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TWO THEOREMS ON INVERSE INTERPOLATION 

ALAN L. HORWITZ AND L.A. RUBEL 

ABSTRACT. The usual task of interpolation theory is, 
given a function / , or some of its properties, to find out what 
properties the set £ ( / ) , of all Lagrange interpolants of/, must 
have. What we mean by inverse interpolation is to reverse this 
body of problems. Namely, given the set C(f) or some of its 
properties, to recover / or some of its properties. We stress 
that £ ( / ) is considered as an unstructured set of polynomials. 

Our first result asserts that if / is analytic on the unit interval, 
then / is completely determined by the set £ ( / ) . Our second result 
constructs a large class of infinitely differentiable functions / on the 
unit interval, such that CC(f) = V, the set of all polynomials. In other 
words, every polynomial in the world is a Lagrange interpolant of a 
Lagrange interpolant of / . Thus, such an / is in no wise recoverable 
from £(£( / ) ) . So on the one hand, £ ( / ) determines / if / is analytic on 
[0,1], while on the other hand, £ (£( / ) ) does not determine / if / is only 
assumed C°° on [0,1]. There is clearly a gap in our knowledge here that 
should be closed-see the problems at the end of the paper. In several 
further papers we are now preparing, we pursue such related questions 
as, "if we assume a uniform bound on all the Lagrange interpolants of 
/ , what does this tell us about / " ? 

If / is a real-valued function on a set £, we say that a polynomial p, 
say of degree n, is a Lagrange interpolant of/, if there exist n+1 distinct 
numbers xo, x\,...xn in S such that /(#*) = p(%i) for z = 0 , 1 , . . . , n. 
Of course there may be other points x where p(x) = f(x). Thenp must 
be given by the usual Lagrange interpolation formula 
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where, for k = 0 , 1 , . . . , n, 

{X - X0)(X - X i ) - ( J - Xk-i)(x - Xk+l) --'{X-Xn) 

(Xk - X0)(xk - Xi) • • • (Xk - Xk-i)(xk - Xfc+i) '"{Xk- Xn) ' 

We denote, by £ ( / ) , the set of all such p's. 

THEOREM 1. Suppose f and g are analytic on [0,1] and that 
C(f) = C(g). Then f = g. (We stress that the hypothesis C(f) = C(g) 
is an assertion about equality as unordered sets.) 

PROOF. The theorem will follow immediately from the following 
lemma. 

LEMMA. Suppose that f,g € C°°[0,1] and that £ ( / ) = C(g). Then 
either f and g agree at countably many distinct points in [0,1], or f — g 
has a zero of infinite multiplicity. 

PROOF OF THE LEMMA. Let pn be the best uniform approximant to 
/ on [0,1], taken from 7rn, the set of all polynomials of degree < n. We 
can assume that / is not a polynomial, since otherwise the lemma is 
trivial. Hence, as n —• oo,degpn —» oo. By the classical Chebychev 
Alternation Theorem (see [1]), pn G C(f). By a theorem of Roulier 
(see [5]), for each positive integer j , we have 

(1) pW - • fU) uniformly on [0,1]. 

From the hypothesis that £ ( / ) = C(g)1pn must be a Lagrange inter
polant of pi so that there exist m-hi distinct points (x i ? m , . . . , a:m+i jm), 
where m = mn = degpn, such that 

(2) Pn{xk.m) = g{Xk,rn) for fc = 1, 2, . . . , 171 + 1. 

For each positive integer &, choosing a subsequence if necessary, let 
Xk

 = L1IÏÏJYI—K50 XkiTn. 
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Case 1. There are infinitely many distinct Xk- In this case, since 
Pn -* f uniformly, and hence continuously, 

(3) lim Pn(Xk,m) = f(Xk). 
n—*oo 

But we also have, from (2), 

(4) lim pm{x -k,m) = g(xk). 
n—*oo 

Hence, from (3) and (4), f(xk) = #(#&)> and the lemma is proved in 
this case. 

Case 2. There are only finitely many different x^. In this case, 
infinitely many of the sequences (xk,m) converge to the same number. 
For convenience, assume that 

(5) lim Xkm = c for k = 1,2, 
771—+00 ' 

Then it is easy to show that 

(6) fuHc)=g^(c) forj = 0 , 1 , 2 , . . . , 

and the lemma is proved in this case. The details of the proof of (6) 
are as follows. 

Let r be a fixed positive integer, and consider 

Ûn = : Pn[%l,m) %2,mi • • • ? #r+l,mj» 

the r-th order divided difference of pn at {#i,m5#2,m> • •• j2V+i,m}> 
remembering that m = mn depends on n. By (2) and standard 
properties of divided differences [1; Corollary 3.4.3, p. 65], 

Also, we have that [1, Corollary 3.4.2, P. 65] 



648 A.L. HORWITZ AND L.A. RUBEL 

for some £n in the smallest closed interval 7n?r that contains {#i,m, X2,rm 
. . . ,x r+i5 7 n}. But since pn converges uniformly to / ^ b y (1), it follows 
that £n —• c as n —> oo and since Pn (£n) —> f ^ r \ c ) - Since r is arbitrary, 
we see that f — g has a zero of infinite order at c. 

There is an attractive alternative approach to a proof of this lemma, 
namely through fixed-point theorems for multi-valued functions. Un
fortunately, the mappings (p we construct below do not seem to fit the 
hypotheses of any of the fixed-point theorems known to us (see, e.g., 
[7] and [10]). The idea, though, is as follows. Fix n and let J = [0, l ] n 

be the unit cube in R n . For each point x = (x\,..., xn) El look at the 
Lagrange interpolant p, interpolates to g at, say, y = (y i , . . . , yn) el. 

(Here, we come to a second difficulty with this line of proof, namely, 
that if m = degp, we might well have m < n — 1 so that p need only 
interpolate to g at m + 1 points instead of at n points. However, there 
are perhaps ways to circumvent this difficulty.) 

Let (f be the (possibly multi-valued) map (p(x) = y. (If some of the 
Xi, or some of the yi coincide, then the usual conventions about in
terpolation of derivatives are to be used.) The idea is to show that (fi 
must have a fixed point in J. (This is what we do not know how to 
do.) Once this is done, the rest is proved as above. 

REMARK. It is interesting to note that Theorem 1 holds if we only 
assume that one of the functions, say / , is analytic on [0,1], while the 
other function g is merely defined on [0,1]. This follows directly from 
the following 

LEMMA. A function f is analytic on [0,1] ^ there exists a finite 
constant K such that, for all n = 0 ,1 ,2 , . . . , 

(#) IIPIU[O,I] < Kn 

for all p € £ ( / ) with degp = n. 

PROOF. The => implication follows directly from Corollary 3.6.2 on 
p. 68 of [1]. For the <= implication, suppose that (#) holds. By a very 
slight modification of the argument used to prove Theorem 2 of [6], we 
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see that / G C°°[0,1]. For x0 G [0,1] let 

Sn(x : x0) = f(x0) + f(x0)(x - x0) + . . . + 1 Y^(x - x0)
n 

n! 

be the n-th partial sum of the Taylor series expansion of f(x) around 
xo. We may think of this as an interpolating polynomial with n + 1 
nodes coaslescing at x$. By a passage to the limit in (#) , then, we 
have (unless / is a polynomial, which certainly implies what we want) 
\sn(x : :co)| < Kn and also \sn-\{x : XQ)\ < K71-1. Supposing, with no 
loss of generality, that K > 1, we have 

l / ( n ) ( . X 0 ) l k - *o|n = \sn(x : xo) - *n-i(* : *o)| < 2Kn . n\ 

Now choosing either x = 0 or x = 1, depending on which is furthest 
from xo, so that |x — XQ\ > 1/2, we get 

l/(n)(*0) . n n + l ^ n < 2n+iu:rî 

n! 

and since xo is arbitrary, the analyticity of / on [0,1] follows immedi
ately. 

Thus we see that if we know that the Lagrange interpolants to / of 
degree n grow no faster than exponentially in n, then we may in prin
ciple recover / from these interpolants. 

REMARK. For a problem related to Theorem 1, see [3]. 

THEOREM 2. There exists an f e C°°[0,1] such that, for any real 
polynomial p whatever, there exists a real polynomial q such that q is a 
Lagrange interpolant of f on [0,1], and p is a Lagrange interpolant of 
q on [0,1]. 

REMARK 1. It will be evident from the construction of / that we can 
make / coincide on [0/10,1[, say, with any preassigned C°°-function 
h on that interval. It follows that the set of such functions / has the 
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cardinal number of the continuum. For any two distinct such / , say fa 

and fß, we have 
£(£( /„)) = C(C(fß)). 

REMARK 2. If we consider [0, oc) instead of [0,1], then, on choosing 
f(x) = exsinxj say,we see that every real polynomial p is actually a 
Lagrange interpolant of / on [0, oo). Indeed p(x) = f(x) for an infinite 
sequence of x is tending to +oo. Using similar arguments to the one 
in Remark 1, we can easily construct distinct analytic functions / and 
g on [0, oo) such that £ ( / ) = C(g). We do not know whether this is 
possible for a continuous or C°°-function on the interval [0,1]. Clearly, 
if / is bounded on a set 5, then there will be many polynomials p such 
that p(x) = f(x) for no x € S. 

PROOF OF THEOREM 2. For each positive integer n, say n > 5 for 
safety, construct a real polynomial qn so that both 

(7) throughout the interval 1—- < x < r , 
n + 1 ro4 n n4 ' 

every one of the first n derivatives of qn has absolute value < 2 - n , say, 
and 

(8) on the interval 1 < x < 1 , 
K J n - - n + 1' 
qn oscillates at least 2n times from below — n to above +n. 

We don't care what qn does outside these two intervals, or how large 
its degree is. 

One way to construct such a qn is via Runge's theorem, to get 
a polynomial Qn, possibly complex on R, that approximates 0 on 
In = frrrr + A ? i ~ ÂL with its first n derivatives small on that interval, 

L Th ~r X 71» TL Tv J 

and that approximates n2sine71 x, say, on Jn = [1 — ^, 1 — ^ r r ] . We 
then take _ 

„ (.,Qn9z) + Qn(z) 
qn\<>) — ^ 

so that qn is real on R. 

Now let h(x) be a C°°-function on R such that 

(9) h(x) = 1 for all \ < x < \ 
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and 

(10) h(x) = 0 whenever x < 0 or x > 1. 

Such an h can be easily constructed by piecing together integrals of 
nonnegative C°°-functions of compact support. Writing In = [ 
for convenience, we shall let 

(ii) f(x) = 53 ^w^W' 

where 

(12) hn(x) = h(?—^-). 

To prove that / G C°°[0,1], we need only prove that f^90) = 0 
for all non-negative integers r. It will suffice for this to prove that if 
xn —• 0, then f^(xn) —> 0. We may suppose that xn e In. But, on 

i/(r)(x„)i=iè (; Wv»<?r%«)i 

J ] (r)(n+ l)^\\h{j)\\2~n < 2-n 

e(,)(» + l)*l|Äü)ll, 

(where || • || is the supreme norm) since bn — an > (n +1 )~ 2 . So it is 
clear that f^r\xn) —• 0 as n —> oo, for each fixed r. This completes 
the construction of / . 

Now, given any real polynomial p, say of degree Ar, it is clear that if we 
choose n large enough (say n > k and n > ma,x{\p(x)\ : 0 < x < 1}), 
then qn(x) — p{x) will have at least k + 1 zeros on the interval J n , 

(13) 

< 

r 
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because of the wild oscillations of qn there. But qn is abviously a La
grange interpolant of / since it actually coincides with / throughout 
an open interval. Thus the theorem is proved. 

REMARK 3. If / is any transcendental entire function, then every 
polynomial is a Lagrange interpolant (on C) of a Lagrange interpolant 
(on C) of / . This follows by THeorem 2.5 on p. 47 of [2], which im
plies that there are at most two polynomials, say p\ and p2, for which 
f — Pi and f — P2 haveonly finitelymany zeros. So every polynomial 
other than p\ and p2 is surely a Lagrange interpolant of / and, as a 
Lagrange interpolant of itself, becomes a Lagrange interpolant of a La
grange interpolant of / . Now to handle p — 1 and p2, let P be some 
Lagrange interpolant to / , with degP > max(degpi,degp2)- By the 
Fundamental Theorem of Algebra, p\ and p2 are Lagrange interpolants 
of P . 

PROBLEM 1. Is it possible to choose the universal function / of The
orem 2 to be real-analytic on [0,1]? 

PROBLEM 2. If / and g are analytic on [0,1] and £(£( / ) ) = £(£(#)-), 
must / = g? 

PROBLEM 3. If / and g are C°° (or perhaps merely continuous) on 
[0,1] and £ ( / ) = C(g), must / = g? 

PROBLEM 4. What are the conditions on a set P of polynomials that 
make P = £ ( / ) for some / ? 

Added in Proof. Since this paper was written, V. Totik has an
swered Problem 1 in the affirmative and Problem 2 in the negative (see 
[9]). 
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