu}, \mu>\nu$, we have $A_{\lambda+1} / A_{\lambda}=Z\left(p^{\infty}\right) \oplus C_{\lambda}$ for some Σ-cyclic C_{λ}, or A_{λ} is a summand of $A_{\lambda+1}$ for all $\lambda<\omega_{1}$. Similar to [3, Thm. 1.4] we obtain the

THEOREM. Let $\xi_{p} \infty$ be the class of all ω_{1}-separable p-groups of type $Z\left(p^{\infty}\right)$ and of cardinality \aleph_{1}. If $A, A^{\prime} \in \xi_{p} \infty$ have isometric socles, they are filtration-equivalent.

Unfortunately our proof is slightly more complicated than Eklof's for the torsion free case, since we cannot use the uniqueness of division by p.

Again extending a result of [3] to p-groups we obtain the

Theorem. $(M A+\neg C H)$. Let $A, A^{\prime} \in \xi_{p} \infty$. Then $A \cong A^{\prime}$ if and only if $A[p]$ and $A^{\prime}[p]$ are isometric.

Here we use the fact (cf. [9]) that assuming $M A+\neg C H$ (=Martin's axiom and the denial oft he continuum hypothesis) ω_{1}-separable p groups are isomorphic if and only if they are filtration-equivalent.
Therefore it is undecidable in $Z F C$ if groups in $\xi_{p} \infty$ are determined by their socles.

Finally we will construct ω_{1}-separable p-groups (in $Z F C$) which are not quotient equivalent (cf. [7] or $[\mathbf{2}, \mathbf{3}]$) but have the same basic subgroup, the same Γ-invariant and isometric socles (Theorem 2.7).

1. Constructing abelian p-groups supported by the same socle. In the following, each group will be an abelian p-group without elements of infinite height. We omit the proof of the well-known

LEMMA 1.1. Let G and H be pure and dense subgroups of a torsion complete p-group \bar{B}. Then G and H are isomorphic iff there exists $\varphi \in A u t(\bar{B})$ such that $\varphi(G)=H$.

Lemma 1.2. Let G be a p-group, $n \geq 0$ and $H^{\prime} \subseteq G\left[p^{n+1}\right]$ such that
(a) $G\left[p^{n+1}\right]=H^{\prime}+p^{m} G\left[p^{n+1}\right]$ for all $m \in N$.
(b) $p^{m+1} G \cap H^{\prime}\left[p^{n}\right] \subset p\left(H^{\prime} \cap p^{m} G\right)$ for all $m \in N$.

Then there exists a pure and dense subgroup H of G such that $H\left[p^{n+1}\right]=H^{\prime}$.

REMARK. If $n=0$, one doesn't need (b) and Lemma 1.2 is well known in this case.

PROOF. Let H be a subgroup of G maximal with respect to $H\left[p^{n+1}\right]=$ H^{\prime}.

Claim 1. H is pure in G :
Since obviously $p G \cap H=p H$ we may assume

$$
\begin{equation*}
p^{m} G \cap H=p^{m} H \tag{1}
\end{equation*}
$$

Let $p^{m+1} e \in p^{m+1} G \cap H$. If $p^{m} e \in H$, we use (1) and obtain a $\gamma \in H$ such that $p^{m} e=p^{m} \gamma$ and $p^{m+1} e=p^{m+1} \gamma \in p^{m+1} H$. Hence we may assume

$$
\begin{equation*}
p^{m} e \models H . \tag{2}
\end{equation*}
$$

Because of the maximality of H there is $b \in G\left[p^{n+1}\right]$ and $\gamma \in H$ such that

$$
\begin{equation*}
b=p^{m} e+\gamma \tag{3}
\end{equation*}
$$

We apply (a) and get $p^{m} e^{\prime} \in p^{m} G\left[p^{n+1}\right]$ and $\gamma^{\prime} \in H^{\prime}=H\left[p^{n+1}\right]$ such that $b=p^{m} e^{\prime}+\gamma^{\prime}$. Hence $p^{m} e+\gamma-\gamma^{\prime}=p^{m} e^{\prime}$ and $\gamma-\gamma^{\prime}=-p^{m}\left(e-e^{\prime}\right) \in$ $p^{m} G \cap H=p^{m} H$.

Since $p^{m+1} e \in H$, we obtain $p^{m+1} e+p\left(\gamma-\gamma^{\prime}\right)=p^{m+1} e^{\prime} \in H$ and $p^{m} e^{\prime} \in G\left[p^{n+1}\right]$ implies $p^{m+1} e^{\prime} \in G p^{n} \cap H=H^{\prime}\left[p^{n}\right]$ and $p^{m+1} e^{\prime} \in$ $H^{\prime}\left[p^{n}\right] \cap p^{m+1} G \subseteq p\left(H^{\prime} \cap p^{m} G\right)$ because of (b). Hence there exists $\gamma^{\prime \prime} \in H^{\prime} \cap p^{m} G$ such that $p^{m+1} e^{\prime}=p \gamma^{\prime \prime}$ and therefore
(4) $\left.p^{m+1} e=p\left(\gamma^{\prime}-\gamma\right)+p \gamma^{\prime \prime}=p\left(\gamma^{\prime}-\gamma+\gamma^{\prime \prime}\right)\right)$ and $\gamma^{\prime}-\gamma, \gamma^{\prime \prime} \in p^{m} H$.

Finally we get $p^{m+1} e \in p^{m+1} H$ and H is pure in G.

Claim 2. H is dense in G, i.e., $G=H+p^{m} G$ for all $m \in \mathbf{N}$: We will prove by induction that $G\left[p^{\ell}\right] \subseteq H+p^{m} G$ for all ℓ and $m \in \mathbf{N}$.
Because of (a) we have $G\left[p^{\ell}\right] \subseteq H+p^{m} G$ for all $m \in \mathbf{N}$ and all $\ell \leq n+1$. Suppose $\ell \geq n+2$ and $G\left[p^{s}\right] \subseteq H+p^{m} G$ for all $s<\ell$ and all $m \in \mathbf{N}$.
Let $b \in G\left[p^{\ell}\right]-G\left[p^{\ell-1}\right]$ and $m \in \mathbf{N}$. Then we have $0 \neq \mathrm{pb} \in G\left[p^{\ell-1}\right]$ and we obtain $p^{m+1} e \in p^{m+1} \bar{G}$ and $\gamma \in H$ such that $\mathrm{pb}=p^{m+1} e+\gamma$. Since H is pure in G, we find $\gamma^{\prime} \in H$ with $p \gamma^{\prime}=\gamma$. Therefore $p b=p^{m+1} e+p \gamma^{\prime}$ and $b=p^{m} e+\gamma^{\prime}+a$ for some $a \in G[p]$. By our assumption we have $a=\gamma^{\prime \prime}+p^{m} e^{\prime}$ for some $\gamma^{\prime \prime} \in H, e^{\prime} \in G$. Hence $b=\gamma^{\prime}+\gamma^{\prime \prime}+p^{m}\left(e+e^{\prime}\right) \in H+p^{m} G$ and $G\left[p^{\ell}\right] \subseteq H+p^{m} G$ for all $\ell, m \in \mathbf{N}$ and H is dense in G.

LEMMA 1.3. Let \bar{B} be a torsion complete p-group and G a pure and dense subgroup of \bar{B}. Let $z \in \bar{B}[p]-G[p]$ and $\eta \in \mathbf{N}$. Moreover let H^{\prime} be a subgroup of $\bar{B}\left[p^{n+1}\right]$ such that
(1) $G\left[p^{n+1}\right] \subseteq H^{\prime}+\langle z\rangle$
(2) $H^{\prime}\left[p^{n}\right]=G\left[p^{n}\right]$
(3) z is an element of the p-adic closure of $H^{\prime} \cap G[p]$ in \bar{B}, i.e. there exists a sequence $\left\{z_{m}\right\}_{m \in \mathbf{N}}$ such that $z_{m} \in H^{\prime} \cap G[p]$ and $z-z_{m} \in p^{m} \bar{B}$.

Then H^{\prime} satisfies the conditions (a) and (b) of Lemma 2.

Proof. We first show (a): Let $b \in \bar{B}\left[p^{n+1}\right], 0(b)=p^{s}$. Since G is dense in \bar{B}, we find $g \in G, b^{\prime} \in \bar{B}$ such that $b=g+p^{m} b^{\prime}$, and $0=p^{s} b=p^{s} g+p^{m+s} b^{\prime}$ and $p^{m+s} b^{\prime}=-p^{s} g \in p^{m+2} \bar{B} \cap G=p^{m+2} G$. Therefore there exists $g^{\prime} \in G$ with $p^{m+s} b^{\prime}=p^{m+s} g^{\prime}$ and $b=(g+$ $\left.p^{m} g^{\prime}\right)+\left(p^{m} b^{\prime}-p^{m} g^{\prime}\right) \in G+p^{m} \bar{B}\left[p^{n+1}\right]$. Since $\left.G\left[p^{n+1}\right] \subseteq H^{\prime}+<z\right\rangle$ we get $g \in H^{\prime}, \ell \in N$ such that $g+p^{m} g^{\prime}=q+\ell z$ and $\ell z-\ell z_{m} \in p^{m} \bar{B}$. Therefore $b=\left(q+\ell z_{m}\right) \pm\left(\ell z-\ell z_{m}+p^{m} b^{\prime}-p^{m} q^{\prime}\right) \in H^{\prime}+p^{m} \bar{B}\left[p^{n+1}\right]$ and $\bar{B}\left[p^{n+1}\right] \subseteq H^{\prime}+p^{m} \bar{B}\left[p^{n+1}\right]$ is shown.
To prove (b), let $p^{m+1} b \in H^{\prime}\left[p^{\eta}\right]=G\left[p^{\eta}\right]$. Since G is pure in \bar{B}, we get $g \in G$ such that $p^{m+1} b=p^{m+1} g$ and since $p^{m} g \in G\left[p^{u+1}\right]$, we obtain $q \in H^{\prime}$ and $\ell \in N$ such that $p^{m} g=q+\ell z$ and again $p^{g}-\left(\ell z-\ell z_{m}\right)=q+\ell a_{m} \in H^{\prime}$ and $h_{\bar{B}}\left(q+\ell z_{m}\right)=h_{\bar{B}}\left(p^{m} g-(\ell z-\right.$ $\left.\ell\left(z_{m}\right)\right) \geq \min \left\{h_{\bar{B}}\left(p^{m} g\right), h_{\bar{B}}\left(\ell z-\ell z_{m}\right)\right\} \geq m$. Therefore the p-height of $q+\ell z_{m}$ in $\bar{B}, h_{\bar{B}}\left(q+\ell z_{m}\right) \geq m$ and $p\left(q+\ell z_{m}\right)=p\left(p^{m} q-\left(\ell_{z}-\ell z_{m}\right)\right)=$ $p^{m+1} g=p^{m+1} b$ and $p^{m+1} b \in p\left(H^{\prime} \cap p^{m} \bar{B}\right)$.

All the set theoretical notations we will use in this paper may be found in P. Eklof's remarkable paper [3] on ω_{1}-separable torsion free groups.

LEMMA 1.4. Let G be a p-group of regular, uncountable cardinality κ. Then there exists a pure κ-filtration $G=\cup_{\alpha<\kappa} G_{\alpha}$ of G. ($A \kappa$-filtration is called pure, if all the G_{α} 's are pure in G).
We'll omit the routine proof.

DEFINITION 1.5. Let $G=\cup_{\alpha<\kappa} G_{\alpha}$ be a pure κ-filtration of the separable p-group G and $m \in \mathbf{N} . G_{\alpha}$ is called not p^{m}-closed if there is a $y \in G$ such that $0(y)=p^{m},\langle y\rangle \cap G_{\alpha}=0$ and $y \in G_{\alpha}\left[p^{m}\right]+p^{k} G$ for each $k \in \mathbf{N}$. Let $\gamma(G)=\left\{\alpha<\kappa \mid \lim (\alpha)\right.$ and G_{α} is not p^{m}-closed $\}$, $P(\kappa) / \sim$ the Boolean algebra $P(\kappa)$ modulo the ideal of non-stationary subsets of κ and $\Gamma_{\kappa}^{m}(G)=\gamma(G) / \sim$. Then $\Gamma_{\kappa}^{m}(G)$ is an invariant of G, cf. [3] or [7].

REMARK 1.6. Let \bar{B} be a torsion complete p-group of regular
cardinality κ and G a pure subgroup of \bar{B} and $|G|=\kappa$. Then there exist pure κ-filtrations $G=\cup_{\alpha<\kappa} G_{\alpha}$ and $\bar{B}=\cup_{\alpha<\kappa} \bar{B}_{\alpha}$ of G and \bar{B} such that $G_{\alpha} \subseteq \bar{B}_{\alpha}$ for each $\alpha<\kappa$.

Definition 1.7. Let G be a pure subgroup of the separable p group $A,|G|=\kappa$ regular, $G=\cup_{\alpha<\kappa} G_{\alpha}$ a pure κ-filtration of G and $G_{\alpha}^{\prime}=G_{\alpha}\left[p^{n+1}\right]$. We may assume $\left|G_{\alpha}\right| \geq \aleph_{0}$ for all $\alpha<\kappa$. A subgroup H of $A\left[p^{n+1}\right]$ is called (n, z, α)-admissible in G if $z \in A[p]-G$ and
(1) $H \cap\langle z\rangle=0$
(2) $H\left[p^{n}\right] \subseteq G\left[p^{n}\right]$
(3) $H \subseteq G\left[p^{n+1}\right]+\langle z\rangle$
(4) $|H|\langle\kappa$
(5) $G_{\alpha}^{\prime} \subseteq H+G\left[p^{n}\right]+\langle z\rangle$.

Lemma 1.8. Same notation as in 1.8. If H is a (n, z, α)-admissible subgroup, then there exists an ($n, z, \alpha+1$)-admissible subgroup H^{\prime} such that $H+G_{\alpha+1}\left[p^{n}\right] \subseteq H^{\prime}$.

Proof. Let \mathcal{M} be the set of all subgroups \tilde{H} of $H+G_{\alpha+1}^{\prime}$ such that:
(a) $\tilde{H} \cap\langle z\rangle=0$
(b) $\tilde{H}\left[p^{n}\right] \subseteq G\left[p^{n}\right]$
(c) $H+\left(G_{\alpha+1}\left[p^{n}\right]\right) \subseteq \tilde{H}$.

We will show that $H+G_{\alpha+1}\left[p^{n}\right] \in \mathcal{M}$.
We may assume $n \geq 1$. In order to show (a), let $h+g=k z \in$ $\left(H+G_{\alpha+1}\left[p^{n}\right]\right) \cap\langle z\rangle$ where $h \in H, g \in G_{\alpha+1}\left[p^{n}\right]$ and $k \in \mathbf{Z}$. Since $h \in H\left[p^{n}\right] \subseteq G\left[p^{n}\right], h+g=k z \in G \cap\langle z\rangle=0$ and (a) holds. To prove (b), let $a \in\left(H+G_{\alpha+a}\left[p^{n}\right]\right)\left[p^{n}\right], a=h+g$ with $h \in H$ and $g \in G_{\alpha+1}\left[p^{n}\right]$. Again, $0(h) \leq p^{n}$ and $a=h+g \in G\left[p^{n}\right]$. This shows (b) and we have $\mathcal{M} \neq \emptyset$. Since the \mathcal{M} is inductive, we may apply Zorn's Lemma to obtain a maximal element H^{\prime} in \mathcal{M}.

Conditions (a), (b) and (c) imply (1), (2) of 1.8 and moreover $H+G_{\alpha+1}\left[p^{n}\right] \subseteq H^{\prime}$. Since $H \subseteq G\left[p^{n+1}\right]+\langle z\rangle, 0(z)=p$ and
$G_{\alpha+1}^{\prime} \subseteq G\left[p^{n+1}\right]$ we obtain $H^{\prime} \subseteq H+G_{\alpha+1}^{\prime} \subseteq G\left[p^{n+1}\right]+\langle z\rangle$. Hence 1.8(3) holds for H^{\prime} as well and $H^{\prime} \subseteq A\left[p^{n+1}\right]$. Now $|H|\langle\kappa,| G_{\alpha+1}^{\prime} \mid\langle\kappa$ and $\left|H^{\prime}\right| \leq\left|H+G_{\alpha+1}^{\prime}\right| \leq|H|+\left|G_{\alpha+1}^{\prime}\right|\langle\kappa$. This implies 1.8(4). We have to show $G_{\alpha+1}^{\prime} \subseteq H^{\prime}+G\left[p^{n}\right]+\langle z\rangle$. Let $g \in G_{\alpha+1}^{\prime}$. If $0(g) \leq p^{n}$ (c) implies $g \in H^{\prime}$. Hence we may assume $0(g)=p^{n+1}$ and $g \in H^{\prime}$. Then we have $H+G_{\alpha+1}\left[p^{n}\right] \subseteq H^{\prime}+\langle g\rangle$ and the maximality of H^{\prime} implies $\left(H^{\prime}+\langle g\rangle \cap\langle z\rangle \neq 0\right.$ or $\left(H^{\prime}+\langle g\rangle\right)\left[p^{n}\right] \subseteq G\left[p^{n}\right]$. We'll consider two cases:

CASE 1. $\left(H^{\prime}+\langle g\rangle\right) \cap\langle z\rangle \stackrel{\perp}{\tau} 0$.
Then there exists $h \in H^{\prime}$ and $k \in \mathbf{Z}$ such that $z=h+k g$. Since $G_{\alpha+1}\left[p^{n}\right] \subseteq H^{\prime}$ and $H^{\prime} \cap\langle z\rangle=0, p$ doesn't divide k and there exists $k^{\prime} \in$ \mathbf{Z} with $k^{\prime} k g=g$. This implies $g=k^{\prime}(z-h) \in H^{\prime}+\langle z\rangle \subseteq H^{\prime} G\left[p^{n}\right]+\langle z\rangle$.

CASE 2. $\left(H^{\prime}+\langle g\rangle\right)\left[p^{n}\right] \subseteq G\left[p^{n}\right]$.
Here we have $n \geq 1$ and $h \in H^{\prime}, k \in \mathbf{Z}$ with $h+k g \epsilon G\left[p^{n}\right]$ and $0(h+k g) \leq p^{n}$.
Since $H^{\prime} \subseteq H+G_{\alpha+1} \subseteq G\left[p^{n+1}\right]+\langle z\rangle$, there exists $g \in G\left[p^{n+1}\right]$ and $\ell \in \mathbf{Z}$ such that $h+k g=\tilde{g}+\ell z$.
Now $0=p^{n}(h+k g)=p^{n}(\tilde{g}+\ell z), 0(z)=p$ and $n \geq 1$ imply $p^{n} \tilde{g}=0$ and hence $\tilde{g} \in G\left[p^{n}\right]$.
We obtain

$$
k g=-h+\tilde{g}+\ell z \in H^{\prime}+G\left[p^{n}\right]+\langle z\rangle .
$$

If p does not divide k, we are finished. Suppose p divides k. Then $k g \in G\left[p^{n}\right]$ and $0(h+k g) \leq p^{n}$ implies $h \in H^{\prime}\left[p^{n}\right]$, a contradiction to our choice of $h+k g$.
This shows $G_{\alpha+1}^{\prime} \subseteq H^{\prime}+G\left[p^{n}\right]+\langle z\rangle$ and H^{\prime} is $(n, z, \alpha+1)$-admissible.
In the next lemma, we use diamonds $\diamond_{\kappa}(E)$, claiming the existence of Jensen functions on the stationary subset of the regular cardinal κ, cf. ([2], [8]).

LEMMA 1.9. Assume $\diamond_{\kappa}\left(\Gamma_{\kappa}^{n+1}(G)\right)$ holds for some fixed $n \in \mathbf{N}$ and let G be a separable abelian p-group of cardinality κ. Moreover let $G \neq \bar{G}$ be the torsion completion of $G, \Gamma_{\kappa}^{n+1}(G) \stackrel{\perp}{\top} 0, z \in \bar{G}[p]-G[p]$ and $|\bar{G}|=\kappa$. Then there exists $H \subseteq \bar{G}\left[p^{n+1}\right]$ such that
(a) $G\left[p^{n+1}\right]+\langle z\rangle=H+\langle z\rangle$
(b) $G\left[p^{n}\right]=H\left[p^{n}\right]$
(c) For all $\varphi \in \operatorname{Aut}(\bar{G}), \quad \varphi\left(G\left[p^{n+1}\right]\right) \frac{1}{T} H$.
(d) z is an element of the p-adic closure of $H \cap G[p]$ in \bar{G}.

Proof. For each $k \in \mathbf{N}$ take $z_{k} \in G[p]$ such that $z-z_{k} \in p^{k} G$ and a pure κ-filtration $G=\cup_{\alpha\langle\kappa} G_{\alpha}$ with $z_{k} \in G_{\omega}$ for all $k \in \mathbf{N}$ and a κ-filtration $\bar{G}=\cup_{\alpha\langle\kappa} \bar{G}_{\alpha}$ such that $G_{\alpha} \subseteq \bar{G}_{\alpha}$, cf. (6). Let $E=\{\alpha<$ $\kappa \mid \lim (\alpha)$ and G_{α} not p^{n+1}-closed $\}$ and $\left\{f_{\alpha}: \bar{G}_{\alpha} \rightarrow \bar{G}_{\alpha} \mid \alpha \in E\right\}$ be a collection of Jensen functions to witness $\diamond_{\kappa}(E)$.

By induction we will define a subgroup $H=\cup_{\alpha<\kappa} H_{\alpha}$ of $\bar{G}\left[p^{n+1}\right]$ such that
(0) $H_{\alpha}=G_{\alpha}\left[p^{n+1}\right]$ for $\alpha<\omega$,
(1) $H_{\beta} \subseteq H_{\alpha}$ for all $\beta \leq \alpha$,
(2) $H_{\alpha}=\cup_{\beta<\alpha} H_{\beta}$ if α is a limit ordinal,
(3) $z \in H_{\alpha}$,
(4) $H_{\alpha}\left[p^{n}\right] \subseteq G\left[p^{n}\right]$,
(5) $H_{\alpha} \subseteq G\left[p^{n+1}\right]+\langle z\rangle$,
(6) $\left|H_{\alpha}\right|<\kappa$,
(7) If $\alpha=\beta+1, \beta \in E, f_{\beta}\left(G_{\beta}\left[p^{n+1}\right]\right)=H_{\beta}: f_{\beta}=\phi \upharpoonright$ \bar{G}_{β} for some $\phi \in \operatorname{Aut}(\bar{A})$ such that $z \notin \phi(G), \phi\left(G\left[p^{n}\right]\right)=\left(G\left[p^{n}\right]\right)$ and $\phi\left(G\left[p^{n+1}\right]\right) \subseteq G\left[p^{n+1}\right]+\langle z\rangle$, let H_{α} be defined by $H_{\alpha}=H_{\beta}+$ $\left\langle\phi\left(Y_{\beta}\right)+z\right\rangle$ where
(7a) $y_{\beta} \in \hat{G}_{\beta}$, the closure of G_{β} in G
(7b) $0\left(y_{\beta}\right)=p^{n+1}$
(7c) $\left\langle y_{\beta}>\cap G_{\beta}=0\right.$.
(8) If $\alpha=\beta+1$ and β doesn't fit into (7) we have $G_{\alpha}\left[p^{n}\right] \subseteq H_{\alpha}$ and H_{α} is a (n, z, α)-admissible subgroup.
For $n<\omega$ let $H_{n}=G_{n}\left[p^{n+1}\right]$ and the H_{n} 's satisfy the conditions (0) - (8). Let $\delta \geq \omega$ and $\delta<\kappa$. Suppose we have constructed H_{α} for all $\alpha<\delta$ satisfying (0)-(8).

If δ is a limit ordinal let $H_{\delta}=\cup_{\beta<\delta} H_{\beta}$. Since κ is regular and $\left|H_{\beta}\right|<\kappa$ we have $\left|H_{\delta}\right|<\kappa$. Conditions (2) -(5) for H_{δ} are obvious. Now assume $\delta=\beta+1$.

CASE 1. β satisfies (7). Since $\beta \in E$, we find y_{β} satisfying (7a) (7c). Let $H_{\beta+1}=H_{\beta}+\left\langle\phi\left(Y_{\beta}\right)+z\right\rangle$ and assume $z \in H_{\beta+1}$. Then $z=h+\ell\left(\phi\left(Y_{\beta}\right)+z\right)$ for some $h \in H_{\beta}, \ell \in \mathbf{Z}$ and $\ell \equiv 0 \bmod p$. Hence $z(1-\ell)=h+\ell \phi\left(y_{\beta}\right)$ and $\phi^{-1}(z(1-\ell))=\phi^{-1}(h)+\ell y_{\beta} \in G$ because $y_{\beta} \in G$ and $\phi\left(G_{\beta}\left[p^{n+1}\right]\right)=H_{\beta}$. Therefore $z(1-\ell) \in \phi(G)$ which implies $\ell \equiv 1 \bmod p$. Now $z=h+\ell\left(\phi\left(y_{\beta}\right)+z\right)=h+\ell \phi\left(y_{\beta}\right)+z$ and $\ell \phi\left(y_{\beta}\right) \in H_{\beta}$. Hence $\ell y_{\beta} \in \phi^{-1}\left(H_{\beta}\right)=G_{\beta}\left[p^{n+1}\right]$ and by (7 c) we get $\ell y_{\beta}=0$. Now $z=h \in H_{\beta}$, a contradiction to (3). Therefore $z \xi H_{\beta+1}$ and we have to show that $H_{\beta+1}$ satisfies (4): $H_{\beta+1}\left[p^{n}\right] \subseteq G\left[p^{n}\right]$. So let $h \in H_{\beta}, \ell \in \mathbf{Z}$ such that $p^{n} x=0$ where $x=h+\ell\left(\phi\left(y_{\beta}\right)+z\right) \in H_{\beta+1}$. This implies $0=$ $p^{n} x=p^{n} h+p^{n} \ell \phi\left(y_{\beta}\right)$ and $p^{n} \ell y_{\beta} \in \phi^{-1}\left(H_{\beta}\right)=G_{\beta}\left[p^{n+1}\right]$. Therefore $p^{n} \ell y_{\beta}=0$ and $\ell \equiv 0 \bmod p$ and hence $x=h+\ell \phi\left(y_{\beta}\right) \in G\left[p^{n}\right]$ because $0=p^{n} x=p^{n} h, H_{\beta}\left[p^{n}\right] \subseteq G\left[p^{n}\right]$ and $p \phi\left(y_{\beta}\right) \in \phi\left(G\left[p^{n}\right]\right)=G\left[p^{n}\right]$. This shows (4). Condition (5) is obvious because $\phi\left(G\left[p^{n+1}\right]\right) \subseteq G\left[p^{n+1}\right]+\langle z\rangle$ and $H_{\beta} \subseteq G\left[p^{n+1}\right]+\langle z\rangle$. By the definition of $H_{\beta+1}$ we have $H_{\beta} \subseteq H_{\beta+1}$ and $\left|H_{\beta+1}\right|<\kappa$.

CASE 2. $\beta=\beta^{\prime}+1$ and β^{\prime} is not a limit ordinal. Then $\beta^{\prime} \xi E$ and H_{β} is a (n, z, β)-admissible subgroup. We may apply Lemma 1.8 to get a $(n, z, \beta+1)$-admissible subgroup $H_{\beta+1}$ with $H_{\beta}+G_{\beta+1}\left[p^{n}\right] \subseteq H_{\beta+1}$. This shows that $H_{\beta+1}$ satisfies the conditions (0) - (8).

CASE 3. $\beta=\beta^{\prime}+1$ and β^{\prime} is a limit ordinal. Since $H_{\alpha+2}$ is a $(n, z, \alpha+2)$-admissible subgroup for all $\alpha<\beta^{\prime}$ we have $G_{\beta^{\prime}}\left[p^{n+1}\right] \subseteq$ $H_{\beta^{\prime}}+G\left[p^{n}\right]+\langle z\rangle$. Therefore $G_{\beta^{\prime}}\left[p^{n+1}\right] \subseteq H_{\beta}+G\left[p^{n}\right]+\langle z\rangle$ and with (3) - (6) for H_{β} we have H_{β} is $\left(n, z, \beta^{\prime}\right)$-admissible. Now apply Lemma 1.9 two times to obtain a $(n, z, \beta+1)$-admissible subgroup $H_{\beta+1}$ such that $H_{\beta}+G_{\beta+1}\left[p^{n}\right] \subseteq H_{\beta+1}$.
This completes our construction. We will show that H satisfies (a), (b), (c) and (d). Condition (b) is obvious because of (4) and (8) and $H+\langle z\rangle \subseteq G\left[p^{n+1}\right]+\langle z\rangle$ follows from (5). Since $H_{\alpha+2}$ is a $(n, z, \alpha+2)$ admissible subgroup for all $\alpha<\kappa$ and (b) we have $G\left[p^{n+1}\right] \subseteq H+\langle z\rangle$. This shows (a) and since Z is in the closure of $G_{\omega}\left[p^{n+1}\right]=H_{\omega}$ we
obtain (d).
To prove (c), let $\varphi \in \operatorname{Aut}(\bar{G})$ such that $\varphi\left(G\left[p^{n+1}\right]\right)=H$. Since $C=\left\{\alpha<\kappa \mid \varphi\left(G_{\alpha}\left[p^{n+1}\right]\right)=H_{\alpha}\right\}$ is a cub and $S=\left\{\alpha|\varphi| \bar{G}_{\alpha}=f_{\alpha}\right\}$ is stationary we have a limit ordinal $\beta \in C \cap S . \varphi\left(G\left[p^{n}\right]\right)=G\left[p^{n}\right]$ is obvious because of (b) and $\varphi\left(G\left[p^{n+1}\right]\right) \subseteq G\left[p^{n+1}\right]+\langle z\rangle$ follows from (a). Since $z \in H \supseteq \varphi(G[p])$ we have $z \in \varphi(G)$. Therefore φ satisfies condition (7). But $\varphi\left(Y_{\beta}\right) \in \varphi\left(G\left[p^{p+1}\right]\right)=H$ and if $\phi \in \operatorname{Aut}(\bar{G})$ is the map used in the definition on $H_{\beta+1}$ we have $\phi \upharpoonright \bar{G}_{\beta}=f_{\beta}=\varphi \upharpoonright \bar{G}_{\beta}$ and $\phi\left(Y_{\beta}\right)=\varphi\left(Y_{\beta}\right)$ because of the continuity of automorphisms. But $Y_{\beta} \in G\left[p^{n+1}\right]$ implies $\phi\left(Y_{\beta}\right)=\varphi\left(Y_{\beta}\right) \in H$ and $\phi\left(Y_{\beta}\right)+z \in H$ by construction, so we obtain the contradiction $z \in H$. This proves (c).
We are now able to prove our main result.

THEOREM 1.10. $(V=L)$. Let G be a separable p-group of regular cardinality κ, \bar{G} its torsion-completion and $\Gamma_{\kappa}^{n+1}(G) \stackrel{\perp}{\tau} 0$ and $G \neq \bar{G}$. Then there exists a subgroup $H \subseteq \bar{G}$ such that
(i) H is pure and dense in \bar{G}
(ii) $G\left[p^{n}\right]=H\left[p^{n}\right]$
(iii) $H \cong G$.

Proof. We apply Lemma 1.9 and get $\tilde{H} \subseteq \bar{G}\left[p^{n+1}\right]$ satisfying (1.9a), (1.9b) (1.9c) and (1.9d). Now apply Lemma (1.2) and (1.3) to obtain a pure and dense subgroup H of \bar{G} such that $\tilde{H}=H\left[p^{n+1}\right]$ and $G\left[p^{n}\right]=\tilde{H}\left[p^{n}\right]=H\left[p^{n}\right]$.
Assume $G \cong H$. Then there exists a $\varphi \in \operatorname{Aut}(\bar{G})$ such that $\varphi(G)=H$ and hence $\varphi\left(G\left[p^{n+1}\right]\right)=H\left[p^{n+1}\right]=\tilde{H}$ contradicting (1.9c).

THEOREM 1.11. $(V=L)$. Let $n \in \mathbf{N}$ and G a separable p-group of cardinality \aleph_{1} such that G is neither Σ-cyclic nor torsion-complete. Then there exists a separable p-group H such that H is not isomorphic to G but there exists a height-preserving isomorphism $\varphi: H[p] \rightarrow G[p]$.
For the proof of (1.11) we need

LEmma 1.12. Let \tilde{H} be a separable p-group, C^{\prime} a subgroup of \tilde{H} and S a dense subsocle of \tilde{H} (cf. [5]). lf $C^{\prime}[p] \subseteq S$ then there exists a pure subgroup H of \tilde{H} such that $C^{\prime} \leq H, H[p]=S$ and \tilde{H} / H is divisible.
Let

$$
\begin{aligned}
\mathcal{M}_{C^{\prime}} & =\left\{H \leq \tilde{H} \mid H[p]=S \text { and } C^{\prime} \leq H\right\} \text { and } \\
\mathcal{M} & =\{H \leq \tilde{H} \mid H[p]=S\} . \text { Obviously } C^{\prime}+S \in \mathcal{M}_{C^{\prime}} \subseteq \mathcal{M}
\end{aligned}
$$

because $C^{\prime}[p] \subseteq S$. Since $\mathcal{M}_{C^{\prime}}$ is inductive, we may apply Zorn's Lemma to obtain a maximal element H in $\mathcal{M}_{C^{\prime}}$. Then H is a maximal element in \mathcal{M}. By [5, 66.3] we have that H is pure and dense in \tilde{H}. This shows (1.12).

Proof of (1.11). Let \bar{G} be the torsion-completion of G. Since G is not torsion-complete we have $G \frac{1}{\tau} \bar{G}$. If $\Gamma_{\aleph_{1}}^{2}(G) \frac{1}{\tau} 0$ then (1.10) implies that there is a pure and dense subgroup H such that $H \cong G$ and $H[p]=G[p]$. It is obvious that the identity map on the socles of H and G is an isometry because H and G are pure subgroups of \bar{G}. This shows (1.11) in the case $\Gamma_{\aleph_{1}}^{2}(G) \neq 0$.
Now assume $\Gamma_{\aleph_{1}}^{2}(G)=0$. Since G is not Σ-cyclic we have $\Gamma_{\aleph_{1}}^{1}(G) \neq 0$, cf. [4].
We will show that there is a subgroup H of \bar{G} such that (a) H is pure in \bar{G}, (b) $H[p]=G[p]$ and (c) $\Gamma_{\aleph_{1}}^{n+1}(H) \neq 0$ for all $n \in \mathbf{N}$. Let $G[p]=$ $U_{\alpha<\omega_{1}} S_{\alpha}$ be an ω_{1}-filtration of $G[p]$ (with $S_{0}=0$) and for $\alpha<\omega_{1}$ let S_{α} be the closure of S_{α} in G. Then $S_{\alpha} \leq \bar{S}_{\alpha} \leq G[p], \bar{S}_{\beta} \leq \bar{S}_{\alpha}$ for all $\beta<\alpha$ and $G[p]=\cup_{\alpha<\omega_{1}} \bar{S}_{\alpha}$. By induction we will define for each $\alpha<\omega_{1}$ subgroups H_{α} and H_{α} such that
(1) $H_{\beta} \leq H_{\alpha}$ for all $\beta \leq \alpha$,
(i) $\tilde{H}_{\beta} \leq \tilde{H}_{\alpha}$ for all $\beta \leq \alpha$,
(2) $H_{\alpha}=\cup_{\beta<\alpha} H_{\beta}$ if α is a limit ordinal
(2) H_{α} is a pure subgroup of \tilde{H}_{α},
(3) $H_{\alpha}[p]=S_{\alpha}$,
(3) $\tilde{H}_{\alpha}[p]=\bar{S}_{\alpha}$,
(4) H_{α} is pure in \bar{G},
($\tilde{4}) \tilde{H}_{\alpha}$ is pure in \bar{G},
(5) $\tilde{H}_{\alpha} / H_{\alpha}$ is divisible.

Let $H_{0}=0$ and $\tilde{H}_{0}=0$. Since G is separable and $S_{0}=0$ we have $\bar{S}_{0}=0$. Hence H_{0} and \tilde{H}_{0} satisfy the conditions (1)-(5) and ($\left.\tilde{1}\right)-(\tilde{4})$. Let $\delta>0$ and $\delta<\omega_{1}$. Suppose we have constructed H_{α} and \tilde{H}_{α} for all $\alpha>0$ satisfying (1)-(5) and ($\tilde{1})-(\tilde{4})$.
Let $C=\cup_{\alpha<\delta} \tilde{H}_{\delta}$. Then C is a pure subgroup of \bar{G} because of ($\left.\tilde{1}\right)$ and ($\tilde{4}$) for all $\alpha<\delta$. Since \bar{S}_{α} is contained in \bar{S}_{δ} for all $\alpha<\delta$ we have $C[p]=\left(\cup_{\alpha<\delta} \tilde{H}_{\alpha}\right)[p]=\cup_{\alpha<\delta} \bar{S}_{\alpha} \leq \bar{S}_{\delta}$. By [5, 74 (e) and 74.1] we get a pure subgroup \tilde{H}_{δ} of \bar{G} such that $C \leq \tilde{H}_{\delta}$ and $\tilde{H}_{\delta}[p]=\bar{S}_{\delta}$. Hence \tilde{H}_{δ} satisfies the conditions $(\tilde{1}),(\tilde{3})$ and $(\tilde{4})$. Now we have to construct H_{δ}.
Let $C^{\prime}=\cup_{\alpha<\delta} H_{\alpha}$. Then $C^{\prime}[p]_{\tilde{\sim}}=\left(\cup_{\alpha<\delta} H_{\alpha}[p]=\cup_{\alpha<\delta} S_{\alpha} \leq S_{\sigma} \leq\right.$ $\bar{H}_{\delta}[p]$ and $C=\cup_{\alpha<\delta} H_{\alpha} \leq \cup_{\alpha<\delta} \tilde{H}_{\alpha} \leq \tilde{H}_{\delta}$. Condition (1) and (4) for all $\alpha<\delta$ imply that C^{\prime} is a pure subgroup of \bar{G}. Therefore C^{\prime} is a pure subgroup of \tilde{H}_{δ}. Next we show that $H_{\delta}[p]=S_{\delta}+p^{k} \tilde{H}_{\delta}[p]$ for all $k \in \mathbf{N}$. Let $k \in \mathbf{N}$. Since G and \tilde{H}_{δ} are pure subgroups of $\bar{G}, \bar{S}_{\delta} \leq G$ and $\bar{S}_{\delta}=\tilde{H}_{\delta}[p] \leq \tilde{H}_{\delta}$, we have

$$
\begin{aligned}
p^{k} G \cap \bar{S}_{\delta} & =p^{k} \bar{G} \cap G \cap \bar{S}_{\delta}=p^{k} \bar{G} \cap \bar{S}_{\delta}=p^{k} \bar{G} \cap \tilde{H}_{\delta} \cap \bar{S}_{\delta}= \\
& =p^{k} \tilde{H}_{\delta} \cap \bar{S}_{\delta}=p^{k} \tilde{H}_{\delta} \cap \tilde{H}_{\delta}[p]=p^{k} \tilde{H}_{\delta}[p]
\end{aligned}
$$

Therefore, since \bar{S}_{δ} is the closure of S_{δ} in $G, \tilde{H}_{\delta}[p]=\bar{S}_{\delta}=S_{\delta}+\left(p^{k} G \cap\right.$ $\left.\bar{S}_{\delta}\right)=S_{\delta}+p^{k} \tilde{H}_{\delta}[p]$. Now we may apply (1.12) to get a pure subgroup H_{δ} of \tilde{H}_{δ} such that $C^{\prime} \leq H_{\delta^{\prime}} H_{\delta}[p]=S_{\delta}$ and H_{σ} / H_{σ} is divisible. Since H_{δ} is pure in \tilde{H}_{δ} and \tilde{H}_{δ} is pure in \bar{G}, we have H_{δ} is pure in \bar{G}. Hence H_{σ} and \tilde{H}_{σ} satisfy the conditions (1)-(5) and ($\left.\tilde{1}\right)-(\tilde{4})$ and our construction works.
Let $H=\cup_{\alpha<\omega_{1}} \tilde{H}_{\alpha}$. Condition (1), (4) and (3) imply that H is a pure subgroup of G and

$$
H[p]=\left(\cup_{\alpha<\omega_{1}} H_{\alpha}\right)[p]=\cup_{\alpha<\omega_{1}} \bar{S}_{\alpha}=G[p] .
$$

This shows (a) and (b).
From (1), (4), (3) and ($\tilde{2}$) we conclude that $\cup_{\alpha<\omega_{1}} H_{\alpha}$ is a pure subgroup of $\bar{G},\left(\cup_{\alpha, \omega_{1}} H_{\alpha}\right)[p]=G[p]$ and $\cup_{\alpha<\omega_{1}} H_{\alpha} \leq H$. Therefore $H[p]=\left(\cup_{\alpha<\omega_{1}} H_{\alpha}\right)[p]$ and $\cup_{\alpha<\omega_{1}} H_{\alpha}$ is a pure subgroup in H. By [5, 26 (j), p. 115] we have $H=\cup_{\alpha<\omega_{1}} H_{\alpha}$. Since $\left|S_{\alpha}\right|<\omega_{1}$ and $H_{\alpha}[p]=S_{\alpha}$
we infer that $\left|H_{\alpha}\right|<\omega_{1}$. Now in view of (1) and (2) we have that $H=\cup_{\alpha<\omega_{1}} H_{\alpha}$ is a ω_{1}-filtration of H. Let $E=\left\{\alpha<\omega_{1} \mid S_{\alpha}\right.$ is not closed in $g\}$ and $G=\cup_{\alpha<\omega_{1}} G_{\alpha}$ a pure ω_{1}-filtration of G. Then

$$
\begin{aligned}
E / \sim & =\left\{\alpha<\omega_{1} \mid G_{\alpha}[p] \text { is not closed in } G\right\} / \sim \\
& =\left\{\alpha<\omega_{1} \mid G_{\alpha} \text { is not } p-\text { closed in } G\right\} / \sim=\Gamma_{\aleph_{1}}^{1}(G) \neq 0
\end{aligned}
$$

Hence E is a stationary subset of ω_{1}. Let $\alpha \in E$ and $n \in \mathbf{N}$. Then $S_{\alpha} \neq \bar{S}_{\alpha}$ and therefore $\tilde{H}_{\alpha} / H_{\alpha} \neq 0$. Since $\tilde{H}_{\alpha} / H_{\alpha}$ is divisible and H_{α} is pure in \tilde{H}_{α} we find a $y_{n} \in \tilde{H}_{\alpha}$ such that $0\left(y_{n}\right)=p^{n+1},\left\langle y_{n}\right\rangle \cap H_{\alpha}=0$ and $y_{n} \in H_{\alpha}\left[p^{n+1}\right]+p^{k} \tilde{H}_{\alpha} \subseteq H_{\alpha}\left[p^{n+1}\right]+p^{k} H$ for all $k \in \mathbf{N}$. This shows that $\alpha \in E_{n+1}=\left\{\alpha<\omega_{1} \mid H_{\alpha}\right.$ is not p^{n+1}-closed in $\left.H\right\}$. Hence $\Gamma_{\aleph_{1}}^{n+1}(H) \neq 0$, because E is stationary in ω_{1}. This shows (c). Since G and H are pure subgroups of \bar{G} and $G[p]=H[p]$, the groups have isometric socles. But $G \cong H$ because $\Gamma_{\aleph_{1}}^{2}(G)=0$ and $\Gamma_{\aleph_{1}}^{2}(H) \neq 0$. This completes the proof of (1.11).
2. ω_{1}-separable p-groups with equal socles. In this chapter we will construct - using weak diamonds - ω_{1}-separable p-groups having isometric socles. Similar constructions may be found in [3], [4].
Let B be Σ-cyclic p-group, $B=\oplus_{\alpha<\omega_{1}} \oplus_{n<\omega}(\alpha, n) \mathbf{Z}$ such that $0(\alpha, n)=p^{n+k}$ for all $\alpha<\omega_{1}$ and some fixed $k \in \mathbf{N}$. We fix a stationary subset $E \subseteq \omega_{1}$ such that $E \subseteq\left\{\alpha<\omega_{1} \mid \lim (\alpha)\right\}$, i.e., all elements of E are limit ordinals.
For each $\lambda \in E$ fix a ladder $\left\{\lambda_{n}\right\}_{n \in \mathbf{N}}$, i.e., $\lambda_{n}<\lambda_{n+1}$ for all $n \in \mathbf{N}$ and $\lambda=\sup \left\{\lambda_{n} \mid n \in \mathbf{N}\right\}$. Moreover we choose $\tilde{z}_{(\lambda, n)} \in \mathbf{Z}$ such that $\tilde{z}_{(\lambda, n)} \equiv 1 \bmod p^{k}$. For $\lambda<\omega_{1}$ let $B_{\lambda}=\oplus_{\alpha<\lambda} \oplus_{n<\omega}(\alpha, n) \mathbf{Z}$ and \hat{B}_{λ} the torsion-completion of B_{λ} and if $\lim (\lambda)$, let $\tilde{B}_{\lambda}=\cup_{\alpha<\lambda} \hat{B}_{\alpha}$. For each $\lambda \in E$, define $\lambda_{m}^{\circ}=\Sigma_{n \geq m}\left(\lambda_{n}, n\right) p^{n-m} \in \tilde{B}_{\lambda}-\tilde{B}_{\lambda}$. Define $z(\lambda, n)$ to be 1 if n is odd and $z(\lambda, 2 n)=\tilde{z}(\lambda, n)$ and assume $\tilde{z}(\lambda, n) \equiv 1 \bmod p^{k+1}$. Let $\lambda_{m}^{1}=\Sigma_{n \geq m}\left(\lambda_{n}, n\right) z(\lambda, n) p^{n-m}$. Observe that for $\varepsilon=0,1$ we have $p \lambda_{m+1}^{\epsilon}-\lambda_{m}^{\varepsilon} \in B_{\lambda}$ and $\lambda_{\circ}^{\circ}=\lambda_{0}^{1}$ for all $\lambda \in E$. Set $G_{\alpha}=\left\langle B_{\alpha}, \lambda_{m}^{\varepsilon}\right| m<$ $\omega, \varepsilon \in\{0,1\}, \lambda<\alpha\rangle$. Then $G=\cup_{\alpha<\omega_{1}} G_{\alpha}$ is an ω_{1}-filtration of the pure subgroup G of $\hat{B}:=\hat{B}_{\omega_{1}}$.
We will need the following.

Lemma 2.1. Let A_{0}, A_{1} be pure subgroups of \tilde{B}_{λ} such that $B_{\lambda} \subseteq$
$A_{0} \cap A_{1}$ and $A_{0}\left[p^{k}\right]=A_{1}\left[p^{k}\right]$. Let $A^{\varepsilon}=\left\langle A_{\varepsilon}, \lambda_{m}^{\varepsilon} \mid m<\omega\right\rangle, \varepsilon=0,1$. Then A^{0}, A^{1} are pure subgroups of \hat{B}_{λ} such that $A^{0}\left[p^{k}\right]=A^{1}\left[p^{k}\right]$ and $A^{0} \cap A^{1}=\left\langle A_{0} \cap A_{1}\right\rangle+A^{0}\left[p^{k}\right]$.

Proof. Since $A^{\varepsilon} / A_{\varepsilon}$ is divisible and A_{ε} pure in $\hat{B}_{\lambda}, A^{\varepsilon}$ is pure in \hat{B}_{λ}. If $x \in A^{0}\left[p^{k}\right], x=a_{0}+\lambda_{m}^{0} r$ for some $a_{0} \in A_{0}, m<\omega$ and $r \in \mathbf{Z}$.

Since $a_{0} \in \tilde{B}_{\lambda}$ we obtain $\left(\lambda_{n}, n\right) p^{n-m} p^{k}=0$ for almost all n and $p^{n-m+k} r \equiv 0 \bmod p^{n+k}$ and hence $r \equiv 0 \bmod p^{m}$. This implies $x \in A_{0}\left[p^{k}\right] \oplus\left\langle\lambda_{0}^{0}\right\rangle$ and a similar argument shows $A^{1}\left[p^{k}\right]=A_{1}\left[p^{k}\right] \oplus\left\langle\lambda_{0}^{1}\right\rangle$ and the above remarks show $A^{0}\left[p^{k}\right]=A^{1}\left[p^{k}\right]$. Take now any $x \in$ $A^{0} \cap A^{1}$. Then $x=a_{0}+\lambda_{m}^{0} r=a_{1}+\lambda_{m}^{1}$ where $a_{\varepsilon} \in A_{\varepsilon}, r, s \in$ Z and $m<\omega$. This implies $a_{0}-a_{1}^{\prime}=-\lambda_{m} r+\lambda_{m} s$ and again $\left(\lambda_{n}, n\right)\left(p^{n-m} z(\lambda, \eta)-p^{n-m} r\right)=0$ for almost all $n<\omega$, which implies $s z(\lambda, \eta) \equiv r \bmod p^{m+k}$ for almost all $n<\omega$.

Therefore $s z(\lambda, n) \equiv s z\left(\lambda, n^{\prime}\right) \bmod p^{m+k}$ if $n, n^{\prime} \geq n_{0}$. By our choice $1 \equiv z(\lambda, n) \bmod p^{k}$ if n is odd and $z(\lambda, n) \neq z(\lambda, n+1) \bmod p^{k+1}$ which implies $s \equiv 0 \bmod p^{m}$ and $r \equiv 0 \bmod p^{m}$. Therefore $x=a_{0}+\lambda_{m}^{0} \in$ $A_{0}+A^{)}\left[p^{k}\right]$ and $\lambda_{m}^{0} r=\lambda_{m}^{1} s$ also implies $a_{0}=a_{1} \in A_{0} \cap A_{1}$ and $x \in\left(A_{0} \cap A_{1}\right)+A^{0}\left[p^{k}\right]=A^{0} \cap A^{1}$.
Recall that a stationary subset $E \subseteq \omega_{1}$ is non-small, if the weak diamond $\phi_{\omega}(E)$ holds. (cf. [1])

THEOREM 2.2. $\left(2^{\aleph_{0}}<2^{\aleph_{1}}\right)$. Let E be a non-small subset of ω_{1}. There exist $2^{\aleph_{1}}$ many ω_{1}-separable p-groups $A_{\alpha}, \alpha<2^{\aleph_{1}}$, such that
(0) $\Gamma\left(A_{\alpha}\right)=E$ for all $\alpha<2^{\aleph_{1}}$,
(1) $A_{\alpha} \cong A_{\beta}$ if $\alpha \frac{1}{\tau} \beta$,
(2) $A_{\alpha}\left[p^{k}\right] \cong A_{\beta}\left[p^{k}\right]$ are isometric ,
(3) For all $\alpha, \beta<2^{\aleph_{1}}, A_{\alpha}$ and A_{β} are filtration-equivalent.

Proof. Since $2^{\aleph_{0}}<2^{\aleph_{1}}$, there exists a partition $E=\cup_{\alpha<\omega_{1}} E_{\alpha}$ into non-small subsets E_{α}. (c.f. [1]).
For each $\eta \in{ }^{\omega_{1}} 2$ we define a group $A_{\eta}=\cup_{\alpha<\omega_{1}} A_{\eta \upharpoonright \alpha}$ such that
(j) $A_{f \eta\lceil 0}=0$ and $A_{\eta \upharpoonright \lambda} \subseteq \hat{B}_{\lambda}$,
(ij) $\lim (\lambda) \Rightarrow A_{\eta \upharpoonright \lambda}=\cup_{\alpha<\lambda} A_{\eta \upharpoonright \alpha}$,
(iij) $\nu \xi E \Rightarrow A_{\eta \upharpoonright \nu+1}=A_{\eta}$
(iv) If $\nu \in E, A_{\eta \upharpoonright \nu+1}=A_{\eta \upharpoonright \nu^{\prime}}^{\varepsilon} \varepsilon=\eta(\nu+1)$
according to Lemma 2.1 (so we have $A_{\eta \upharpoonright \nu}^{0} \cap A_{\eta \upharpoonright \nu}^{1}=A_{\eta \upharpoonright \nu}+A_{\eta \upharpoonright \nu}^{\varepsilon}\left[p^{k}\right]$).
For each $\delta \in E$ define a partition function P_{δ} : If $\xi, \rho \in \omega_{1}$ and $h: A_{\xi} \rightarrow A_{\rho}$, let $P(\xi, \rho, h)= \begin{cases}1 & \text { if } h \text { lifts to } h^{0}: A_{\xi}^{0} \rightarrow A_{\rho}^{0} \\ 0 & \text { otherwise }\end{cases}$
Let ψ_{α} be the function provided by $\phi_{\aleph_{1}}\left(E_{\alpha}\right)$, i.e., $\left\{\nu \in E_{\alpha} \mid \psi_{\alpha}(\nu)=\right.$ $\left.P_{\alpha}(s \upharpoonright \nu, t \upharpoonright \nu, g)\right\}$ is stationary for each $s, t<\omega_{1}$ and $g: A_{s} \rightarrow A_{t}$. Take $\Sigma \leq P\left(\aleph_{1}\right)$ such that $S=T$ if $S, T \in \Sigma$ and $S \subseteq T$ or $T \subset S$. We may choose $a \Sigma$ s.t. $|\Sigma|=2^{\aleph_{1}}$.
Now define $\varphi_{S} \in 2^{\aleph_{1}}$ such that $\varphi_{S}(\delta)=\left\{\begin{array}{l}\psi_{\alpha}(\delta) \text { if } \delta \in E_{\alpha} \text { and } \alpha \in S . \\ 0 \text { otherwise }\end{array}\right.$.
Take $A_{S}:=A_{\varphi_{S}}=\cup_{\alpha<\omega_{1}} A_{\varphi_{S}\lceil\alpha}$. By our construction, obviously $A_{S}\left[p^{k}\right]=A_{T}\left[p^{k}\right]$ and elements have equal heights. This implies (2). Let $S, T \in \Sigma, S \neq T$ and assume $h: A_{S} \rightarrow A_{T}$ is an isomorphism. Then the set $C=\left\{\nu<\aleph_{1} \mid h\left(A_{\psi_{S} \upharpoonright \nu}\right)=A_{\varphi_{t} \upharpoonright \nu}\right\}$ is a cub.
Take any $\alpha \in T-S$ and $\lambda \in E_{\alpha} \cap C$. Set $\eta=\varphi_{S} \upharpoonright \lambda, \varphi=$ $\varphi_{T} \upharpoonright \lambda, \theta=h \upharpoonright A_{\eta}$. Since $\lambda \notin E_{\beta}$ for all $\beta \in S, \varphi_{S}(\lambda)=$ $0, \psi_{\alpha}(\lambda)=P_{\alpha}(\eta, \rho, \theta)$ and w.l.o.g. θ lifts to a $\tilde{\theta}: A_{\eta}^{0}=A_{\varphi_{s} \upharpoonright(\lambda+1)} \rightarrow$ $A_{\varphi_{T} \upharpoonright(\lambda+1)}=A_{\varphi T \upharpoonright \lambda}^{\psi \alpha^{(\lambda)}}$ because $A_{\varphi_{S} \upharpoonright(\lambda+1)}\left(A_{\varphi_{T} \upharpoonright(\lambda+1)}\right)$ is the p-adic closure of $A_{\eta}\left(A_{\rho}\right)$ in $A_{S}\left(A_{T}\right)$. Therefore $\psi_{\alpha}(\lambda)=1$ and $\tilde{\theta}$ is a 1-1 map of A_{η}^{0} onto $A_{\varphi_{T} \upharpoonright \lambda}^{1} \cap A_{\varphi_{T} \upharpoonright \lambda}^{0}=\left(A_{\varphi_{T} \upharpoonright \lambda} \cap A_{\varphi_{T} \upharpoonright \lambda}\right)+A_{\varphi T \upharpoonright \lambda}\left[p^{k}\right]$ which is impossible. Therefore $A_{S} \underset{\sim}{\sim} A_{T}$ and (1) is shown. (3) will be an immediate consequence of our next, more general, result. Observe that $A_{\varphi S \upharpoonright(\lambda+1)} / A_{\varphi S \upharpoonright \lambda}=\mathbf{Z}_{p \infty}$ if $\lambda \in E$.

DEFINITION 2.3. (I) A separable abelian p-group A is weakly $\omega_{1}-$ separable if each countable subgroup B of A is contained in a countable ω_{1}-pure subgroup C of A, i.e., if $C \subseteq C^{\prime} \subseteq A$ and C^{\prime} is countable, then C is a summand of C^{\prime}.
(II) A weakly ω_{1}-separable p-group A is of type $Z\left(p^{\infty}\right)$, if A admits a pure filtration $A=\cup_{\alpha<\omega_{1}} A_{\alpha}$ such that $A_{\alpha+1}$ is ω_{1}-pure in A for all $\alpha<\omega_{1}$ and if λ is a limit ordinal, A_{λ} is also ω_{1}-pure or $A_{\lambda+1} / A_{\lambda}$ is
isomorphic to $\mathbf{Z}\left(p^{\infty}\right)$.
We will adopt parts of the proof of 1.4 Theorem in [3, p. 506] to show

THEOREM 2.4. Let A, A^{\prime} be weakly ω_{1}-separable p-groups of cardinality ω_{1} and of type $Z\left(p^{\infty}\right)$. If there exists a height-preserving isomorphism $\sigma: A[p] \rightarrow A^{\prime}[p]$, then A and A^{\prime} are filtration-equivalent.

Proof. We first show that A and A^{\prime} have pure ω_{1}-filtrations $A=$ $\cup_{\nu<\omega_{1}} A_{\nu^{\prime}} A^{\prime}=\cup_{\nu<\omega_{1}} A_{\nu}^{\prime}$ such that $\sigma\left(A_{\nu}[p]\right)=A_{\nu}^{\prime}[p]$ and $A_{\nu+1}\left(A_{\nu+1}^{\prime}\right)$ are ω_{1}-pure in $A\left(A^{\prime}\right)$:
Let $A=\cup_{\nu<\omega_{1}} \tilde{A}_{\nu}, A^{\prime}=\cup_{\nu<\omega_{1}} \tilde{A}_{\nu}^{\prime}$ be pure ω_{1}-filtrations such that $\tilde{A}_{\nu+1} / \tilde{A}_{\nu}\left(\tilde{A}_{\nu+1}^{\prime} / \tilde{A}_{\nu}^{\prime}\right)$ are either Σ-cyclic or $\cong Z\left(p^{\infty}\right)$ and $\tilde{A}_{\nu+1}\left(\tilde{A}_{\nu+1}^{\prime}\right)$ are all ω_{1}-pure in $A\left(A^{\prime}\right)$. The set $C=\left\{\nu \mid \sigma\left(\tilde{A}_{\nu}[p]\right)=\tilde{A}_{\nu}^{\prime}[p]\right\}$ is a cub in ω_{1}. Let $\nu_{0} \min C$.
If $\tilde{A}_{\nu_{0}}$ is ω_{1}-pure in $A, \tilde{A}_{\nu_{0}}^{\prime}$ is ω_{1}-pure as well (apply σ) and we may set $A_{0}=\tilde{A}_{\nu_{0}}$ and $A_{0}^{\prime}=\tilde{A}_{\nu_{0}}^{\prime}$. If $\tilde{A}_{\nu_{0}}$ is not ω_{1}-pure in $A, \tilde{A}_{\nu_{0}+1}[p]$ is the p-adic closure of $\tilde{A}_{\nu_{0}}[p]$ in $A[p]$ which implies $\nu_{0}+1 \in C$ and we can take $A_{0}=A_{\nu_{0}+1}$ and $A_{0}^{\prime}=\tilde{A}_{\nu_{0}+1}^{\prime}$. Suppose we have defined $A_{\alpha}, A_{\alpha}^{\prime}$ for all $\alpha<\beta$. If β is a limit, take $A_{\beta}=\cup_{\alpha<\beta} A_{\alpha}$. Suppose $\beta=\gamma+1$ is a successor and $A_{\gamma}=\tilde{A}_{\nu_{\gamma}}$. Let $\nu_{\gamma+1}=\min \left\{\rho \in C \mid \rho>\nu_{\gamma}\right\}$ and repeat the argument used at the beginning of our induction.

Hence we may assume $A=\cup_{\alpha<\omega_{1}} A_{\alpha}$ and $A^{\prime}=\cup_{\alpha<\omega_{1}} A_{\alpha}^{\prime}$ are pure ω_{1}-filtrations, $A_{\alpha+1}\left(A_{\alpha+1}^{\prime}\right)$ are ω_{1}-pure in $A\left(A^{\prime}\right)$ and for $\lambda \in E \leq \omega_{1}$ we have $A_{\lambda+1} / A_{\lambda} \cong A_{\lambda+1}^{\prime} / A_{\lambda}^{\prime} \cong Z\left(p^{\infty}\right) \oplus C_{\lambda}$ where C_{λ} is Σ-cyclic. (Observe that a height-preserving isomorphism on the socles of Σ cyclic p-groups is always induced by some isomorphism of the groups). For $\lambda \in E$, let $A_{\lambda+1}=A_{\lambda}^{d} \oplus B_{\lambda}$ where $A_{\lambda} \subseteq A_{\lambda}^{d}, A_{\lambda}^{d} / A_{\lambda} \cong Z\left(p^{\infty}\right)$ and $B_{\lambda} \cong C_{\lambda}$. Moreover we fix $w_{\lambda} \in A_{\lambda}^{d}[p]\left(w_{\lambda}^{\prime} \in A_{\lambda}^{\prime d}[p]\right)$ such that $A_{\lambda+1}[p]=A_{\lambda}[p] \oplus\left\langle w_{\lambda}\right\rangle \oplus B_{\lambda}[p]$ and $\sigma\left(w_{\lambda}\right)=w_{\lambda}^{\prime}$. (The element w_{λ} has infinite height in $\left.A_{\lambda+1}[p] / A_{\lambda}[p]\right)$.
Consider the sequence $h^{\lambda}=\left(h_{A_{\lambda} / A_{\nu}}\left(w_{\lambda}+A_{\nu}\right) \mid \nu<\lambda\right)$. This is an unbounded, increasing sequence of natural numbers. We say that the sequence h^{λ} has a gap at ν if $h^{\lambda}(\mu)<h^{\lambda}(\nu)$ for all $\mu<\nu$. Since
$h^{\lambda}(\nu)$ are finite heights, gaps don't occur at limit ordinals. Therefore we find a strictly increasing sequence of successor ordinals λ_{n} such that for $h_{n}=h^{\lambda}\left(\lambda_{n}\right)$ we have $h_{1}<h_{2}<\cdots<h_{n}<h_{n+1}$ and $\lambda=\sup \left\{\lambda_{n} \mid n<\omega\right\}$. Each $A_{\lambda_{n}}$ is a summand of A_{λ} and if we define $h_{n}^{\prime}, \lambda_{n}^{\prime}$ for $w_{\lambda}^{\prime}+A_{\nu}^{\prime}$, the existence of σ implies $h_{n}=h_{n}^{\prime}$ and $\lambda_{n}=\lambda_{n}^{\prime}$.
We will now study the embedding of A_{λ} into A_{λ}^{d}, where again $A_{\lambda+1}=A_{\lambda}^{d} \oplus B_{\lambda}$ and $A_{\lambda}^{d} / A_{\lambda} \cong Z\left(p^{\infty}\right)$. Let $h_{n}=h_{A_{\lambda} / A_{\lambda_{n}}}\left(w_{\lambda}+A_{\lambda_{n}}\right)$. By induction we define elements $w_{n} \in A_{\lambda}^{d}$ such that
(1) $p^{h_{n}} w_{n}=w_{\lambda}+\tilde{a}_{n}, \tilde{a}_{n} \in A_{\lambda_{n}}[p]$,
(2) $p^{h_{n}+1} w_{n}=0$,
(3) $p_{n+2}^{h}-h_{n} w_{n+1}-w_{n}=a_{n} \in A_{\lambda_{n}}$,
(4) $p^{h_{n+1}} a_{n}=0$ and $p^{h_{n}} a_{n+1}=\tilde{a}_{n+1}-\tilde{a}_{n}$,
(5) $h_{A_{\lambda} / A_{\nu}}\left(a_{n+1}+A_{\nu}\right)=0$ for all $\lambda_{n} \leq \nu<\lambda_{n+1}$.

We easily find $u_{n} \in A_{\lambda}^{d}$ such that $p^{h_{n}} u_{n}-w_{\lambda}=\tilde{a}_{n} \in A_{\lambda_{n}}[p]$ and $p^{h_{n}+2} u_{n}=0$. Since $A_{\lambda}^{d} / A_{\lambda} \cong Z\left(p^{\infty}\right)$ we have $A_{\lambda}^{d}=\left\langle A_{\lambda} \cup\left\{u_{n} \mid\right.\right.$ $n \in \mathbf{N}\}\rangle$ and $p^{h_{n+1}-h_{n}} u_{n+1}=u_{n}+b_{n}$ for some $b_{n} \in A_{\lambda}$.

We have to adjust the u_{n} 's to obtain (3):
Assume we have define w_{1}, \ldots, w_{n}. If \hat{A}_{λ} is the torsion completion of A_{λ} we have $A_{\lambda} \subseteq A_{\lambda}^{d} \subseteq \hat{A}_{\lambda}$ and we may choose a natural basis B of A_{λ}, i.e., B contains a basis B_{n} of $A_{\lambda_{n}}$ and $B=\cup_{n} B_{n}$.
Now assume $b_{n} \in A_{\lambda}-A_{\lambda_{n+1}}$, i.e., there exists some $e \in B-B_{n+1}$ such that $b_{n}(e) \frac{1}{\tau} 0$.
We distinguish two cases

CASE 1. $w_{\lambda}(e) \frac{1}{\tau} 0$.
Since $h_{A_{\lambda / A_{\lambda_{n}}}^{d}}\left(w_{\lambda}\right)=\min \left\{h_{f Z}\left(w_{\lambda}(f)\right) \mid f \in B-B_{n}\right\}$, we have $h_{e Z}\left({ }_{\lambda}(e)\right) \geq h_{n+1}$, and $p^{h_{n+1}} u_{n+1}=p^{h_{n}} u_{n}+p^{h_{n}} b_{n}$ implies $\tilde{a}_{n+1}-\tilde{a}_{n}=$ $p^{h_{n}} b_{n} \in A_{\lambda_{n+1}}$ and therefore $p^{h_{n}} b_{n}(e)=0$. Since $h\left(w_{\lambda}(e)\right) \geq h_{n+1}$ and $w_{\lambda}(e) \stackrel{\perp}{\tau} 0$, we get $0(e) \geq p^{h_{n+1}+1}$. This implies $h_{e z}\left(b_{n}(e)\right) \geq$ $0(e) p^{-h_{n}} \geq p^{h_{n+1}-h_{n}+1}$ and there exists an $z_{e} \in Z$ such that $b_{n}(e)=$ $e p^{h_{n+1}-h_{n}} z_{e}$.
Let $w_{n+1}=u_{n+1}=\Sigma_{e} e z_{e}$. Since the sum is finite we have again $w_{n+1} \in A_{\lambda}^{d}$.

CASE 2. $w_{\lambda}(e)=0$.
Here we correct u_{n+1} and u_{n} such that $u_{n+1}(e)=0=u_{n}(e)$. This finally shows (3). (4) is obvious.
We have $h_{k+1}=h_{A_{\lambda}}\left(w_{\lambda}+\tilde{a}_{k+1}\right)=h_{A_{\lambda} / A_{\lambda_{k+1}}}\left(w_{\lambda}+A_{\lambda_{k+1}}\right) \geq$ $h_{A_{\lambda} / A_{\nu}}\left(\left(w_{\lambda}+A_{\nu}\right)+\left(\tilde{a}_{k+1}+A_{\nu}\right)\right) \geq \min \left\{h_{A_{\lambda} / A_{\nu}}\left(w_{\lambda}+A_{\nu}\right), h_{A_{\lambda} / A_{\nu}}\left(\tilde{a}_{k+1}+\right.\right.$ $\left.\left.A_{\nu}\right)\right\}=\min \left\{h_{k}, h_{A_{\lambda} / A_{\nu}}\left(\tilde{a}_{k+1}+A_{\nu}\right)\right\}$ if $\lambda_{n} \leq \nu<\lambda_{n+1}$. Assume $h_{k}>h_{A_{\lambda} / A_{\nu}}\left(\tilde{a}_{k+1}+A_{\nu}\right)$. Then we have $h_{k+1} \leq h_{A_{\lambda} / A_{\nu}}\left(w_{\lambda}+\tilde{a}_{k+1}+\right.$ $\left.A_{\nu}\right)=h_{A_{\lambda} / A_{\nu}}\left(\tilde{a}_{k+1}+A_{\nu}\right)<h_{k}$ a contradiction. Therefore $h_{k} \leq$ $h_{A_{\lambda} / A_{\nu}}\left(\tilde{a}_{k+1}+A_{\nu}\right)=h_{A_{\lambda} / A_{\nu}}\left(\tilde{a}_{k+1}-\tilde{a}_{k}+A_{\nu}\right)=h_{A_{\lambda} / A_{\nu}}\left(p^{h_{k}} a_{k+1}+\right.$ $\left.A_{\nu}\right) \leq h_{k}$ and $h_{A_{\lambda} / A_{\nu}}\left(a_{k+1}+A_{\nu}\right)=0$.
This implies

$$
\begin{gather*}
a_{k+1}+A_{\nu} \text { generates a cyclic summand of } A_{\lambda_{n+1}} / A_{\nu} \tag{*}\\
\text { for all } \lambda_{n} \leq \nu<\lambda_{n+1}
\end{gather*}
$$

It is routine to verify
If $\varphi: A_{\lambda} \rightarrow A_{\lambda}^{\prime}$ is an isomorphism such that $\varphi\left(a_{n}\right)=a_{n}^{\prime}$ for $n \geq n_{0}$, then φ lifts to an isomorphism $\varphi^{\prime}: A_{\lambda+1} \rightarrow A_{\lambda+1}$.
Now let $\mu<\lambda$ (w.l.o.g. $\mu<\lambda_{1}$) and let $f: A_{\mu} \rightarrow A_{\mu}$ be a level preserving isomorphism such that $f \upharpoonright A_{\mu}[p]=\sigma \upharpoonright A_{\mu}[p]$. Using induction we may show that f extends to some level preserving $f^{\prime}: A_{\mu}^{\prime} \rightarrow A_{\mu}^{\prime}$ where $\lambda_{1}=\mu^{\prime}+1$. Since $a+A_{\lambda_{1}}\left(a^{\prime}+A_{\lambda_{1}}^{\prime}\right)$ generate cyclic summands of $A_{\lambda_{1}} / A_{\mu^{\prime}}\left(A_{\lambda_{1}}^{\prime} / A_{\mu}^{\prime}\right)$ and $\sigma\left(p^{h_{1}} a\right)=\sigma\left(\tilde{a}_{1}\right)=\tilde{a}_{1}^{\prime}=p^{h_{1}} a_{1}^{\prime}$, we can extend f to f^{\prime} such that $f^{\prime}\left(a_{1}\right)=a_{1}^{\prime}$. Assume we already found $g_{n}: A_{\lambda_{n}} \rightarrow A_{\lambda n}^{\prime}$ extending $g_{n-1}(f=: g-1)$. Again $\left(^{*}\right)$ implies that we may extend g_{n} to $g_{n+1}: A_{\lambda_{n+1}} \rightarrow A_{\lambda_{n+1}}^{\prime}$ being a level preserving isomorphism.
We may now repeat Eklof's argument [3, p. 507] to obtain a level preserving isomorphism $f_{\nu}: A_{\nu} \rightarrow A_{\nu}^{\prime}$ for all $\nu<\omega_{1}$.

COROLLARY $2.5(M A+\neg C H)$. Two ω_{1}-separable p-groups of cardinality \aleph_{1} are isomorphic if they are both of type $Z\left(p^{\infty}\right)$ and have isometric socles.

Proof. Assumption of Martin's axiom and the denial of the continuum hypothesis makes all weakly ω_{1}-separable p-groups ω_{1}-separable,
(c.f. $[\mathbf{9}$, Thm 2.2]) and filtration-equivalence means isomorphic, c.f. [9, Thm 4.1] or [2] in the torsion free case.

Combining 2.2 and 2.5 we obtain

COROLLARY 2.6. The question "Are ω_{1}-separable p-groups of type $Z\left(p^{\infty}\right)$ determined - up to isomorphism - by their socles" is undecidable in ZFC.

We will conclude our paper with a construction which answers a question of M. Huber [7, p. 316] and also provides a proof of an assertion of Megibben's [9]. Consult [7, p. 312] for the definition of quotient-equivalence.

THEOREM 2.7 Let E be a stationary subset of ω_{1}. Then there exist ω_{1}-separable p-groups A, A^{\prime} of cardinality \aleph_{1} such that
(a) $A[p]$ and $A^{\prime}[p]$ are isometric.
(b) $\Gamma(A)=\Gamma\left(A^{\prime}\right)=E$.
(c) A and A^{\prime} have the same basic subgroup.
(d) A and A^{\prime} are not quotient-equivalent.

Proof. Let $B_{\beta}=\oplus\{(\alpha, n, \varepsilon) \mathbf{Z} \mid \alpha<\beta, n<\omega, \varepsilon \in\{0,1\}\}$ and $B=\cup_{\beta \leq \omega_{1}} B_{\beta}$ where $0(\alpha, n, \varepsilon)=p^{n+1}$. By induction on $\lambda \in E$ we define $\lambda_{*}<\omega_{1}$ such that
(I) λ_{*} is a limit ordinal and $\lambda_{*}>\lambda$.
(II) $\sup \left\{\mu_{*} \mid \mu<\lambda\right\}<\lambda_{*}$.

We may choose for each $\lambda \in E$ a ladder $\lambda_{n}, \lambda_{*}^{n}$ of successor ordinals such that $\sup \left\{\lambda_{n} \mid n<\omega\right\}=\lambda, \sup \left\{\lambda_{*}^{n} \mid n<\omega\right\}=\lambda_{*}$ and $\lambda_{*}^{0}>$ $\sup \left\{\mu_{*} \mid \mu<\lambda\right\}$. For $\lambda \in E$, let $W_{\lambda, k}=\sum_{n=k}^{\infty}\left(\lambda_{n}, n, 0\right) p^{n-k}$ and $W_{*}^{\lambda, k}=W_{\lambda, k}+V_{\lambda, k}$ where $V_{\lambda, k}=\sum_{n=k-1}^{\infty}\left(\lambda_{*}^{n}, n, 1\right) p^{n-k+1}$ for $k \geq 1$ and $V_{\lambda, 0}=0$. Then we have $p^{k} W_{\lambda, k}=W_{\lambda, 0}-\sum_{i=0}^{k-1}\left(\lambda_{i}, i, 0\right) p^{i}=$ $p^{k} W_{*}^{\lambda, k}$ for all $\lambda \in E$ and $k \in \mathbf{N}$. Moreover, the elements $W_{*}^{\lambda, k}, k \geq 1$ are independent modulo $A_{\lambda}+1$.
Define $A_{\alpha}=\left\langle(\nu, n, \varepsilon), W_{\lambda, k} \mid \nu<\alpha, n<\omega, \alpha>\lambda \in E, k<\omega, \varepsilon=0,1\right\rangle$
and $A_{\alpha}^{\prime}=\left\langle(\nu, n, \varepsilon), W_{*}^{\lambda, k} \mid \nu<\alpha, n<\omega, \alpha>\lambda \in E, k<\omega, \varepsilon=0,1\right\rangle$.
For $\lambda \in E$, we have $A_{\lambda+1} / A_{\lambda} \cong Z\left(p^{\infty}\right)$ and $A_{\lambda+1}^{\prime} / A_{\lambda}^{\prime} \cong P$, the reduced Prüfer-group, i.e., $P=\left(\left\langle W_{*}^{\lambda, k} \mid k<\omega\right\rangle+A_{\lambda}^{\prime}\right) / A_{\lambda}^{\prime}, P[p]=$ $\left\langle W_{*}^{\lambda .0}+A_{\lambda}^{\prime}\right\rangle$ and $P / P[p] \cong \oplus_{k=1}^{\infty}\left\langle W_{*}^{\lambda, k}+A_{\lambda}^{\prime}\right\rangle$. Observe that $A_{\lambda+1}^{\prime}+$ $B_{\lambda_{*}} / B_{\lambda_{*}}$ is divisible and the identity serves as a height-preserving isomorphism of $A_{\lambda+1}[p]$ onto $A_{\lambda+1}^{\prime}[p]$. This implies that $A=\cup_{\alpha<\omega_{1}} A_{\alpha}$ and $A^{\prime}=\cup_{\alpha<\omega_{1}} A_{\alpha}^{\prime}$ are the desired groups. We leave the details to the reader.

REFERENCES

1. K. Devlin and S. Shelah, A Weak Version of \diamond which follows from $2^{\aleph_{0}}<2^{\aleph_{1}}$, Israel J. Math. 29 (1978), 239-247.
2. P. Eklof, Set Theoretic Methods in Homological Algebra and Abelian Groups, Presses Univ. Montréal, Montréal 1980.
3. , The Structure of ω_{1}-separable Groups, Trans. AMS. 279 (1983), 497-523.
4. - and M. Huber, On ω-filtered Vector Spaces and Their Applications to Abelian p-groups, to appear.
5. L. Fuchs, Infinite Abelian Groups, Vol. I and II, Academic Press, New York, 1973.
6. P. Hill and C. Megibben, On Primary Groups with Countable Basic Subgroups, Trans. AMS. 124 (1966), 159-168.
7. M. Huber, On the Abundance of Primary Abelian Groups, Proceedings of the Honolulu Conference, Springer LNM 1006 (1983).
8. T. Jech, Set Theory, Academic Press, New York, 1978.
9. C. Megibben, ω_{1}-separable p-groups, manuscript.
10. E.A. Walker, On n-extensions of Abelian Groups, Ann. Univ. Sci. Budapest 8 (1965), 71-74.

Baylor University. Waco. Texas 76798
Fb. 6-Mathematik. Universität Essen-GHS, D-4300 Essen 1, Federal Republic of Germany

