LOCAL ESTIMATES THAT LEAD TO WEIGHTED ESTIMATES FOR OSCILLATING KERNELS IN TWO DIMENSIONS

G. SAMPSON

$$
\begin{aligned}
& \text { ABSTRACT. We prove here in } 2 \text { dimensions for the weights } \\
& w(x)=\left(1+|x|^{2}\right)^{\alpha} \text { that } \\
& \qquad\left\|K_{a, b+i y} * f\right\|_{q, w} \leq c\left(1+|y|^{2}\right)\|f\|_{q, w} \\
& \text { for } 2 \leq q \leq \frac{a}{1-b} \text { and } 0 \leq \alpha \leq b q+a-2 . \\
& \text { Also we obtain estimates independent of } R \text { and } v \text { for the } \\
& \text { expression } \\
& \qquad\left|\int_{R} K_{a, b}(t) e^{-i t \cdot v} d t\right|
\end{aligned}
$$

for various rectangles R and all points v in 2 dimensions.
0. Introduction. Throughout we shall suppose that $R=[\alpha, \beta] \times$ $[\gamma, \tau]$, a rectangle with sides parallel to the coordinate axis. Furthermore we set

$$
\|h\|=\sup _{t \in R}|h(t)|, t=\left(t_{1}, t_{2}\right) \text { and } d t=d t_{1} d t_{2}
$$

We wish to analyze the weighted mapping properties of the kernels

$$
\begin{equation*}
K_{a, b}(t)=\frac{e^{i|t|^{a}}}{\left(1+|t|^{n}\right)^{b}} \text { with } b \geq 1-\frac{a}{2} \text { and } a>1 \tag{0.1}
\end{equation*}
$$

Here n in (0.1) is determined by the dimension of t. For the most part this paper is concerned with $n=2$ dimensions.
We generalize Lemma 4.5 of [1] to $n=2$ dimensions, namely,

THEOREM 1. Let $w(x)=\left(1+|x|^{2}\right)^{\alpha}, 1<a, 1-\frac{a}{2} \leq b \leq 1$, and $n=2$. Then for $2 \leq q \leq \frac{a}{1-b}$ and $0 \leq \alpha \leq b q+a-2$,

$$
\begin{aligned}
\left\|K_{a, b+i y} * f\right\|_{q, w} & \leq c\left(1+|? y|^{2}\right)\|f\|_{q, w} \\
\text { Copyright } & \\
& 535
\end{aligned}
$$

Furthermore, we generalize Lemma 3.1 and Theorem 3.2 of [1] to two dimensions. These results are used to prove in a forthcoming paper with W.B. Jurkat, necessary and sufficient conditions on $v(x)$, which are constant on annuli, so that for $q \geq 2$,

$$
\int\left(1+|x|^{2}\right)^{b q+a-2}\left|K_{a, b} * f\right|^{q} \leq c \int v(x)|f|^{q} d x
$$

The proof of Theorem 1 is based upon showing that for $a>1$

$$
\begin{equation*}
S(R)=\left|\int_{R} K_{a, 1-\frac{a}{2}}(t) e^{-i t \cdot v} d t\right| \leq B \tag{0.2}
\end{equation*}
$$

for all rectangles parallel to the coordinate axis. The constant B is independent of the point $v=\left(v_{1}, v_{2}\right)$ and the rectangle R.

In case $a \geq 2,(0.2)$ follows immediately from [5]; at the time we also did the cases $1<a<2$, but were reluctant to include it in that paper. In all dimensions and for all $a>0, a \neq 1,(0,2)$ was shown by P. Sjölin in [8] in case R is R^{n}. It is not clear to us how to generalize this result to include all rectangles. Let me add that if we replace rectangles R by spheres then in that case (0.2) becomes unbounded when $n>2$. To see that consider the case where $K_{2,0}(t)=e^{i|t|^{2}}$, change to polar coordinates, and consider v near $\overline{0}$ for $n>2$.

Although the main features of showing (0.2) can be generalized to n-dimensions $(n>2)$, we would prefer to generalize a simpler proof.

And so this paper will be organized as follows. In the first three sections we obtain those results needed to do Theorem 1. In the last section we do the cases $1<a<2$ for (0.2).

1. Notation, preliminary estimates, and further discussions. We note that $S(R)$ is defined in (0.2). Although the next result applies in very general situations, we shall state it in such a way that it applies in our case.

PROPOSITION 1.1. If
(i) $R^{2}=\cup_{m} R_{m}$ with $\left|R_{m} \cap R_{k}\right|=0$ for $m \neq k$, and
(ii) $S\left(R_{m}^{\prime}\right) \leq S\left(R_{m}\right)$ for all $R_{m}^{\prime} \subseteq R_{m}$ and all m, then for all rectangles R

$$
S(R) \leq \sum_{m}\left(R_{m}\right)
$$

PROOF. $R=\cup_{m}\left(R_{M} \cap R\right)$ by (i) and now by (ii) we get the result.
Note that if R_{1}, R_{2} are rectangles with sides parallel to the coordinate axis then so is $R_{1} \cap R_{2}$. And now by Proposition 1.1, if (0.2) holds for a partition of R^{2} into rectangles with sides parallel to the coordinate axis and $\sum_{m} S\left(R_{m}\right) \leq B$, then (0.2) holds for all rectangles with sides parallel to the coordinate axis. Notice also in this special case that (ii) need only hold for rectangles R_{m}^{\prime} with sides parallel to the coordinate axis.
Note our rectangles R are denoted as $R=[\alpha, \beta] \times[\gamma, \tau]$. We say our rectangles R satisfy (1.1) if,

$$
\begin{cases}\left(1.1^{\prime}\right) & 0<\frac{|\alpha|}{2} \leq|\beta| \leq 2|\alpha| \text { and }|\gamma|+|\tau| \leq 2|\beta| \text { or } \tag{1.1}\\ \left(1.1^{\prime \prime}\right) & 0<\frac{|\tau|}{2} \leq|\tau| \leq 2|\gamma| \text { and }|\alpha|+|\beta| \leq 2|\tau|\end{cases}
$$

In fact, if R satisfies (1.1), then it was shown in (1') on p. 249 of [5] that

$$
\left|\int_{R} K_{a, 1-\frac{a}{2}+i y}(t) e^{-i t \cdot v} d t\right| \leq B\left(1+|y|^{2}\right) \sup _{R^{\prime} \subseteq R} S\left(R^{\prime}\right)
$$

where R^{\prime} is a rectangle with sides parallel to the coordinate axis.
Next suppose that $R^{2}=\cup_{m} R_{m}$, a partition where R_{m} satisfies (1.1) for $m=1,2, \ldots$ Then in order to show (0.2) (and hence (0.2^{\prime})) it suffices to prove that

$$
\begin{equation*}
\sum_{m} S\left(R_{m}\right) \leq B \tag{1.2}
\end{equation*}
$$

The idea we use in order to show (0.2) is to rewrite it as

$$
S(R)=\left|\int_{R} e^{i(\phi(t)-t \cdot v)}\left(\frac{\partial \phi}{\partial t_{i}}-v_{i}\right) \cdot \frac{f_{i}(t)}{\left(1+|t|^{2}\right)^{1-\frac{a}{2}}} d t\right|
$$

where $f_{i}(t)=\left(v_{i}-\frac{\partial \phi}{\partial t_{i}}\right)^{-1}, i=1,2$ with $\phi(t)=|t|^{a}$ and $v=\left(v_{1}, v_{2}\right)$; then we use either Lemma B, Lemma B^{\prime} or Lemma C in order to separate $\frac{f_{i}(t)}{\left(1+|t|^{2}\right)^{1-\frac{o}{2}}}$ from the rest of the integrand. Next we integrate out the t_{i}-variable and hence we are left with a 1 -dimensional problem. Our main concern is where $\frac{\partial \phi}{\partial t_{i}}-v_{i}=0$ and in particular where our critical point ρ lies, i.e., that point where $\frac{\partial \phi}{\partial t_{i}}(\rho)=v_{i}$ for $i=1$ and 2 . And so we cut up the plane into rectangles R, respecting these critical curves, and we have the option of taking $i=1$ or $i=2$.

The variable point $v=\left(v_{1}, v_{2}\right)$ and we set $f_{i}(t)=\left(v_{i}-\frac{\partial \phi}{\partial t_{i}}\right)^{-1}, i=1,2$ where $\phi(t)=|t|^{a}, a>0, a \neq 1$.
By $|t| \sim u$ we mean that $c_{1} u \leq|t| \leq c_{2} u$ for two constants c_{1}, c_{2}.
Let $\rho=\left(\rho_{1}, \rho_{2}\right)$ denote the critical point where $\frac{[\partial \phi}{\left.\partial t_{i}\right](\rho)=v_{i}, i=1,2}$. Also set $\delta=|\rho|^{1-\frac{a}{2}}$ and let $\mu_{0}=\frac{3 \cdot(2-a)}{(a-1)}+1$ when $1<a<2$.
We let $B_{1}, B_{2}, \ldots, c_{1}, c_{2}, \ldots$, stand for positive constants and use the letters B, c generically.
2. A local L^{∞}-estimate and weighted L^{2}-estimates. In this section, (at the slight risk of confusion) let

$$
\begin{equation*}
S(R)=\left|\int_{R} K_{a, b+i y}(t) e^{-t y \cdot v} d t\right| \tag{2.1}
\end{equation*}
$$

Actually, we should attach a, b, y and v to $S(R)$ but find it more convenient not to. In this section and the last section it will be clear what the symbol denotes; in order to avoid confusion, early on it will be made clear whether (0.2) or (2.1) is being used.
Before the main result of this section is stated we need some notation. Let $I_{u}=[-u, u] \times[-u, u]$ a rectangle in R^{2}, and set $R\left(u_{1}, u_{2}\right)=I_{u_{2}}-I_{u_{1}}$ with $u_{2}>u_{1}$, which denotes an "annulus". Let $R(u)=R(u, 2 u)$.
Next we state a generalization of Lemma 3.1 of [1] to two dimensions.

LEMMA 2.1. Let $a>1, u \geq 1, n=2$ and $d=\max \left(4 \cdot 8^{\frac{a}{2}-1}, 8\right)$. Set $Q=R\left(\frac{a}{5} u^{a-1}, a d u^{a-1}\right)$ and $J=R^{2}-Q$. Then there is a positive constant $c(a, b)$ so that

$$
\begin{equation*}
S\left(R(u) 0 \leq c\left(1+|y|^{2}\right) u^{2\left(1-b-\left(\frac{a}{2}\right)\right)}\left\{\chi_{Q}(v)+\left(u^{2}\right)^{\frac{-a}{4}} \chi_{J}(v)\right\}\right. \tag{2.2}
\end{equation*}
$$

REMARK 2.1. Note that $S(R(u))$ is bounded trivially in case $u \leq 1$, since the integrand is bounded by 1.

We shall begin with an n-dimensional result due to Sjölin, Theorem 1 (b) of [8]. Here n could be any integer greater than or equal to 1 . In case $n=1$, this can also be found in [3].

Theorem A. Let $1-\left(\frac{a}{2}\right) \leq b \leq 1, a>0$ and $a \neq 1$. Then

$$
\begin{align*}
& \text { If } b<1,\left\|K_{a, b+i y} * f\right\|_{q} \leq c\left(1+|y|^{n}\right)\|f\|_{q} \\
& \quad \text { for } \frac{a}{a+b-1} \leq q \leq \frac{a}{1-b} \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
& \text { if } b=1,\left\|K_{a, y} * f\right\|_{q} \leq c\left(1+|y|^{n}\right)\|f\|_{q} \tag{2.4}\\
& \quad \text { for } 1 \leq q<\infty
\end{align*}
$$

(Here, we set $K_{a, y} \equiv K_{a, 1+i y}$ and in case $q=1$ we mean the real Hardy space H^{1} of R^{n}, see [2].)

The next result can be found in [5], as well as Lemma 1 of [4].

LEMMA B. Let $f, \frac{\partial f}{\partial t_{1}}, \frac{\partial f}{\partial t_{2}}, \frac{\partial^{2} f}{\partial t_{2} \partial t_{1}}$ and g be continuous on a rectangle R. Furthermore, if $f, \frac{\partial f}{\partial t_{1}}, \frac{\partial f}{\partial t_{2}}$, do not change sign in R and f is realvalued, then for some $R^{\prime} \subseteq R$ and vertex P of R

$$
\left|\int_{R} f g\right| \leq c\left(|f(P)|+\int_{R}\left|\frac{\partial^{2} f}{\partial t_{2} \partial t_{1}}\right|\right)\left|\int_{R^{\prime}} g\right| .
$$

Using the supremum notation $\|\cdot\|$ introduced in $\S 0$ over R, we get

LEMMA 2.2. Let $a \neq 1$ and R satisfy (1.1) for (2.5) and (1.1') for (2.6). Then

$$
\begin{align*}
& S(R) \leq c\left(1+y^{2}\right)\left\|\left(1+t^{2}\right)^{-1}\right\|^{b+\frac{a}{2}-1} \text { if } b \geq 1-\frac{a}{2} \text { and } \tag{2.5}\\
& S(R) \leq c\left(1+y^{2}\right)\left\|\left(1+t^{2}\right)^{-b}\right\|\left\|\left(\frac{\partial^{2} \phi}{\partial t_{2}^{2}}\right)^{-1}\right\|^{\frac{1}{2}} \tag{2.6}
\end{align*}
$$

$$
\begin{aligned}
& \cdot\left[\left|\left|f_{1}\right|\right|+\int_{R}\left|\frac{\partial^{2} f_{1}}{\partial t_{2} \partial t_{1}}\right|\right] \\
& \text { for }\left|v_{1}\right| \leq \frac{a}{5} \inf _{R}|t|^{a-1} \text { or }\left|v_{1}\right| \geq 2 a\|t\|^{a-1}
\end{aligned}
$$

REMARK 2.2. We obtain a corresponding result to (2.6) for $f_{2}(t)$. In that case, we replace $\frac{\partial^{2} \phi}{\partial t_{2}^{2}}$ by $\frac{\partial^{2} \phi}{\partial t_{1}^{2}}, f_{1}$ by f_{2}, v_{1} by v_{2} and (1.1') by (1.1").

Proof. We first show (2.5). Note that

$$
S(R)=\left|\int_{R}\left(K_{a, 1-\frac{a}{2}+i y}(t) e^{-i t \cdot v}\right)\left(1+|t|^{2}\right)^{-b-\frac{a}{2}+1} d t\right|
$$

Applying the second-mean-value theorem in each of the variables we obtain,

$$
S(R) \leq c\left\|\left(1+|t|^{2}\right)^{-b-\frac{a}{2}+1}\right\|\left|\int_{R^{\prime}} K_{a, 1-\frac{a}{2}+i y}(t) e^{-i t \cdot v} d t\right|
$$

where $R^{\prime} \subseteq R$. By (0.2) (or (0.2^{\prime})) the result follows. To see (2.6), note that we can suppose that R lies in the first quadrant. For the v_{1} in the lemma and with $g=K_{a, b+i y}(t)\left(v_{1}-\frac{\partial \phi}{\partial t_{1}}\right) e^{-i t \cdot v}, f=\left(v_{1}-\frac{\partial \phi}{\partial t_{1}}\right)^{-1}=f_{1}^{-}$ observe that the hypothesis of Lemma B is satisfied.
Now by Lemma B for these v 's

$$
S(R) \leq c\left(\left\|f_{1}\right\|+\int_{R}\left|\frac{\partial^{2} f_{1}}{\partial t_{2} \partial t_{1}}\right| d t\right)\left|\int_{R^{\prime}} g(t) d t\right|
$$

By two applications of the second-mean-value theorem $\left|\int_{R^{\prime}} g(t) d t\right| \leq$ $c\left|\left|\left(1+|t|^{2}\right)^{-b}\right|\right|\left|\int_{R^{\prime \prime}} e^{i \phi(t)} e^{-i v \cdot t}\left(v_{1}-\frac{\partial \phi}{\partial t_{1}}\right) d t\right|$ where $R^{\prime \prime} \subseteq R^{\prime}$. Next, noting that we have an exact differential in the t_{1}-variable, and then applying Van der Corput's lemma in the t_{2}-variable, we get our result.

And now we are in a position to prove Lemma 2.1.

Proof of LEmma 2.1. Because of our earlier remarks it suffices to estimate $S(R)$ where $R=[u, 2 u] \times[0,2 u]$.

Case 1. $\frac{a}{5} u^{a-1} \leq|v| \leq a d u^{a-1}$:
In case $b \geq 1-\frac{a}{2}$, use (2.5) of Lemma 2.2. Now for all other choices of b, since for $t \in R,|t| \sim u$, the proof of (2.5) still applies.

Case 2. $|v| \leq \frac{a}{5} u^{a-1}$:
Here with $f(t)=f_{1}(t)$ (2.6) can be applied. Since for $t \in R,\left|\frac{\partial^{2} \phi}{\partial t_{2}^{2}}\right| \geq$ $c u^{a-2}$ and $\left|\frac{\partial^{2} f_{1}}{\partial t_{1} \partial t_{2}}\right| \leq c \frac{t_{2}}{t_{1}^{a+2}}$ the result holds for this range of v.

Case 3. $|v| \geq a \cdot d \cdot u^{a-1}$:
This implies either $\left|v_{1}\right| \geq \frac{a \cdot d}{2} u^{a-1}$ or $\left|v_{2}\right| \geq \frac{a \cdot d}{2} u^{a-1}$. Suppose $\left|v_{2}\right| \geq \frac{a \cdot d}{2} u^{a-1}$ (the other case is similar). Then for $t \in R$,

$$
\left|\frac{\partial^{2} \phi}{\partial t_{1}^{2}}\right| \geq c u^{a-2} \text { and }\left|\frac{\partial^{2} f_{2}}{\partial t_{2} \partial t_{1}}\right| \leq c\left\{\frac{t_{1} \cdot|t|^{a-4}}{v_{2}^{2}}+\frac{t_{1} t_{2}|t|^{2 a-6}}{v_{2}^{3}}\right\}
$$

Now using the counterpart to (2.6) explained in Remark 2.2 we obtain our result for this range of v.
This completes the proof of Lemma 2.1.

Set $K_{a, b+i y}(t ; u)=K_{a, b+i y}(t) \chi\left(t \notin I_{u}\right)$ (and for $b=1$ drop the b as in (2.4)). It follows by (2.2) that $\left\|K_{a, b+i y}(\cdot ; u) * f\right\|_{2} \leq c\left(1+|y|^{2}\right)(1+$ $\left.u^{2}\right)^{1-b-(a / 2)}\|f\|_{2}$ for $b \geq 1-\frac{a}{2}$. In particular, each of these kernels $K_{a, b+i y}(\cdot ; ; u)$ maps L^{2} into L^{2}. In fact, we shall show the following result $\left\|K_{a, b+i y}(\cdot ; u) * f\right\|_{q} \leq c\left(1+|y|^{2}\right)\|f\|_{q}$ for $\frac{a}{a+b-1} \leq q \leq \frac{a}{1-b}$ where c is independent of u and y.
In order to see (2.9) we need a concept that first appeared in [6], concerning regular kernels.

DEFINITION 2.3. A kernel K is called regular if it can be written as $K(t)=k(t) g(t)$ such that
i) $|g(t)| \leq c|g(x)|$ for $\frac{|x|}{2} \leq|t| \leq 2|x|$,
ii) $\int_{\{|x|>2|t|\}}|k(x-t)-k(x)||g(x)| d x \leq x$ for $t \neq 0$ and
iii) K maps L^{2} into L^{2} (i.e., $\hat{K} \in L^{\infty}$).

For $0<a, a \neq 1$, the kernels $K_{a, y}(t ; u)$ are regular for each u, in fact the constants c are independent of u. To see this, set $g(t)=$ $e^{i|t|^{a}}\left(1+|t|^{2}\right)^{\frac{a}{2}-1-i y}$ and then take $k(t)=\left(1+|t|^{2}\right)^{-a / 2} \chi\left(t \notin I_{u}\right)$. We see that (i) and (ii) are easily satisfied, and (iii) follows from (2.8) with $b=1$. We also need the following result concerning H^{1}-mapping properties which first appeared in [3]. We should add that our applications in the earlier papers were to kernels in 1-dimension but our notions such as regular kernels and their H^{1}-mapping properties are essentially free of dimension.

THEOREM 2.4. Let $K=k g$ be a regular kernel. Then

$$
\begin{equation*}
\|K * f\|_{1} \leq c\|f\|_{H^{1}} \tag{2.10}
\end{equation*}
$$

if, and only if there is a constant B such that

$$
\int_{\{|t|>2|I|\}}|k(t)||g * b(t)| d t \leq B
$$

for all (1,2)-atoms b supported in the n-sphere $S(0 ;|I|)$, centered about the origin.

Theorem 2.4 is a trivial generalization to the n dimensions of Theorem 1 in [3]. Also note that in (2.10) $c \leq B+c(K)$, where $c(K)$ depends only on the constants in the definition of regular kernels and the L^{∞}-norm of \hat{K}.
To see (2.9) for $a>1$, because of analytic interpolation (see [3]), it suffices to prove that

$$
\begin{equation*}
\int_{\{|t| \geq 2|I|\}}|k(t)||g * b(t)| d t \leq B\left(1+|y|^{2}\right) \tag{2.11}
\end{equation*}
$$

where $k(t)=\left(1+|t|^{2}\right)^{-a / 2} \chi\left(t \notin I_{u}\right)$ and $K_{a, y}(t ; u)=k(t) g(t)$.
First note that by (0.2)

$$
\|g * f\|_{2} \leq c\left(1+|y|^{2}\right)\|f\|_{2}
$$

Case 1. $|I| \geq 1$.

By Schwarz's inequality

$$
\begin{gathered}
\int_{|x| \geq 2|I|}|k(x)||g * b(x)| d x \leq\left(\int_{|x| \geq 2|I|}|k(x)|^{2} d x\right)^{1 / 2}\|g * b\|_{2} \\
\leq c\left(1+|y|^{2}\right)|I|^{1-a} \cdot|I|^{-1} \leq c\left(1+|y|^{2}\right)
\end{gathered}
$$

Case 2. $|I| \leq 1$.

$$
\begin{aligned}
\int_{|x| \geq 2|I|} & |k(x)||g * b(x)| d x \\
& =\int_{2|I| \leq|x| \leq 2|I|^{\frac{1}{2(1-a)}}} \cdots d x+\int_{2|I|^{\frac{1}{2(1-a)}} \leq|x|} \cdots d x \\
& =U_{1}+U_{2}
\end{aligned}
$$

Note that

$$
U_{1}=\int_{2|I| \leq|x| \leq 2|I|^{\frac{1}{2(1-a)}}}\left|k(x) \| \int d t(g(x-t)-g(x)) b(t)\right| d x
$$

since $\int b=0$. Hence

$$
U_{1} \leq \int d t|b(t)| \int_{2|I| \leq|x| \leq 2|I|^{\frac{1}{2(1-a)}}}|k(x)||g(x-t)-g(x)| d x \leq c
$$

Also

$$
U_{2} \leq\left(\int_{2|I|^{\frac{1}{2(1-a)}} \leq|x|}|k(x)|^{2} d x\right)^{1 / 2}\|g * b\|_{2} \leq c\left(1+|y|^{2}\right)
$$

Hence we obtain (2.11) and as explained earlier this implies (2.9). The proof where $0<a<1$ is similar and will be omitted here.
For the next lemma define

$$
K_{a, b+i y}^{(m)}(t)=K_{a, b+i y}\left(t ; 2^{m+3}\right)-K_{a, b+i y}\left(t ; 2^{m-2}\right)
$$

Lemma 2.5. Let $a>1,1-\left(\frac{a}{2}\right) \leq b \leq 1$, and $n=2$. Then,

$$
\sum_{m=0}^{\infty} \int_{E_{m}}\left(1+|x|^{2}\right)^{a+2 b-2}\left|K_{a, b+i y}^{(m)} * f(x)\right|^{2} d x \leq c\left(1+|y|^{2}\right) \int|f|^{2} x
$$

where $E_{m}=\left\{x: 2^{m} \leq|x| \leq 2^{m+1}\right\}$ for $m=0,1,2, \ldots$.

Proof. We notice that

$$
\begin{aligned}
I & =\sum_{m=0}^{\infty} \int_{E_{m}}\left(1+|x|^{2}\right)^{a+2 b-2}\left|K_{a, b+i y}^{(m)} * f(x)\right|^{2} d x \\
& \leq c\left(1+|y|^{2}\right) \sum_{m=0}^{\infty} s^{2 m(a+2 b 02)} \int\left|\left(K_{a, b+i y}^{(m)}\right)(x)\right|^{2}|\hat{f}(x)|^{2} d x .
\end{aligned}
$$

By Lemma 2.1

$$
\begin{aligned}
I \leq c\left(1+|y|^{2}\right) & \sum_{m=0}^{\infty} s^{2 m(a+2 b-2)} 2^{4 m\left(1-b-\frac{a}{2}\right)} \\
& \left(\int \chi_{Q(m)}|\hat{f}|^{2}+2^{-m a} \int \chi_{J(m)}(x)|\hat{f}(x)|^{2} d x\right)
\end{aligned}
$$

Since the sets $Q(m)$ have bounded overlaps

$$
I \leq c\left(1+|y|^{2}\right) \int|f|^{2} d x
$$

and hence the result.
Now we are in a position to generalize Theorem 3.2 of [1] to $n=2$ dimensions.

THEOREM 2.6. Let $a>1,1-\left(\frac{a}{2}\right) \leq b \leq 1, n=2$ and $w(x)=$ $\left(1+|x|^{2}\right)^{\alpha}$, with $|\alpha| \leq a+2 b-2$. Then

$$
\left\|K_{a, b+i y} * f\right\|_{2, w} \leq\left(1+|y|^{2}\right)\|f\|_{2, w}
$$

Proof. The proof is like that of Theorem 3.2 in [1]. Notice that with

$$
\begin{aligned}
& E_{m}=\left\{x: 2^{m} \leq|x| \leq 2^{m+1}\right\} \\
& \quad \int\left|K_{a, b+i y} * f\right|^{2} w(x) d x \\
& =\int_{|x| \leq 1}\left|K_{a, b+i y} * f\right|^{2} w(x) d x+\sum_{m=0}^{\infty} \int_{E_{m}}\left|K_{a, b+i y} * f\right|^{2} w(x) d x \\
& \leq \\
& \leq\left\{\int_{|x| \leq 1}\left|K_{a, b+i y} * f\right|^{2} d x+\sum_{m=0}^{\infty} 2^{2 m \alpha}\right. \\
& \quad \int_{E_{m}}\left|\int_{|t| \leq 2^{m-1}} K_{a, b+i y}(x-t) f(t)\right|^{2} d x \\
& \left.\quad+\sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{E_{m}}\left|\int_{|t| \geq 2^{m-1}} K_{a, b+i y}(x-t) f(t) d t d t\right|^{2} d x\right\} \\
& = \\
& I+I I+I I I .
\end{aligned}
$$

For $\alpha>0$, by Theorem A. with $q=2$, we get that

$$
\begin{aligned}
& I+I I I \leq c\left(1+|y|^{2}\right)\left\{\int_{|x| \leq 1}|f|^{2} d x+\sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{|x| \geq 2^{m-1}}|f|^{2} d x\right\} \\
& \leq c\left(1+|y|^{2}\right)\left\{\int_{|x| \leq 1}|f|^{2} d x+\int_{|x| \geq \frac{1}{2}}|f|^{2} \sum_{m=0}^{\infty} s^{s m \alpha} \chi\left(|x| \geq 2^{m-1}\right) d x\right\} \\
& \leq c\left(1+|y|^{2}\right)\left\{\int_{|x| \leq 1}|f|^{2} d x+\int_{|x| \geq \frac{1}{2}}|f|^{2} \sum_{m=0}^{\log (1+|x|)} 2^{2 m \alpha} d x\right\}
\end{aligned}
$$

We next notice that since $2^{m} \leq|x| \leq 2^{m+1}$ and $|t| \leq 2^{m-1}$ here, we can view $K_{a, b}(x-t)$ as being supported in the annulus $2^{m-1} \leq|x-t| \leq 2^{m+2}$. Thus the kernel is supported between two squares. Denote this kernel by $K_{a, b}^{(m)}(t)$.

Then

$$
\begin{aligned}
I I & \leq c \sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{E_{m}}\left|\int_{|t| \leq 2^{m-1}} K_{a, b+i y}^{(m)}(x-t) f(t) d t\right|^{2} d x \\
& \leq c \sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{E_{m}}\left|K_{a, b+i y}^{(m)} * f\right|^{2} d x \\
& +c \sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{E_{m}}\left|\int_{|t| \geq 2^{m-1}} K_{a, b+i y}^{(m)}(x-t) f(t) d t\right|^{2} d x \\
& =I I_{1}+I I_{2} .
\end{aligned}
$$

The term $I I_{2}$ can be estimated just as $I I I$ was and so the earlier argument applied because of (2.8). For $\alpha=a+2 n-2$, use Lemma 2.5 for the term $I I_{1}$.
This gives the result for $\alpha=a+2 b-2$, and because of Theorem A with $q=2$ and $w=1$, we get by change of measures all weights where $0 \leq \alpha \leq a+2 n-2$. The proof is completed by duality.
3. Weighted L^{q}-estimates. Theorem 1 will be proved in this section. We need a generalization of Proposition 1.9 of [$\mathbf{1}]$ to n dimensions. But arguing as there one gets

PROPOSITION 3.1. Let $a>0, q \geq 2$, and let T be a linear operator satisfying
(i) $\left(|x|^{n}\right)^{(2-a) / q}|T f(x)| \leq c_{1}\|f\|_{1}$, and
(ii) $\|T f\|_{2,\left(|x|^{n}\right)^{(1-(q))(a-2)}} \leq c_{2}\|f\|_{2}$.

Then, there is a constant, $c \leq c_{q} \max \left(c_{1}, c_{2}\right)$, such that

$$
\|T f\|_{q} \leq c\|f\|_{q,\left(|x|^{n}\right)^{q-2}}
$$

Proof of Theorem 1. Arguing as in Theorem 2.6 (note it suffices
to do the case where $\alpha=b q+a-2$

$$
\begin{aligned}
& \int\left|K_{a, b+i y} * f\right|^{q} w(x) d x \\
\leq & c\left\{\int_{|x| \leq 1}\left|K_{a, b+i y} * f\right|^{q} d x+\sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{E_{m}}\right. \\
\mid & \left.\int_{|t| \leq 2^{m-1}} K_{a, b+i y}(x-t) f(t) d t\right|^{q} d x \\
+ & \left.\sum_{m=0}^{\infty} 2^{2 m \alpha} \int_{E_{m}}\left|\int_{|t| \geq 2^{m-1}} K_{a, b+i y}(x-t) f(t)\right|^{q} d x\right\} \\
& =I+I I+I I I .
\end{aligned}
$$

Since $2 \leq q \leq \frac{a}{1-b}$, and because of Theorem A, the arguments in Theorem 2.6 apply to terms $I, I I I$. In order to do the $I I_{2}$ term (i.e., $I I_{2}$ in Theorem 2.6 to the q th power), appeal to (2.9).
This leaves the term

$$
\sum_{m=0}^{\infty} s^{2 m \alpha} \int_{E_{m}}\left|K_{a, b+i y}^{(m)} * f(x)\right|^{q} d x .
$$

Consider the linear operator

$$
T f(x)=\left(1+|x|^{2}\right)^{b+\frac{(a-2)}{q}} \sum_{m=0}^{\infty} \chi_{m}(x)\left(K_{a, b+i y} * f\right)(x) .
$$

First notice that for $2^{m} \leq|x| \leq 2^{m+1}$,

$$
\begin{aligned}
& \left(|x|^{2}\right)^{\frac{(2-a)}{q}}|T f(x)| \leq c \int|f| d x, \text { and } \\
& \int\left(|x|^{2}\right)^{(1-(2 / q))(a-2)}|T f(x)|^{2} d x \\
& \leq c \sum_{m=0}^{\infty} \int_{E_{m}}\left|K_{a, b+i y}^{(m)} * f\right|^{2}\left(1+|x|^{2}\right)^{a+2 b-2} d x \\
& \leq c\left(1+|y|^{2}\right) \int|f|^{2}, \text { by Lemma 2.5 }
\end{aligned}
$$

Now since (i), (ii) of Proposition 3.1 are satisfied with $n=2$,

$$
\int|T f(x)|^{q} d x \leq c\left(1+|y|^{2}\right) \int|x|^{2(q-2)}|f|^{q} d x
$$

Since $q-2 \leq b q+a-2$ for $q \leq \frac{a}{1-b}$, the result follows for $\alpha=b q+a-2$.
4. The proof of (0.2) in case $1<a<2$. In this section $S(R)$ is defined in (0.2). Also let $\|\cdot\|$ be the supremum norm as defined in $\S 0$.

Lemma B^{\prime}. Let R be in the first quadrant. If f_{1} satisfies the hypothesis of Lemma $B,\left|f_{1}(t)\right| \leq \frac{1}{c_{1}}$ for all $t \in R$, then

$$
S(R) \leq B\left(1+\alpha^{2}+\gamma^{2}\right)^{(a / 2)-1}\left\|\left(\frac{\partial^{2} \phi}{\partial t_{2}^{2}}\right)^{-1}\right\|^{1 / 2}\left[\frac{1}{c_{1}}+\int_{R}\left|\frac{\partial^{2} f_{1}}{\partial t_{2} \partial t_{2}}\right| d t\right]
$$

Lemma C. If f_{1} satisfies the hypothesis of Lemma B^{\prime} and $\frac{\partial^{2} f_{1}}{\partial t_{2} \partial t_{1}}$ does not change sign in R (R in the first quadrant), then

$$
S(R) \leq B\left(1+\alpha^{2}+\gamma_{\frac{(a / 2)-1}{c_{1}}}^{2}\left\|\left(\frac{\partial^{2} \phi}{\partial t_{2}^{2}}\right)^{-1}\right\|^{1 / 2}\right.
$$

Both these lemmas follows from [4] and [5]. Note that here $1<a<2$. Also these lemmas both hold with f_{2} in place of f_{1} and $\frac{\partial^{2} \phi}{\partial t_{1}^{2}}$ in place of $\frac{\partial^{2} \phi}{\partial t_{2}^{2}}$.
Let us discuss our strategy. In order to estimate $S(R)$, we are concerned with when $\phi(t)-t \cdot v$ has zero partials, i.e., $\frac{\partial \phi}{\partial t_{1}}=v_{i}, i=1,2$. As explained earlier, we can suppose that all of our rectangles lie in one of the quadrants. And so we will begin working in the first quadrant.

There are essentially two types of rectangles, the critical rectangle R where ρ is in the interior of R, and the non-critical rectangles, which are "far" from ρ. There are two cases to worry about: $\rho_{1} \geq \rho_{2}$ and $\rho_{2} \geq \rho_{1}$. But due to symmetry we need only concern ourselves with one of these cases. In fact, when $\rho_{2} \geq \rho_{1}$ decompose the first quadrant as shown in figure 1 and when $\rho-1 \geq \rho_{2}$ decompose it as in figure 2 .

Hence we shall suppose throughout that $\rho_{2} \geq \rho_{1}$. In this case, the critical rectangle takes the form

$$
R_{I}=\left[0,2^{\mu_{0}} \rho_{2}\right] \times\left[c \rho_{2}, 2^{\mu_{0}} \rho_{2}\right]
$$

with $c^{a-1}=\frac{1}{2^{2-a}}$. Since the kernel is bounded this rectangle 'disappears' in the case that both $\rho_{1}, \rho_{2} \leq 1$. In the case that only $\rho_{1} \leq 1$, replace ρ_{1} by 1 in the critical rectangle. Hence we can suppose that both $\rho_{1} \geq 1$ and $\rho_{2} \geq 1$.

We shall begin by proving that $S\left(R_{I}\right) \leq B$. Following these ideas we need to decompose R_{I} into rectangles for which we can obtain 'good' lower bounds for $\left|v_{i}-\frac{\partial \phi}{\partial t_{i}}\right|$ as well as determine either the sign of $\frac{\partial^{2} f_{i}}{\partial t_{2} \partial t_{1}}$ or 'good' upper bounds for $\left|\frac{\partial^{2} f_{i}}{\partial t_{2} \partial t_{1}}\right|$. Since these rectangles are contained in R_{I}, it follows that they satisfy (1.1)
4.1. Lower bounds for $\left\lvert\, v_{i}-\frac{\partial \phi}{\partial t_{i}}\right.$ in R_{I}.

Now $\frac{\partial \phi}{\partial t_{i}}=v_{i}$ for $i=1,2$, defines t_{2} in terms of t_{1}, denote this function by $y_{i}(t)$ for $i=1,2$ respectively. Note that

$$
\begin{equation*}
(2-a) \frac{d y_{1}}{d x}=\frac{(a-1) x^{2}+y_{1}^{2}}{x y_{1}} ; \frac{d y_{2}}{d x}=\frac{(2-a) x y_{2}}{(a-1) y_{2}^{2}+x^{2}} \tag{4.1.1}
\end{equation*}
$$

There are two cases, namely when $0<x<\rho_{1}$ and $x>\rho_{1}$. Set $R_{I I}^{\prime}=\left[0, \rho_{1}\right] \times\left[c \rho_{2}, 2^{\mu_{0}} \rho_{2}\right], R_{I I}=\left[\rho_{1}, 2^{\mu_{0}} \rho_{2}\right] \times\left[c p_{2}, 2^{\mu_{0}} \rho_{2}\right]$, so that $R_{I}=R_{I I} \cup R^{\prime}, c^{a-1}=\frac{1}{2^{2-a}}$.
Define linear functions as follows,

$$
\begin{cases}\rho \cdot\left(\ell_{1}(x)-\rho_{2}\right)=\rho_{2} \cdot\left(x-\rho_{1}\right) & \text { if } 0<x<\rho_{1} \tag{4.1.2}\\ \rho_{1} \cdot\left(\ell_{2}(x)-\rho_{2}\right)=\lambda \cdot \rho_{2} \cdot\left(x-\rho_{1}\right) & \text { if } 0<x<\rho_{1} \\ (2-a) \rho_{1}\left(\ell_{1}(x)-\rho_{2}\right)=\rho_{2}\left(x-\rho_{1}\right) & \text { if } x>\rho_{1} \\ \rho_{1}\left(\ell_{2}(x)-\rho_{2}\right)=(2-a) \rho_{2}\left(x-\rho_{1}\right) & \text { if } x>\rho_{1}\end{cases}
$$

Take $\lambda=\frac{1-c^{1 / 2}}{1-c^{(1 / 2(2-a))}}$ and note that $\lambda<1$. Let h_{1}, h_{2} denote linear functions which are inverse to ℓ_{1}, ℓ_{2} respectively. Using these ideas we obtain the next result.

PROPOSITION 4.1.1. Let $(2-a) \frac{m_{1}^{\prime}(x)}{m_{1}(x)}=\frac{1}{x}, \frac{m_{2}^{\prime}(x)}{m_{2}(x)}=\frac{(2-a)}{x}$ with $m_{i}\left(\rho_{1}\right)=\rho_{2}$ for $i=1,2$ and $\rho_{2} \geq \rho_{1}$. Then

Figure 1

Figure 2
(i) $y_{2}(x) \leq m_{2}(x) \leq \ell_{2}(x) \leq \ell_{1}(x) \leq m_{1}(x) \leq y_{1}(x)$ if $x>\rho_{1}$, and
(ii) $y_{1}(x) \leq \ell_{1}(x) \leq \ell_{2}(x) \leq y_{2}(x)$ if $0<x<\rho_{1}$.

Proof. Start with (i). Form $F_{i}(x)=\log \frac{y_{i}(x)}{m_{i}(x)}, i=1,2$ and note that $F_{i}\left(\rho_{1}\right)=0$. Then

$$
F_{i}^{\prime}(x)=\frac{y_{i}^{\prime}(x)}{y_{i}(x)}-\frac{m_{i}^{\prime}(x)}{m_{i}(x)}
$$

By (4.1.1) $F_{1}^{\prime}(x) \geq 0$ while $F_{2}^{\prime}(x) \leq 0$. It follows that

$$
\begin{aligned}
& \left.y_{2}(x) \leq m_{2}(x) \text { and } m_{1}(x) \leq y_{1} 9 x\right) \text { for } x>\rho_{1}, \text { and } \\
& y_{2}(x) \geq m_{2}(x) \text { and } y_{1}(x) \leq m_{1}(x) \text { for } 0<x<\rho_{1}
\end{aligned}
$$

Since $m_{1}(x)=\rho_{2} \cdot\left(\frac{x}{\rho_{1}}\right)^{\frac{1}{2-a}}$ and $m_{2}(x)=\rho_{2} \cdot\left(x / \rho_{1}\right)^{2-a}$ on setting $F_{i}(x)=\ell_{i}(x)-m_{i}(x)$ it follows that $m_{2}(x) \geq \ell_{2}(x)$ and $m_{1}(x) \leq \ell_{1}(x)$ for $x>\rho_{1}$ and it is clear that $\ell_{2}(x) \leq \ell_{1}(x)$. This proves (i).
Next since $m_{1}(x)$ is concave and $m_{2}(x)$ is convex $\ell_{2}(x) \leq m_{2}(x)$ for $c^{\frac{1}{2(2-a)}} \cdot \rho_{1}<x<\rho_{1}$ while $\ell_{1}(x) \geq m_{1}(x)$ for $0<x<\rho-1$. Since $\lambda<1$, for $0<x<\rho_{1}$ we get that $\ell_{2}(x) \geq \ell_{1}(x)$. Next note that $\ell_{2}(x) \leq \ell_{2}\left(\rho_{1} \cdot \frac{1}{c^{2(2-a)}}\right)=c^{\frac{1}{2}} \rho_{2}$ for $0<x<\rho_{1} \cdot \frac{1}{c^{2(2-a)}}$ since ℓ_{2} is increasing here. While for all $x, a y_{2}(x)\left(x^{2}+y_{2}^{2}(x)\right)^{\frac{a}{2}-1}=v_{2}$ and for $x=0$ we get $y_{2}^{a-1}(0)=\frac{v_{2}}{a}$. Also $\rho_{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{\frac{a}{2}-1} \geq \frac{\rho_{2}^{a-1}}{\frac{2-a}{2}}$ or $y_{2}(0) \geq \rho_{2} \cdot c^{\frac{1}{2}} \geq \ell_{2}(x)$ for $0<x<\rho_{1} \cdot c^{\frac{1}{2(2-a)}}$. This completes the proof of (ii).
Now decompose the rectangle $R_{I I}$ as follows. Let $d=\frac{1}{4}(3+$ $\left.\frac{1}{(2-a)^{2}}\right), x_{0}=\rho_{1}+\delta, x_{\ell}=\rho+\delta \cdot d^{\ell}$ and $y_{\ell}^{*}=\frac{1}{2}\left(\ell_{1}\left(x_{\ell-1}\right)+\ell_{2}\left(x_{\ell-1}\right)\right)$ for $\ell=1,2, \ldots$ Note that $d>1$. Next define subrectangles of $R_{I I}$, (4.1.3)

$$
\left\{\begin{aligned}
R_{\ell}= & {\left[x_{\ell-1}, x_{\ell}\right] \times\left[y j_{\ell}, 2^{\mu_{0}} \rho_{2}\right], B_{\ell}=\left[x_{\ell-1}, x_{\ell}\right] \times\left[c \rho_{2}, y_{\ell}^{*}\right] \text { and } } \\
& R_{0}=\left[\rho_{1}, \rho_{1}+\delta\right] \times\left[c \rho_{2}, 2^{\mu_{0}} \rho_{2}\right] .
\end{aligned}\right.
$$

See Figure 1, which is constructed using Proposition 4.1.1 (i). Now

$$
\begin{equation*}
R_{I I}=\cup_{\ell=0}^{\infty} R_{\ell} \cup \cup_{\ell=1}^{\infty} B_{\ell} \tag{4.1.4}
\end{equation*}
$$

In case of the rectangle $R_{I I}^{\prime}$, take $d=\frac{1+\left(\frac{\lambda+1}{2 \lambda}\right)}{2}, x_{0}=\rho_{1}-\delta, x_{\ell}=$ $\rho_{1}-\delta \cdot d^{\ell}$ and $y_{\ell}^{*}=\frac{1}{2}\left(\ell-1\left(x_{\ell-1}\right)+\ell_{2}\left(x_{\ell-1}\right)\right)$ and define the rectangles $R_{\ell}^{\prime}, B_{\ell}^{\prime}$ in a similar fashion as above, keeping in mind that this time $x_{\ell}<x_{\ell-1}$.

Here we stop the construction till we get to that N whereby $y_{N}^{*} \leq c \rho_{2}$ and take $R_{N}^{\prime}=\left[0, x_{N-1}\right] \times\left[c \rho_{2}, 2^{\mu_{0}} \rho_{2}\right]$ and $R_{0}^{\prime}=\left[\rho_{1}-\delta, \rho_{1}\right] \times\left[c \rho_{2}, 2^{\mu_{0} \rho_{2}}\right]$. Then

$$
\begin{equation*}
R_{I I}^{\prime}=\cup_{\ell=1}^{N-1} R_{\ell}^{\prime} \cup B_{\ell}^{\prime} \cup R_{0}^{\prime} \cup R_{0}^{\prime} \cup R_{N}^{\prime} . \tag{4.1.5}
\end{equation*}
$$

This time see Figure 1, which is constructed by employing Proposition 4.1.1 (ii). Again notice that here also $d>1$.

Observe that for fixed $t_{2}>0$ there is a unique $w>0$ such that $\frac{\partial \phi}{\partial t_{1}}\left(w, t_{2}\right)=v_{1}$ and similarly for fixed $t_{1}>0$ there is a unique $w>0$ such that $\frac{\partial \phi}{\partial t_{2}}\left(t_{1}, w\right)=v_{2}$. Furthermore, note that $\frac{\partial \phi}{\partial t_{1}}\left(t_{1}, t_{2}\right)$ increases as a function of t_{1} and decreases as a function of t_{2}. Similarly for $\frac{\partial \phi}{\partial t_{2}}(t)$. And also for $t \in R_{I}$ note that

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial t_{i}^{2}} \geq B \delta^{-2}, \text { for } i=1,2 \tag{4.1.6}
\end{equation*}
$$

It follows that for $t \in R=[\alpha, \beta] \times[\gamma, \tau] \subseteq R_{I}$,

$$
\left\{\begin{align*}
\frac{\partial \phi}{\partial t_{2}}-v_{2} & \geq \frac{\partial \phi}{\partial t_{2}}(\beta, \gamma)-\frac{\partial \phi}{\partial t_{1}}(\beta, w) \tag{4.1.7}\\
& \geq B \delta^{-2}(\gamma-w) \text { if } \gamma \geq w \\
\frac{\partial \phi}{\partial t_{1}}-v_{1} & \geq \frac{\partial \phi}{\partial t_{1}}(\alpha, \tau)-\frac{\partial \phi}{\partial t_{1}}(w, \tau) \\
& \geq B \delta^{-2}(\alpha-w) \text { if } \alpha \geq w
\end{align*}\right.
$$

We get similar estimates for $v_{i}-\frac{\partial \phi}{\partial t_{i}}$. In particular, for $t \in B_{\ell}^{\prime}$

$$
\begin{align*}
v_{2}-\frac{\partial \phi}{\partial t_{2}} & \geq \frac{\partial \phi}{\partial t_{2}}\left(x_{\ell}, w\right)-\frac{\partial \phi}{\partial t_{2}}\left(x_{\ell}, y_{\ell}^{*}\right) \geq B \delta^{-2}\left(w-y_{\ell}^{*}\right) \tag{4.1.8}\\
& \geq B \delta^{-2}\left(\ell_{2}\left(x_{\ell}\right)-y_{\ell}^{*}\right)
\end{align*}
$$

where the last of this string of inequalities follows from Proposition 4.1.1 (ii) since $w=y_{2}\left(x_{\ell}\right) \geq \ell_{2}\left(x_{\ell}\right)$.

Next note that if R lies in one of the quadrants, then $\frac{\partial f_{i}}{\partial t_{1}}, \frac{\partial f_{i}}{\partial t_{2}}$ do not change signs in R if and only if f_{i} does not change sign in R.

THEOREM 4.1.2. If $\rho_{2} \geq \rho-1$, then for $\ell=1,2, \ldots$ there is ad>1 such that

$$
\begin{cases}\frac{\partial \phi}{\partial t_{2}}-v_{2} \geq B \delta^{-1} d^{\ell} \frac{\rho_{2}}{\rho-1} & \text { for } t \in R_{\ell} \tag{4.1.9}\\ v_{2}-\frac{\partial \phi}{\partial t_{2}} \geq B \delta^{-1} \frac{\rho_{2}}{\rho_{1}} & \text { for } t \in B_{\ell}^{\prime} \\ \frac{\partial \phi}{\partial t_{1}}-v_{1} \geq B \delta^{-1} d^{\ell} & \text { for } t \in B_{\ell}, \\ v_{1}-\frac{\partial \phi}{\partial t_{1}} \geq B \delta^{-1} d^{\ell} & \text { for } t \in R_{\ell}^{\prime}, \text { and } \\ v_{1}-\frac{\partial \phi}{\partial t_{1}} \geq B \rho_{1} \cdot \delta^{-2} & \text { for } t \in R_{N}^{\prime}\end{cases}
$$

Proof. Using (4.1.7) throughout the argument, we get for $t \in R_{\ell}$ that

$$
\frac{\partial \phi}{\partial t_{2}}-v_{2} \geq B \delta^{-2}\left(y_{\ell}^{*}-w\right)
$$

But for $t \in R_{\ell}$ by (i) of Proposition 4.1.1 $w \leq \ell_{2}\left(x_{\ell}\right)$. Thus

$$
y_{\ell}^{*}-w \geq y_{\ell}^{*}-\ell_{2}\left(x_{\ell}\right) \geq \delta \cdot \frac{\rho_{2}}{\rho_{1}} \cdot d^{\ell}
$$

For $t \in B_{\ell}$ note that $w \leq x^{*}$ with $\ell_{1}\left(x^{*}\right)=y_{\ell}^{*}$ and then argue as above.
In order to argue the case where $t \in R_{N}^{\prime}$, note that $y_{N}^{*} \leq c \rho_{2}$ implies that $x_{N-1} \leq \frac{2 c-(1-\lambda)}{1+\lambda} \rho_{1}$, while $w \geq c \rho_{1}$ and proceed as above. The other cases are similar and will be omitted here.
4.2. The sign of $\frac{\partial^{2} f_{i}}{\partial t_{2} \partial t_{1}}$ for R_{I}. We begin with (also see lemma 4 of [5]),

Lemma 4.2.1. If $0 \leq v_{i} \leq \frac{\partial \phi}{\partial t_{i}}$ and R is in the first quadrant then $\frac{\partial^{2}}{\partial t_{2} \partial t_{1}}\left(v_{i} \pm \frac{\partial \phi}{\partial t_{i}}\right)^{-1}$ remains one sign in R.

Proof. Note that for $i=2$

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t_{2} \partial t_{1}}\left(v_{2}-\frac{\partial \phi}{\partial t_{2}}\right)^{-1}= \\
& \quad a(a-2) f_{2}^{3} \cdot|t|^{a-6} \cdot\left[\left(t_{1}^{2}+(a+1) t_{2}^{2}\right)\left(\frac{\partial \phi}{\partial t_{2}}-v_{2}\right)+2 v_{2}\left(t_{1}^{2}+(a-1) t_{2}^{2}\right)\right]
\end{aligned}
$$

The proofs of all the other cases are similar and will be omitted here.

Using (4.1.9) for $t \in R_{\ell} \cup B_{\ell}$ by Lemma 4.2.1 the hypothesis of Lemma C is satisfied by f_{i} for each $\ell=1,2, \ldots$ By Lemma $\mathrm{C}(i=2$ for $R_{\ell}, i=1$ for B_{ℓ})

$$
\begin{equation*}
S\left(R_{\ell} \cup B_{\ell}\right) \leq B / d^{\ell}, \text { where } d \text { is defined above (4.1.3) } \tag{4.2.1}
\end{equation*}
$$

For the rectangles R_{ℓ}, we need the next result.

Proposition 4.2.2. R is in the first quadrant, $1<a<2$.
(i) If for each $t \in R$; there is an η so that

$$
0 \leq v_{2}-\frac{\partial \phi}{\partial t_{2}}=\frac{\partial^{2} \phi}{\partial t_{2} \partial t_{1}}\left(\eta, t_{2}\right) \cdot\left(w-t_{1}\right) \text { with } 0 \leq w<\eta<t_{1}
$$

then $\frac{\partial}{\partial t_{2} \partial t_{1}} f_{2}$ remains one sign for all $t \in R$.
(ii) If for each $t \in R$, there is an η so that

$$
0 \leq v_{2}-\frac{\partial \phi}{\partial t_{2}}=\frac{\partial^{2} \phi}{\partial t_{2}^{2}}\left(t_{1}, \eta\right) \cdot\left(w-t_{2}\right), \rho / 2<t_{2}<\eta<w \leq \rho_{2}
$$

then $\frac{\partial^{2}}{\partial t_{2} \partial t_{1}} f_{2}$ remains one sign for all $t \in R$. Also a similar result holds for f_{1}.

Proof. Using the fact that $x\left(x^{2}+t_{2}^{2}\right)^{\left(\frac{a}{2}\right)-1} \uparrow$ as a function of x and $\eta<t_{1}$, we get that

$$
\begin{aligned}
A & =2|t|^{a-2}\left(t_{1}^{2}+(a-1) t_{2}^{2}\right)\left(-t_{1}-w\right) \cdot(a-2) \cdot \eta\left(\eta^{2}+t_{2}^{2}\right)^{\frac{a}{2}-2}\left(t_{1}^{2}+(a-3) t_{2}^{2}\right) \\
& \geq|t|^{a-2}\left(2\left(t_{1}^{2}+(a-1) t_{2}^{2}\right)-\left(t_{1}-w\right)(2-a)(3-a) t_{1} t_{2}^{2}\left(\eta^{2}+t_{2}^{2}\right)^{-1}\right)
\end{aligned}
$$

but for $1<a<2$ this term is non-negative and hence $A \geq 0$. Note that the sign of $\frac{\partial^{2}}{\partial t_{2} \partial t_{1}} f_{2}$ is determined by A because of (i).

To see (ii), since $F(x)=\left(t_{1}^{2}+(a-1) x^{2}\right) \cdot\left(t_{1}^{2}+x^{2}\right)^{\frac{a}{2}-2} \downarrow$ and t_{2}, η,
$A=$

$$
2 t_{2}|t|^{a-2}\left(t_{1}^{2}+(a-1) t_{2}^{2}\right)+\left(w-t_{2}\right)\left(t_{1}^{2}+\eta^{2}\right)^{\frac{a}{2}-2}\left(t_{1}^{2}+(a-1) \eta^{2}\right)\left(t_{1}^{2}+(a-3) t_{2}^{2}\right.
$$

and so $A \geq|t|^{a-4}\left(t_{1}^{2}+(a-1) t_{2}^{2}\right) t_{2}^{2}\left((5-a) t_{2}-(3-a) w\right)$, but $(3-a) w \leq$ $(3-a) \rho_{2} \leq \frac{(5-a)}{2} \rho_{2} \leq(5-a) t_{2}$ since $1<a<2$. This gives the result.

REMARK 4.2.1. Let $c^{a-1}=2^{a-2}, \rho_{2} \geq \rho_{1}, 1<a<2$.
(i) If $t_{1}>c^{\frac{1}{2}} \rho_{1}$ then $\frac{\partial^{2} f_{1}}{\partial t_{2} \partial t_{1}}$ stays one sign for $t \in R_{\ell}^{\prime}$.
(ii) If $\rho_{2} / 2 \leq t_{2}$ then $\frac{\partial^{2} f_{2}}{\partial t_{2} \partial t_{1}}$ stays one sign for $t \in B_{\ell}^{\prime}$.

To see (i) note that $y_{1}\left(t_{1}\right)=0$ implies $v_{1}=t_{1}^{a-1} \cdot a$ and so if $t_{1}^{a-1} \geq \rho_{1}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{\frac{a}{2}-1}$, then there is a w so that $v_{1}=\frac{\partial \phi}{\partial t_{1}}\left(t_{1}, w\right)$. Also, $\rho_{1}|\rho|^{a-2} \leq \frac{\rho_{1}^{a-1}}{2^{1-\left(\frac{a}{2}\right)}}$, while,

$$
v_{1}-\frac{\partial \phi}{\partial t_{1}}=\frac{\partial \phi}{\partial t_{1}}\left(t_{1}, w\right)-\frac{\partial \phi}{\partial t_{1}}\left(t_{1}, t_{2}\right)=\frac{\partial^{2} \phi}{\partial t_{1} \partial t_{2}}\left(t_{1}, \eta\right) \cdot\left(w-t_{2}\right) .
$$

Now by (4.1.9) and (i) of Proposition 4.2 .2 the result holds.
For (ii) note that for $t \in B_{\ell}^{\prime}$ and $t_{2} \geq \rho_{2} / 2$

$$
\left.0 \leq v_{2}-\frac{\partial \phi}{\partial t_{2}}=\frac{\partial^{2} \phi}{\partial t_{2}^{2}}\left(t_{1}, \eta\right) \cdot w-t_{2}\right)=\frac{\partial \phi}{\partial t_{2}}\left(t_{1}, w\right)-\frac{\partial \phi}{\partial t_{2}}\left(t_{1}, t_{2}\right)
$$

and $\frac{\rho_{2}}{2} \leq t_{2}<\eta<w \leq \rho_{2}$. Now (ii) of Proposition 4.2.2 applies.
4.2. Upper bounds for $S\left(R_{I}\right)$. We begin with,

PROPOSITION 4.3.1. If $\rho_{j} \geq \rho_{i}$, then

$$
\int_{\left|t_{i}-\rho_{i}\right| \leq \delta} d t_{i}\left|\in_{\rho_{j}}^{2 \rho_{j}} \frac{e^{i \phi} e^{i v \cdot t}}{\left(1+|t|^{2}\right)^{1-\left(\frac{\alpha}{2}\right)}} d t_{j}\right| \leq B, \text { and } i, j, \in\{1,2,\}
$$

Proof. Notice that for $\left|t_{i}-\rho_{i}\right| \leq \delta$ and $\rho_{j} \geq \rho_{i}$ that

$$
\left|\int_{\rho_{j}}^{2 \rho_{j}} \frac{e^{i \phi} e^{-i v \cdot t}}{\left(1+|t|^{2}\right)^{1-\left(\frac{a}{2}\right)}} d t_{j}\right| \leq \frac{B}{\left(\rho_{j}^{2}\right)^{1-\left(\frac{a}{2}\right)} \rho_{j}^{\left(\frac{a}{2}\right)-1}}
$$

by Van der Corput's lemma since $\frac{\partial^{2} \phi}{\partial t_{j}^{2}} \geq B \rho_{j}^{a-2}$. This gives the result. It follows from Proposition 4.3.1 that

$$
\begin{equation*}
S\left(R_{0}\right)+S\left(R_{0}^{\prime}\right) \leq B \tag{4.3.1}
\end{equation*}
$$

Proposition 4.3.2. Fix $i \in\{1,2$,$\} and take R=R_{I I}^{\prime}$ for $i=1$ and $R=R_{I}$ in case $i=2$. If $v_{i}-\frac{\partial \phi}{\partial t_{i}} \geq B \rho_{i} \cdot \delta^{-2}$ for $t \in R$, then

$$
S(R) \leq B
$$

PROOF. In case $i=2$,

$$
\left|\frac{\partial^{2} f_{2}}{\partial t_{2} \partial t_{1}}\right| \leq \frac{B}{\rho_{2}^{a+1}} \text { and by }
$$

Lemma B^{\prime}, the result follows.
In case $i=1$, if $\rho_{1} \leq \rho_{2}^{1-\frac{a}{2}}$, then $\rho_{1} \leq \delta$ and since $R \subseteq R_{I I}^{\prime}$, then by Proposition 4.3.1 with $i=1$ and $j=2$

$$
S(R) \leq B
$$

Otherwise $\rho_{1} \geq \rho_{2}^{1-\frac{a}{2}}$ and since $\rho_{2} \geq \rho_{1}$ this implies

$$
\left|\frac{\partial^{2}}{\partial t_{2} \partial t_{1}} f_{1}\right| \leq \frac{B}{\rho_{2}^{a-1} \rho_{1}^{2}}
$$

And now by Lemma B^{\prime}

$$
S(R) \leq \frac{B \rho_{2}^{1-\frac{a}{2}}}{\rho_{1}} \leq B
$$

and hence the result is true.

THEOREM 4.3.3. If $\rho_{2} \geq \rho_{1}$, then $S\left(R_{I}\right) \leq B$.

Proof. By (4.2.1)

$$
\sum_{\ell=1}^{\infty} S\left(R_{\ell} \cup B_{\ell}\right) \leq B \text { and by (4.3.1) } S\left(R_{0}\right) \leq B
$$

By (4.1.4) $S\left(R_{I I}\right) \leq B$. It remains to show that $S\left(R_{I I}^{\prime}\right) \leq B$.
By remark 4.2 .1 if $t \in R_{\ell}^{\prime}$ and $t_{1}>c^{1 / 2} \rho_{1}$ then f_{1} satisfies Lemma C. And by Lemma C and (4.1.9) there is a $\mathrm{d}_{\mathrm{i}} 1$ so that $S\left(R_{\ell}^{\prime}\right) \leq B / d^{\ell}$, hence

$$
\begin{equation*}
\sum_{\ell \in A_{1}} S\left(R_{\ell}^{\prime}\right) \leq B \tag{4.3.2}
\end{equation*}
$$

$A_{1}=\left\{\ell: t \in R_{\ell}^{\prime}, t_{1}>c^{1 / 2} \rho-1\right\}$.
Now in case $t \in R_{\ell}^{\prime}$ and $\ell \notin A_{1}$ then $t_{1}<c^{1 / 2} \rho_{1}$ and this implies there is at most a finite number of ℓ 's so that $x_{\ell} \leq c^{1 / 2} \rho_{1}$, say M. M only depends on a. Thus,

$$
\cup R_{\ell}^{\prime} \subseteq \cup_{\ell \in A_{1}} R_{\ell}^{\prime} \cup \cup_{\ell \notin A_{1}} R_{\ell}^{\prime} \cup R_{N}^{\prime}
$$

Then

$$
\begin{equation*}
S\left(\cup R_{\ell}^{\prime}\right) \leq \sum_{\ell \in A_{1}} S\left(R^{\prime}\right)+\sum_{\ell \notin A_{1}} S\left(R_{\ell}^{\prime}\right)+S\left(R_{N}^{\prime}\right) \tag{4.3.3}
\end{equation*}
$$

For $\ell \notin A_{1}$ since $\delta \cdot d^{\ell} \geq\left(1-c^{1 / 2}\right) \rho_{1}$ we get by (4.1.9) and Proposition 4.3.2 that

$$
S\left(R_{N}^{\prime}\right)+\sum_{\ell \notin A_{1}} S\left(R_{\ell}^{\prime}\right) \leq M \cdot B
$$

where M is the number of terms.
By (4.3.2) and (4.3.3)

$$
\begin{equation*}
S\left(\cup R_{\ell}^{\prime}\right) \leq B \tag{4.3.4}
\end{equation*}
$$

Next let $A_{2}=\left\{\ell: y_{\ell}^{*} \geq \frac{3}{4} \rho_{2}\right\}$. First note that

$$
B_{\ell}^{\prime}=\left[x_{\ell}, x_{\ell-1}\right] \times\left[\rho_{2} / 2, y^{*}\right] \cup\left[x_{\ell}, x_{\ell-1}\right] \times\left[c \rho_{2}, \rho_{2} / 2\right]=B_{\ell}^{\prime \prime} \cup B_{\ell}^{\prime \prime \prime}
$$

where $B_{\ell}^{\prime}=B_{\ell}^{\prime \prime \prime} x_{\ell}, x_{\ell-1} \times\left[c \rho_{2}, y_{\ell}^{*}\right]$ in case $y_{\ell}^{*}<\rho_{2} / 2$. By Remark 4.2.1 and Lemma $C,(4.1 .9)$, for f_{2} and $t \in B_{\ell}^{\prime \prime}$ there is a $d>1$ such that $S\left(B_{\ell}^{\prime \prime}\right) \leq B / d^{\ell}$ and hence

$$
\begin{equation*}
\sum S\left(B_{\ell}^{\prime \prime}\right) \leq B \tag{4.3.5}
\end{equation*}
$$

Arguing as in (4.1.8) it follows that for $t \in B_{\ell}^{\prime \prime \prime}$

$$
v_{2}-\frac{\partial \phi}{\partial t_{2}} \geq B \delta^{-2}\left(\ell_{2}\left(x_{\ell}\right)-\frac{\rho_{2}}{2}\right)
$$

For $\ell \in A_{2}$ and $t \in B_{\ell}^{\prime \prime \prime}$ since $\ell_{2}\left(x_{\ell}\right) \geq y_{\ell}^{*} \geq \frac{3}{4} \rho_{2}$

$$
\begin{equation*}
v_{2}-\frac{\partial \phi}{\partial t_{2}} \geq B \delta^{-2} \rho_{2} \tag{4.3.6}
\end{equation*}
$$

If $\ell \notin A_{2}$ then $y_{\ell}^{*} \leq \frac{3}{4} \rho_{2}$ and thus $\delta d^{\ell} \geq B \rho-1$. This implies there is at most a finite number, say M, of rectangles such that $\ell \notin A_{2}$. By (4.1.9)

$$
\begin{equation*}
\left.\left.v_{2}-\frac{\partial \phi}{\partial t_{2}} \geq B \delta^{-2} \rho_{2} \text { for } t \in B_{\ell}^{\prime \prime \prime}\right)+\sum_{\ell \notin A_{2}} S\right) B_{\ell}^{\prime \prime \prime} \subseteq B_{\ell}^{\prime}, \ell \notin A_{2} \tag{4.3.7}
\end{equation*}
$$

By (4.3.6), (4.3.7) and Proposition 4.3.2

$$
\sum_{\ell \in A_{2}} S\left(B_{\ell}^{\prime \prime \prime}\right)+\sum_{\ell \notin A_{2}} S\left(B_{\ell}^{\prime \prime \prime}\right)=S\left(\cup_{\ell \in A_{2}} B_{\ell}^{\prime \prime \prime}\right)+M \cdot B \leq B
$$

where M is the number of terms in the second sum. Now by (4.3.5)

$$
\sum S\left(B_{\ell}^{\prime} \leq B\right.
$$

(4.3.1) and (4.3.4) yield the result.
4.4. Estimates of $S(R)$ for the remaining R. We shall begin with the next set of results.

LEMMA 4.4.1. Let $R=[k, 2 k] \times[\ell, 2 \ell], \tau=\max (k, \ell)$ and f_{i} satisfy Lemma B for $t \in R$; where $i=1$ when $k \geq \ell$ and $i=2$ when $\ell \geq k$. If for $k \geq \ell,\left|v_{1} \pm \frac{\partial \phi}{\partial t_{1}}\right| \geq B k^{a-1}$ and if for $\ell \geq k\left|\frac{\partial \phi}{\partial t_{2}} \pm v_{2}\right|>B \ell^{a-1}$, then

$$
S(R) \leq B \tau^{-a / 2}
$$

Proof. Let $\eta=\min (k, \ell)$. Then

$$
\left|\frac{\partial^{2}}{\partial t_{2} \partial t_{1}} f_{i}\right| \leq \frac{B \cdot \eta}{\tau^{a+2}} \text { and hence }
$$

by Lemma B^{\prime}

$$
S(R) \leq B \frac{\left(1+\eta^{2}+\tau^{2}\right)^{(a / 2)-1}}{\left(\eta^{2}+\tau^{2}\right)^{\frac{1}{2}\left(\left(\frac{a}{2}\right)-1\right)}}\left[\frac{1}{\tau^{a-1}}+\frac{\eta^{2} \cdot \tau}{\tau^{a+2}}\right]
$$

The result follows
As an immediate consequence of Lemma 4.4.1 we get

PROPOSITION 4.4.2. Let $\rho_{2}>0, m \geq 1, a d n R_{\ell}=[k, 2 k] \times$ $\left[2^{\ell} \rho_{2}, 2^{\ell+1} \rho_{2}\right], \ell=0,1,2, \ldots$ If $R=\cup_{\ell=0}^{\infty} R_{\ell}$ and the hypothesis of Lemma 4.4.1 is satisfied for each R_{ℓ}, then

$$
S(R) \leq B \begin{cases}\frac{m}{\left(2^{m} \rho_{2}\right)^{a / 2}}, & \text { if } 2^{m} \rho_{2} \leq k \leq 2^{m+1} \rho_{2}, \text { and } \\ \rho_{2}^{-a / 2}, & \text { if } k \leq 2 \rho_{2}\end{cases}
$$

Remark 4.4.1. Note Proposition 4.4.2 handles the case $[k, 2 k] \times$ $[1, \infty)$, i.e., $\rho_{2}=1$ and also with a similar hypothesis it handles the case where $R=\left[\rho_{1}, \infty\right) \times[\ell, 2 \ell]$.

THEOREM 4.4.3. The first quadrant can be decomposed $[0, \infty) \times$ $[0, \infty)=\cup_{m} R_{m}$, so that the hypothesis of Proposition 1.1 is satisfied, each R_{m} satisfies (1.1) and $\sum_{m} S\left(R_{m}\right) \leq B$.

Proof. To complete the first quadrant, we begin by obtaining estimates of $\left|v_{i}-\frac{\partial \phi}{\partial t_{i}}\right|$. Recall that $\mu_{0}(a-1) \geq 3(2-a), 1 \leq \rho_{1} \leq \rho_{2}$ and the increasing and decreasing properties of $\frac{\partial \phi}{\partial t_{i}}$.
Set, (with $c^{a-1}=2^{a-2}$)

$$
U_{0}=S_{1} \cup S_{2} \cup \cup_{k=\mu_{0}}^{\infty} R_{k}, U_{\ell}=\cup_{k=\mu_{0}}^{\infty} R_{k, \ell}, \ell=1,2,3
$$

where, $S_{1}=\left[0, \rho_{1}\right] \times\left[0, c \rho_{2}\right], S_{2}=\left[\rho_{1}, 2^{\mu_{0}} \rho_{2}\right] \times\left[0, c \rho_{2}\right], R_{k}=\left[2^{k} \rho_{2}, 2^{k+1} \rho_{2}\right]$ $\times\left[0, c \rho_{2}\right], R_{k, 1}=\left[2^{k} \rho_{2}, 2^{k+1} \rho_{2}\right] \times\left[c \rho_{2}, 2^{\mu_{0}} \rho_{2}\right], k, 2=\left[0, \rho_{1}\right] \times\left[2^{k} \rho_{2}, 2^{k+1} \rho_{2}\right]$, and $R_{k, 3}=\left[\rho_{1}, 2^{\mu_{0}} \rho_{2}\right] \times\left[2^{k} \rho_{2}, 2^{k+1} \rho_{2}\right]$. We get that

$$
\left|v_{2}-\frac{\partial \phi}{\partial t_{2}}\right| \geq B \begin{cases}\rho_{2}^{a-1} & \text { for } t \in S_{1} \cup S_{2}, \text { and } \tag{4.4.1}\\ \left(2^{k} \rho_{2}\right)^{a-1} & \text { for } t \in R_{k, 2} \cup R_{k, 3}\end{cases}
$$

and

$$
\begin{equation*}
\frac{\partial \phi}{\partial t_{1}}-v_{1} \geq B\left(2^{k} \rho_{2}\right)^{a-1} \text { for } t \in R_{k} \cup R_{k, 1} \tag{4.4.2}
\end{equation*}
$$

Since $\rho_{2} \geq \rho_{1}$ this implies $v_{2} \geq \frac{a}{2^{1-\frac{\pi}{2}}} \rho_{2}^{a-1}$ and for $t \in S_{1} \frac{\partial \phi}{\partial t_{2}} \leq$ $\frac{\partial \phi}{\partial t_{2}}\left(0, c \rho_{2}\right)$. Hence (4.4.1) is true fort $\in S_{1}$. For $t \in S_{2} \frac{\partial \phi}{\partial t_{2}} \leq$ $\frac{\partial \phi}{\partial t_{2}}\left(\rho-1, c \rho_{2}\right)$ and (4.4.1) holds for $t \in S_{2}$. The other inequalities in (4.4.1) and (4.4.2) follow in a similar fashion.
Now to complete the first quadrant set $U_{4}=\cup_{\ell=\mu_{0}}^{\infty} \cup_{k=\mu_{0}}^{\infty} R_{\ell, k}$ where $R_{\ell, k}=\left[2^{\ell} \rho_{2}, 2^{\ell+1} \rho_{2}\right] \times\left[2^{k} \rho_{2}, 2^{k+1} \rho_{2}\right]$.
If $\ell \geq k$, then

$$
\begin{equation*}
\frac{\partial \phi}{\partial t_{1}}-v_{1} \geq \frac{a\left(2^{\ell} \rho_{2}\right)^{a-1}}{5^{1-\left(\frac{a}{2}\right)}}-a \rho_{1}^{a-1} \geq B\left(2^{\ell} \rho_{2}\right)^{a-1} \text { for } t \in R_{\ell, k} \tag{4.4.3}
\end{equation*}
$$

while for $k \geq \ell$

$$
\begin{equation*}
\frac{\partial \phi}{\partial t_{2}}-v_{2} \geq B\left(2^{k} \rho_{2}\right)^{a-1} \text { for } t \in R_{\ell, k} \tag{4.4.4}
\end{equation*}
$$

Now by (4.4.1-4) and Proposition 4.4.2

$$
\sum_{i=0}^{4} S\left(U_{i}\right) \leq B .
$$

Putting these results together with Theorem 4.3 .3 gives the result.
We are in a position to show,

THEOREM 4.4.4. Let $1<a<2$. There is a decomposition of the plane $R^{2}=\cup_{m} R_{m}$ that satisfies the hypothesis of Proposition 1.1 where each R_{m} satisfies (1.1) and

$$
\sum_{m} S\left(R_{m}\right) \leq B
$$

PROOF. If R is in the fourth quadrant, we can shift everything to the first quadrant by changing variables. This time we need to estimate $v_{2}+\frac{\partial \phi}{\partial t_{2}}$ and $\left|v_{1}-\frac{\partial \phi}{\partial t_{1}}\right|$ from below. We get that all the non-critical rectangles will go as before.
The only cases that are not clear are for the critical rectangles $R_{I}=$ $\left[0,2^{\mu_{0}} \rho_{2}\right] \times\left[c \rho_{2}, 2^{\mu_{0}} \rho_{2}\right]$ with $\rho_{2} \geq \rho_{1}$ and $R_{I}^{\prime}=\left[c \rho_{1}, 2^{\mu_{0}} \rho_{1}\right] \times\left[0,2^{\mu_{0}} \rho_{1}\right]$ with $\rho-1 \geq \rho_{2}$. In case $\rho_{2} \geq \rho-1$ since $v_{2}+\frac{\partial \phi}{\partial t_{2}} \geq B \rho_{2}|\rho|^{a-2}$ by Proposition 4.3.2

$$
S\left(R_{I}\right) \leq B
$$

In case $\rho_{1} \geq \rho_{2}$, set

$$
\begin{aligned}
& R_{I}^{\prime}=\left[c \rho_{1}, 2^{\mu_{0}} \rho_{1}\right] \times[0, \delta] \cup \cup_{k} R_{k}=R \cup \cup_{k} R_{k} \\
& R_{k}=\left[c \rho_{1}, 2^{\mu_{0}} \rho-1\right] \times\left[2^{k} \delta, 2^{k+1} \delta\right] \text { and } 2^{k+1} \delta \leq 2^{\mu_{0}} \rho_{1} .
\end{aligned}
$$

Then

$$
\frac{\partial \phi}{\partial t_{2}}+v_{2} \geq B\left(2^{k} \delta\right) \rho_{1}^{a-2} \text { and }\left|\frac{\partial^{2}}{\partial t_{2} \partial t_{1}} f_{s}\right| \leq \frac{B}{\left(2^{k} \delta\right)^{2} \rho_{1}^{a-1}} \text { for } t \in R_{k}
$$

Using Lemma B^{\prime}, since $2^{k+1} \partial \leq 2^{\mu_{0}} \rho_{1}$ for all k, we get

$$
\sum_{k} S\left(R_{k}\right) \leq B \sum_{k} \frac{\rho_{1}^{a-\frac{a}{2}}}{2^{k} \delta} \leq B
$$

By Proposition 4.3.1 $S(R) \leq B$. Since all other quadrants can be dealt with in a similar fashion the theorem follows.

COROLLARY 4.4.5. Let $a>1, a \neq 1$. Then for any rectangle R with sides parallel to the coordinate axis

$$
\left|\int_{R} K_{a, 1-\left(\frac{a}{2}\right)+i y}(t) e^{-i t \cdot v} d t\right| \leq B\left(1+|y|^{2}\right)
$$

where B is a positive constant independent of R, y and v.

Proof. In case $a \geq 2$, we refer the reader to [5] and in case $1<a<2$ use Theorem 4.4.4. Now apply Proposition (1.1) and (0.2').

REFERENCES

1. S. Chanillo, D.S. Kurtz, and G. Sampson, Weighted L^{p} estimates for escillatingkernels, Arkiv för Mat., 21(1983), 233-257.
2. R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. of Amer. Math. Soc. 83(1977), 569-545.
3. W.B. Jurkat and G. Sampson, The complete solution to the (L^{p}, L^{q}) mapping problem for a class of oscillating kernels, Ind. U. Math. J. 30 (1981), 403-413.
4. G. Sampson, A note on oscillating kernels in Two Dimensions, J. Math. Anal. Appl. 93 (1983), 418-435.
5. - Fourier transform estimates for oscillating kernels, Springer-Verlag series, Lecture Notes 908, Harmonic Analysis, Minneapolis 1981, 247-273.
6. - Oscillating kernels that map H^{1} into L^{1}, Ark. förMat. 18 (1980), 125-144.
7. P. Sjölin, Convolution with oscillating kernels, Ind. U. Math. J. 30 (1981), 47-55.
8. Convolution with oscillating kernels on H^{p} spaces, J. London Math. Soc. (2) 23 (1981), 442-454.
9. A. Zygmund, Trigonometric Series, 2nd Ed., vols. 1 and 2, Cambridge U. Press, New York, 1959.

Department of Mathematics Auburn University, Auburn University, AL 36849-3501.

