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ERGODIC SEQUENCES A N D A SUBSPACE OF B(G) 

PAUL MILNES AND ALAN L.T. PATERSON 

ABSTRACT. J. Blum and E. Eisenberg studied conditions 
on a sequence {/xn} of probability measures on a locally com
pact abelian group G which ensured that, for any strongly 
continuous unitary representation TT of G on a Hilbert space 
H and for any £ € if, {Jc ir(x)^dfin(x)} converges to a G-
invariant member of H. In this paper their result is (essen
tially) generalized to non-abelian G. The generalization in
volves Bj (G) , the closure of the linear span of the coefficients 
of the irreducible representations of G; thus Bj (G) contains 
AP(G) always, and equals A(G) if G is compact or abelian. 
The relationships of Bj (G) to AP(G) and to GQ(G) are inves
tigated and Bj (G) is identified for some non-abelian groups, 
in particular, for the Heisenberg group, for which Bj (G) is 
not an algebra. 

1. Introduction. Let G be a locally compact abelian group. By 
representation of G, we shall mean a strongly (equivalently, weakly) 
continuous unitary representation TT of G on a Hilbert space H (as in 
[7; §13.1]) The fixed point set of -K is 

Hf = {£eH: TT(X)Ç = £ for all x € G}. 

A sequence {/xn} of probability measures on G is called a a strong 
operator ergodic (s.o. ergodic) sequence or a generalized summing 
sequence if, for every representation TT of G on a Hilbert space H and 
for every £ e H, {7r(/in)£} converges in norm to a member of Hf. It is 
readily seen (via [10, §23], for example) that {/in} is s.o. ergodic if and 
only if, for every representation TT of G on if, 7r(/in) —• P in the strong 
operator topology, where P is the orthogonal projection onto Hf. 

Blum and Eisenberg [1] proved the following interesting. 
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THEOREM. The following are equivalent 

(i) {/in} is s.o. ergodic. 

(ii) £ n ( 7 ) ^ 0 forali 7 € G\{1} . 

(Hi) {/in} converges weakly to Haar measure on the Bohr compactifi-
cation of G. 

A natural question to ask is: what happens if G is not assumed 
to be abelian? To answer this question we consider weak operator 
ergodic (w.o. ergodic) sequences {/in} of probability measures on G, for 
which {7r(/in)} converges in the weak operator topology to P for every 
representation n of G. In the next section we consider the possibility 
that w.o. and s.o. ergodicity are equivalent notions, and determine this 
is the case for groups G if every 7r G G is finite dimensional. However, 
many groups almost trivially have w.o. ergodic sequences that are not 
s.o. ergodic. Also, in §2 we present our generalization of the Blum-
Eisenberg theorem, (i) and (ii) of which generalize in a natural way. 
(iii) is more intriguing. One might expect to be dealing with the space 
A P ( G ) of almost periodic functions here, but in fact we must deal 
with the closed subspace B / ( G ) spanned by the coefficient functions of 
all the irreducible representations of G. (iii) then translates to: {/in} 
converges weakly to the invariant mean on B / ( G ) . 

Thus B / ( G ) appears as an object worthy of study in its own right. An 
interesting feature about B / ( G ) is that , because only irreducible rep
resentations are involved, we can actually calculate it for some groups 
whose duals are known. This is in contrast to the cognate space B(G) , 
the Fourier-Stieltjes algebra, which can be much bigger. However, the 
algebraic structure of B(G) contains information of how tensor prod
ucts of representations "decompose", and this is lacking for B / ( G ) . 
Nonetheless, all of G is, in a sense, contained in B / ( G ) , so that B / ( G ) , 
though not an algebra in general, should give substantial information 
about duality for G. In §3 we calculate B / ( G ) for some groups. 

2. Ergodic sequences and t h e space B i ( G ) . It is natural to 
ask when the two notions of ergodicity for sequences {/in} are equiva
lent. A partial answer is given by the following proposition. Note that 
the separability condition is not required if G is abelian (and in fact 
the following proof is a non-abelian version of that given by Blum and 
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Eisenberg for the implication (ii) => (i) of their theorem). It is also not 
required if G is compact, since then every representation decomposes 
into a direct sum of irreducible representations, and an easy argument 
gives the result. 

PROPOSITION 1. Let G be a separable, locally compact group such 
that every irreducible representation is finite dimensional Then every 
w.o. ergodic sequence is s.o. ergodic. 

PROOF. Let {/in} be a w.o. ergodic sequence for G and let n be a 
representation of G on H*. Since G is separable, H* is a direct sum 
of closed, separable, 7r(G)-invariant subspaces; hence we can suppose 
that H* is separable. A well-known theorem [15; p. 127] then asserts 
that 7T can be decomposed into a direct integral 

TT = / 1TX dv{x) 
Jx 

with each 7rx£G. SO, H* = Jx H*x du(x) and 7r(/in) = Jx irx(fin)dv(x). 
Since {/in} is w.o. ergodic, 7r(jun) —» Pn in the weak operator topology, 
where P* is the orthogonal projection of H* onto HJ. Similarly, for 
each x € X,irx(l*n) -* P*x in the weak operator topology, and hence 
in the strong operator topology, since irx is finite dimensional. Now let 
£ e H„i = {&} e L2{v,{H**}). We claim ||(7r(/in) - P*)£||2 -* 0. 
For, since Pn — {Px} (in terms of integral decomposition), we have 

HM/inK - P*0 (* )H 2 = \\nx(ßn)t* - P - & I I 2 < 2||4x||2, 

and hence by the Lebesgue dominated convergence theorem, 

| |(7r(//n)-P*)£||2= / \\*m(gin)tm-F«'tx\\
2Mx)->0. 

Jx 

Thus 7r(/in) —• P* in the strong operator topology as required. D 

We now need the space B/(G), the closure in C(G) of the linear span 
of the set of coefficient functions of the irreducible representations of 
G. (Such a coefficient function is of the form Fg^x) = (n(x)€,v) 
for a 7T € G and £,r? G fP . ) Since B(G) is closed in C(G) if and 
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only if G is finite [9], we do not have B/(G) C B(G) in general. 
(Of course, it is true that B/(G) = (B/(G) n B(G))".) Note that 
B/(G) D AP(G), the space of almost periodic functions on G and 
B/(G) = AP(G) if G is compact or abelian. Also, Bj(G) is always a 
translation invariant subspace of W(G), the space of weakly almost 
periodic functions on G. There exists a unique invariant mean m 
on W(G) and, as well as W(G) D B(G)" D AP(G), we have 
W(G) = AP(G)0W o (G) , where W0(G) = {/ G W(G) : m(| / | ) = 0}. 
Since AP(G) C B/(G), we also have Bj(G) = AP(G) 0 B?(G), 
where B$(G) = B/(G) H W0(G); B?(G) is the closure in C(G) of 
the linear span of the coefficient functions of the infinite dimensional 
representations in G. The restriction of m to B/(G) gives an invariant 
mean on B/(G) which is unique. (See [4] for all these matters.) 

For a measure fi on G, the function ß on C(G) (or any subspace of 
C(G) is defined by 

ß(f) = Jfdfi. 

The next result generalizes the Blum-Eisenberg result to the non-
abelian (separable) case. 

THEOREM 2. Let G be a separable, locally compact group. Then the 
following statements about a sequence {/xn} of probability measures on 
G are equivalent: 

(i) {/xn} is a w.o. ergodic sequence . 
(ii) 7r(/in) —• 0 in the weak operator topology for every ir G G\{1}. 

(iii) /in —* m\ the weak* topology, where mi is the unique invariant 
mean on B/(G). 

PROOF, (i) implies (ii). Let 7T G G. Then 7T(/X„) -» P71" (in our 
earlier notation) and P71" G (7r(G))c, the commutant of 7r(G). Since 
7T is irreducible, Pn G Ci ; since P^ is a projection, Pn = 0 or / . 
If P* = I,Hj = H*, and irreducibility tells us that if* is one-
dimensional and that n is the trivial representation 1. So, if 7r ^ 1, 
then 7r(/in) —• 0 in the weak operator topology. 

(ii) implies (iii). Let n G G and let Ç,rj G /f7". Then 
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Vn{Flr,) = J FlnWdßnix) = / (n(x)^ri)dfjLn{x) 

Since the left translate LyFT^ satisfies 

LyFl^x) = Flv(yx) = (ir(yx)t,V) = F£My.l)v(x), 

it follows that 

ßn(LyFl„) - (PitMv-1)*) = (P*^VI 

i.e., ßn -» mi. 

(iii) implies (i). Let -K E G. By (iii), {(7r(/xn)^,ry)} converges for 
all £,77 € JFP, and hence 7r(/in) —• T in the weak operator topology 
for some T € B(H*). Clearly (T£,n) = m i ( F ^ ) , and, since mx is 
invariant, we have 7r(y)T = T = T7r(y), and hence T = P*, and is 0 or 
I. Now argue using disintegration theory (as in the proof of Proposition 
1) to obtain that 7r(/in) —• Pw in the weak operator topology for all 
representations IT. This gives (i). 

We now proceed to some simple properties of Bj(G), relating this 
space to AP(G) and Co(G). The next result shows that, under certain 
circumstances B/(G) is an AP(G)-module. 

PROPOSITION 3. Suppose that every finite dimensional IT € G is one 
dimensional. Then AP(G)B/(G) C B/(G). 

PROOF. Let 7r e G and let a be a character of G. Then IT <g> a G G 
(where IT <g> a(x) = a(x)ir(x) € B(Hn)). Thus aF^ e B/(G) for all 
£, 7/ € U, and hence aBj(G) C B/(G). Since AP(G) is the closure of 
the span of the characters of G, the desired result follows. D 

COROLLARY. / / G is connected and solvable or is minimally almost 
periodic, then AP(G)Bj(G) C Bj(G). 
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PROOF. It is well known that every connected, solvable group satisfies 
the hypothesis of Proposition 3 [13; 29.42]. Also, a minimally almost 
periodic group satisfies C l = AP(G) by definition. 

Recall that simple, non-compact, Lie groups with finite centers are 
minimally almost periodic [19, 3], as is the alternating group on 
infinitely many symbols. 

It is well known and easy to prove that Co(G) C Wo(G). The next 
result gives a condition which ensures that Co(G) C Bj(G). We denote 
by M(G) the algebra of bounded, regular, Borei measures on G. 

PROPOSITION 4. Suppose G is not compact and let <f> C G. Suppose 
that F? G Co(G) for all TT G </> and £,77 G H* and that, for each 
/x G M(G), there exists a TT G <t> with 7r(/x) # 0. Then C0(G) C B/(G). 

PROOF. Let A = spiF^ : w G (£,£,77 G H*}. Then A is a closed 
subspace of C0(G) fl B/(G). If A £ C0(G), then, by the Hahn-Banach 
theorem, there is a p G M(G) = Co(G)* such that A(A) = 0 and \i ^ 0. 
But for all 7r G <f> and £,77 G # * 

0 = £(*£„) = J(*{x)Ç,Tl)dlJL(x) = (7T(/i)£,77), 

and hence 7r(/x) = 0 for all TT G 0. But this implies ft = 0, and this 
contradiction shows 4̂ = Co(G). D 

3, The space Bi(G) for certain locally compact groups. It has 
been noted already that B/(G) = AP(G) if G is compact or abelian. 
The next proposition shows it is possible for B/(G) to contain the cog
nate space B(G); we even have B/(G) = B(G)" = W(G). 

PROPOSITION 5. Let G be a non-compact, simple, analytic group with 
finite centre. Then B/(G) = C l 0 C0(G). 

PROOF. By [19], B(G)- = W(G) = C l e C 0 ( G ) . Let <£ = G/{1}. By 
Proposition 4, it suffices to prove that, for each /x G M(G), there exists 
a 7T G <j) such that 7r(/i) ^ 0. Let 7TI be the left regular representation 
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of G. Since G is of type I [20; I, pp. 313, 336], we have a Plancherel 
measure v on G and a disintegration 

7Ti = / n^Tïdv^) on / n^H^du^) 
JG JG 

[7; p. 176]. Since G is not amenable, 1 is not in the support of v [8; p. 
252], and hence we can write 

fl"i = / nirirdu(7r) / nirirdu(7r) 
JG\{I} 

Let fi G M(G) and suppose 7r(//) = 0 for all ir G G\{1}. Then, if 
f,g G L2(G), / = {/„}, g = {gn}, where U,gn G n^H*', we have 

(iri(ß)f,g) = / {{>*®I){ii)U,g«)dv{<K) = 0. 

But 7Ti is faithful on M(G), and hence /x = 0. The proof is complete. D 

NOTES. A little care is needed in the proposition above. There are 
groups G for which 7r(/i) = 0 for all n G G\{1}, but ß ^ 0, e.g., if /i is 
Haar measure on a compact group. 

If G is as in Proposition 5 and {xn} C G,xn —+ oo, then {#n} is a 
w.o. ergodic sequence, but not a s.o. ergodic one. 

PROPOSITION 6. Let H be the Heisenberg group, 

f / l , #3, # l \ 1 
H = < 0, 1, x2 : z i , z 2 ,#3 ^ R , 

I \0, 0, 1 / J 

which, as a manifold, isjustH3. Let APo(R) = {/ G AP(R) : m(f) = 
0}, wftere m as tfie invariant mean on AP(R). Then 

B/(JT) = (APo(R)èCo(R2)) e (C 0 AP(R 2 ) ) , 

where V denotes the injective tensor product norm, 
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PROOF. For the representation theory of H, see [20]; I, p. 442] or [16]. 
The irreducible finite dimensional representations are the characters 
Ua,b, a, b, G R, where 

Ua,b(x) = exp {2-Ki(ax2 + bx3)). 

It follows that AP(iJ) = C ® AP(R 2 ) . 

To determined Bj(üf), we consider the infinite dimensional represen
tations of H, which are of the form Ua, a G R\{0}, acting on L»2(R), 
where 

(Ua(x)f)(t) = exp(27ri(xi - x2t)a)f(t - x3). 

Suppose a 7̂  0 and let f,g G L2(R). Then, if (j> = FY(* we have 

4>(x) = (Ua(x)f,g) = [ {Ua{x)f){t)W)dt 

= / exp(27T2(xi — X2t)a)f(t — x3)g(t)dt 
Jn 

= exp(27rixia)Kfg(x2,x3), 

say. We claim Kj € Co(R2) and to prove this we may assume 
/ and g are continuous with compact support. It then follows that 
lim|X2|_00Ä'? (x2,xz) = 0 for all X 3 6 R (Riemann-Lebesgue lemma) 
and Kf = 0 if x3 is outside some bounded interval. These facts, 
coupled with the continuity of the translation map s —• L s / , R —• 
Co(R), yield Ffig € C0(R2)-

We now claim that, for fixed a ^ O , 

sp { # £ , : / , ff€L2(R)} 

is dense in Co(R2). For, suppose not. Then there is a ß € M(R 2 ) , /j, / 
0, with 

JKl9dfi = 0 ( / , 0 € L 2 ( R 2 ) ) . 

Hence, for all f,g continuous with compact support, we have 

0 = / dfj,(x2,x3) / exp(—2mx2ta)f{t — x3)g(t)dt 

= / g(t)dt exp(-27rix2ta)f(t-x3)dfi(x2,x3), 
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and since the inner integral is continuous, we must have 

(1) / exp(-27rix2ta)f(t - ^3)^(^2,3:3) = 0 (te R). 

Since ß is a finite measure, we can find a sequence {fn} of functions, 
continuous with compact support, such that, for fixed t, k G R, 

/ \fn(t - X3) - exp(-27rikx3)\dfi(x2i x3) -> 0. 

It follows from (1) that 

/ exp(—2iri(tx2 + kxs))dß(x2ixs) = 0 

i.e., ß = 0 on R2 . Hence \i = 0, a contradiction. 

Thus, for a / 0, sp{i^/,p : i,9 € L2(R2)} = C0(R2) and it 
follows that Xo ® Co(R2) C 6/(1/) , where Xa(^) = exp(27rm:r). Since 
AP 0 (R) = sp{Xo : a / 0}, it follows from the definitions of the norms 
involved that 

sp{F£; : a ± 0,f,g G L2(G)} = AP o (R)0C o (R 2 ) , 

which completes the proof. D 

NOTE. The explanation of the APo(R) term is to be found in the bad 
behaviour of the dual of if at 1. 1 is the only point of H at which the 
topology of G is not Hausdorff [20; II, p. 46]. Also, a tensor product 
Ua <g> Ub behaves badly as a + b —• 0 [14; p. 99]. 

PROPOSITION 7. Let G be the "ax + 6" group. Then 

B/(G) = C0(G) e (AP(R) ® C. 

PROOF. The proof is similar to that of Proposition 6, yet still needs 
a little work. 
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The finite dimensional members of G are one dimensional and of 
the form Ur for an r € R, where Ur(a,b) = e î r loS a . There are two 
infinite dimensional, irreducible representations C/+ and U"~, realized 
on Ii2([0, (X))) and L»2((—oo,0]), respectively, given by 

U+(a,b)f(t) = exp(27ribt)yfâf(at), 

U-(a,b)f(t) = exp{27ribt)y/af(at). 

(See [20; I, p. 440].) Clearly AP(G) = AP(R) <g> C, where (0,oo) is 
identified with R via log. 

Let f,ge L2(R) and let /+ = f\^°°\f- = /|(_oo,o], and similarly 
for # + and g~. Then Bj(G) is the closure in C(G) of the linear span 
of functions K of the form 

K(a,b) = ( f / + (a ,6 ) / + , ^ + ) + ( t / - ( a , 6 ) / - ^ - ) 

= / exp(27ribt)y/af(at)g(t)dt. 
JR 

Arguing as in the Heisenberg case, one shows that such a K is in Co(R2 

and, if ß € M.(G) satisfies ß(K) = 0 for all such K, one approximates 
(for fixed s and t) the function a —• exp(27rias) by a —• y/af{ai) to 
obtain fi(s,t) = 0, hence // = 0. Thus B?(G) = Co(G) as required. DO 

For the next proposition, the euclidean group of the plane C x T has 
multiplication 

(zf, w')(z, w) = (zf + wfz, w'w), 

and provides another example as in Proposition 5 where B/(G) contains 
the cognate space B(G). Again, we have B/(G) = B(G)~ = W(G); 
see [2; Theorem 4.8]. 

PROPOSITION 8. Let G = C x T, the euclidean group of the plane. 
Then B/(G) = (C 0 AP(T)) 0 C0(G). 

PROOF. The finite dimensional irreducible representations of G are 
the characters, (z, w) —• wn, one for each n 6 Z. For each a > 0, there 
is a Ua 6 G on L2(T), where 

Ua(z,w)f(wi) = exp i(z,awi)f(wwi), 
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where (z,awi = Re(zawï) [18; p. 159]. Clearly AP(G) = C <g> 
AP(T) = C 0 C(T). Since the characters on T form an orthonormal 
basis for L2(T), Bj(G) is the closed linear span in C(G) of functions 
Kn,m °f t n e f ° r m (with notation z = rexp(i0), w = exp(z0),wi = 
exp(i^)) 

/•27T 

KAZ'W) = (^a(^,^) /^)(27r)- 1 / exp(ira cos (9 - cj>)) 
Jo 

exp(in(ip — (f)) — imip)dil}, 

where a > 0, n, m € Z and f(ip) = exp(m^),</(^) = exp (imip). 
Substituting k = —n, I = n — m and 7 = 0 — -0, we get 

/»27T 

JFQm(z, w) = —(27r)"1exp z(fc^ + J0) / exp i(ra cos 7 — /7)c?7 

= /C^(r,0,0), 

say. We must show sp{/Cj^ : a > 0, *, I € Z} = bf B°(G) = C0(G), and 
to do this we need some results about the Bessel functions {Jn : n — 
0,1,2 , . . . }. First, replacing 0 by 7 + 7r/2 and z by # in the formula for 
exp(z2; sin 0) on page 22 of [21], we get 

exp(ix cos 7) = JQ(X) — 2(J2(x) cos 27 — J±{x) cos 47 H ) 

+2i(Ji(x) cos 7 — J3(#) cos 37 H ). 

Substituting this in the formula for /C£ t and integrating, we see that 
B/(G) is the closed linear span of the functions 

(r, 0, (/)) - • exp t(fc0 + Z0)J|j|(ra) (*, / € Z, a > 0). 

To show that B/(G) = Co(G), if suffices, by the Stone-Weierstrass the
orem [17; p. 124], to prove the following lemma, for which we define 
J% on [0,00) for n > 0 and a > 0 by J%(x) = Jn(ax). D 

LEMMA, (i) sp{ J$ : a > 0} = C0([0,00)). 

(ii) For n > 1, sp{J£ : a > 0} = {/ G C0([0,oo)) : /(0) = 0} = 
Coo([0,oo)). 
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PROOF. We note first that the asymptotic expansions [21; p. 199] 
imply that all the J£s are in Co([0, oo)). We then prove that sp{J^ : 
a > 0} = Coo([0, oo)) for n > 1, the proof of (i) being similar. Now, 
the power series expansions [21; p. 15] imply each J% € Coo([0, oo)) 
(for n < 1). We need the following equality due to Sonine [21; p. 394]: 

/•OO 

/ J^(t)exp(-p2a2)an+1da 

= tn(2p2)-n-1exp(-t2/(ip2)) (t > 0,p > 0). 

We assert that the map a -> J£, (0, oo) —• COo([0, oo)). We then get 
that, for 0 < e < Ä, the Bochner integral 

J J« exp {-p2a2)an+1da = / e , R 

is a norm limit of linear combinations of members of {J^ : a > 0}, 
and hence is in sp{J£ : a > 0}. Since ||Jn||oo < 1 [21; p. 19, (1)], we 
conclude from elementary inequalities that f£,n(t) converges uniformly 
in t € [0, oo) to the integral in (1), i.e., the function / defined by 

/(*) = r(2p2)-"-1exp(-t2/(V)) 

is in sp{J£ : a > 0} for all p > 0. Hence g, defined by g(t) = 
tnexp(-kt2), is in sp{ J% : a > 0} for all k > 0. 

Our next claim is that | | € sp{ J£ : a > 0}. To show this, fix k > 0 
and let e > 0. Then 

ge(t) = (tnexp(-(k + e)*2) - *nexp(-Ärt2))/e 

= t n exp( -H 2 ) (exp( -^ 2 ) - l)/e 

defines a #e £ sp{«/n • a > 0}. Further, since the Mean Value Theorem 
tells us that e~y - 1 + y < 0 and 1 - e_2/ - y + y2/2 > 0 and hence that 
0 < e~y - 1 + y < y2/2 for all y > 0, we get 

&(*) + tn+2exp(-kt2) = tnexp(-kt2)(exp(-et2) - 1 + £*2)/e 

< t nexp(-H 2 ) (^ 2 ) 2 / (2e) 

= etnexp{-kt2)t4/2 
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for all t < 0. Hence \\g£ - h\\oo -> 0, where h(t) = r + 2 e x p ( - H 2 ) , and 
h G sp{J% : a > 0}. Continuing with this differentiating, we get hj G 
sp{J% : a > 0}, where j € N and k > 0 and tf(t) = r+ 2 'exp(-A;*2). 

Now suppose sp{J£ : a > 0} ^ COo([0, oo)). Then we can find 
a ß € M([0, oo)), // ^ 0, such that A(^ ) = 0 f o r a l l j € N and 
k > 0. Let */ G M([0,oo)) be given by du = tnexp(-t2)dß. Then, 
if /j*(t) = t2iexp(-kt2), we have i>(/ĵ ') = 0 for all j > 0, fc > 0, But 
B = sp{/j? : j > 0, k > 0} is a self-adjoint subalgebra of Co([0, oo)) 
which separates the points of [0, oo) and does not vanish at any point. 
It follows that B~ = C0([0,oo)), and 0(B) = {0}, hence v = 0. Now 
2^ = £nexp(—£), which implies that the support of // is {0}. Thus 
Coo([0, oo)) C sp{ J% : a > 0} C COo([0, oo)) and the proof is complete. 

Concluding remarks. An interesting question is whether there 
is always a w.o. ergodic sequence for (let's say) a separable locally 
compact group. Davis [5] has shown there is always a summing 
sequence for AP(G). According to Greenleaf [12], it is an open 
question if there is always a summing sequence for B(G) and B/(G).) 

A.T. Lau has pointed out to us that the Blum-Eisenberg result could 
be generalized using A(G) and B(G), and Fourier and Fourier-Stieltjes 
algebras, instead of Li(G) and M(G). This approach would be "very 
abelian" and rather different from ours. 

REFERENCES 

1. J. Blum and B. Eisenberg, Generalized summing sequences and the mean 
ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423-429. 

2. C. Chou, Weakly almost periodic functions and almost convergent functions 
on a group, Trans. Amer. Math. Soc. 206 (1975), 175-200. 

3# 5 Minimally weakly almost periodic groups, J. Funct. Anal. 36 (1980), 
1-17. 

4. ? Weakly almost periodic functions and Fourier-Stieltjes algebras of 
locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141-157. 

5. H.W. Davis, On the mean value of Haar measurable almost periodic functions, 
Duke M.J. 34 (1967), 210-214. 

6. M.M. Day, Semigroups and amenability, in Semigroups (ed. K.W. Folley), 
Academic Press, New York, 1969, 5-53. 

7. J. Dixmier, C*-algebras, North Holland, Amsterdam, 1977. 



694 ERGODIC SEQUENCES 

8. J.M.G. Fell, Weak containment and induced representations of groups, Can 
J. Math. 14 (1962), 237-268. 

9. L.T. Gardner, Uniformly closed Fourier algebras, Acta Sei. Math 33 (1972), 
211-216. 

10. Ft. Godement, Les fonctions de type positif et la théorie des groupes, Trans. 
Amer. Math. Soc. 63 (1948), 1-84. 

11. F.P. Greenleaf, Ergodic theorems and the construction of summing sequences 
in amenable locally compact groups, Comm. Pure Appi. Math. 26 (1973), 29-46. 

12. , Concrete methods for summing almost periodic functions and their 
relation to uniform distribution of semigroup actions, Coll. Math. 41 (1979), 105-
116. 

13. E. rjewitt and K.A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, 
New York, 1970. 

14. A.A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. 
Surveys, Vol. 17 (1962), 53-194. 

15. , Elements of the Theory of Representations, Springer-Verlag, New 
York, 1976. 

16. O.A. Nielsen, Unitary representations and coadjoint orbits of low-dimensional 
nilpotent Lie groups, Queen's University Paper No. 63 (1983). 

17. C. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 
1960. 

18. M. Sugiura, Unitary Representations and Harmonic Analysis, Wiley, New 
York, 1975. 

19. W.A. Veech, Weakly almost periodic functions on semisimple Lie groups, 
Monatshefte Math. 88 (1979), 55-68. 

20. G. Warner, Harmonic Analysis on Semisimple Lie Groups, I and II, Springer-
Verlag, New York, 1972. 

21. G.N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, 
Cambridge University Press, 1958. 

UNIVERSITY O F W E S T E R N ONTARIO, LONDON, O N T A R I O N6A 5B7 CANADA 

UNIVERSITY O F A B E R D E E N , A B E R D E E N AB9 2TY SCOTLAND 


