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BOUNDARY VALUE PROBLEMS FOR 
SEMILINEAR ELLIPTIC EQUATIONS OF 

ARBITRARY ORDER IN U N B O U N D E D DOMAINS 

MARTIN SCHECHTER 

ABSTRACT. We study boundary value problems for equa
tions of the form Au = f(x, u), where A is an elliptic operator 
of order 2m. If A has suitable properties, we can allow f(x, u) 
to grow in u to an arbitrarily high power. It is allowed to have 
exponential growth even when 2ra < n. 

1. Introduct ion. We shall be concerned with boundary value 
problems of the form 

(1.1) A(x, D)u = f(x, u) in 0, 

(1.2) Bj{x, D)u = 0 on <90, l<j< ra, 

where A(x, D) is a uniformly elliptic operator of order 2ra in a (bounded 
or unbounded) domain Cl C R n , and the operators (1.2) cover it on 
<9Q, the boundary of Q(cf. [10, p. 224]). If the coefficients of A(x,D) 
and the Bj(x,D) as well as dft are sufficiently regular, then for any 
1 < p < oo the estimate 

(1.3) N|2m,p < C{\\A(x,D)u\\p + |M|P) 

holds for u G H2m'p(fl) satisfying (1.2), where ||w||fc,p is the norm in the 
Sobolev space Hk,p(Cl) and ||^||p is the LP(Q, norm (cf. Agmon-Douglis-
Nirenber [1]). We shall require more: that A(x, D) is a bijective map of 
those u e # 2 m ' p ( 0 ) satisfying (1.2) onto Lp{0). Sufficient conditions 
for this to hold can be found in [2, 3, 6, 8, 15-17]. We shall show that 
it is true for the Dirichlet problem for constant coefficient operators for 
which the corresponding polynomial does not vanish on R n (cf. §2). 

Concerning the function f(x,u) we shall assume that 

oo 

(1.4) |/(ar,ti)| < J ] Vk{x)\u\b\ bk>0 

k=l 
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520 SEMILINEAR ELLIPTIC EQUATIONS 

where the bk are restricted only by the inequality 

(1.5) (l/p-2m/n)bk <l/p 

In particular, if n < 2rap, we can have bk —* oo. The Vk(x) are required 
to be in certian spaces which were introduced elsewhere [11] (definitions 
are given in §2). These spaces depend on n,m,p and 6^. A series 
corresponding to the right hand side of (1.4) is required to converge. 
In the case n < 2mp we can even allow 

(1.6) \f(x,u)\<V(x)ecW 

provided V(x) is in 1^(0). In particular, we can solve the Dirichlet 
problem in unbounded domains for equations such as 

(1.7) [ ( -A) m + l]u = V(x)ecM 

provided V(x) € 1^(0.) for some p > n/2m and \\V\\P is bounded by a 
constat depending on m, n, C and O. 

Our results have the advantage that strong solutions are obtained, 
i.e., solutions in H2rriìP(u) are found. The restrictions on f{x,u) are 
extremely mild. Usually one is permitted growth in u only up to order 
(n+2m)/ (n-2m) when n > 2m. We can obtain nonvanishing solutions 
as well (Theorems 2.6 and 2.10). For instance if ft is bounded and 
n < 2p, assume that 

(1.8) 0 < a(u) < f(x,u) < V(x)ecM, u>0 

where V(x) is a function in 1^(0.) and a(t) is a nondecreasing function 
defined for t > 0 such that a(t)/t is bounded away from 0 on any 
bounded interval. Then there exists a solution u(x) > 0 in f2 of the 
Dirichlet problem 

(1.9) -Au = \f(x, u) in ft, u = 0 on dtl 

for some À > 0. 

Our main results are stated in Section 2. Proofs are given in §3. 
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2. The main results. In stating our hypothèse we shall use a family 
of norms depending on three parameters. Put 

wa(x) = \x\a~n, 0 < a < n 

= 1 - |log|a;|,a = n 

= l , a > n 

For a function V(x) defined on R n we define 

i/t 
\V(x)\rwa(x-y)dx) ' 'dy\ 

l\x-y\<l 

(2.1) s u p ^ f /Tr/ xr t _ y/' 
1 < t < 00 = 

Ma,rAV) = (j ( / x |V(ar)|rti;a(ar - y)dx)tHdy^j , 

0 (y (x ) r ^ a (x - 2/)drc ) , t = oc, 
|a-2/|<l / 

M0tr,t(V) = \\V\\t = the L^R71) norm of V. 

We let Maìrìt be the set of those V such that Majr>t(V) < oo. The 
space .£F,P is defined as the completion of test functions (smooth with 
compact supports) with respect to the norm 

(2-2) |H | s , p = | |F(l + |e|2)Fu||P) 

where F denotes the Fourier transform, £ its argument and F its 
inverse. When s is a positive integer and 1 < p < oo, this norm is 
equivalent to the sum of the IP norms of u and its derivatives up to 
order s. Let O be an arbitrary domain (bounded or unbounded) in R n . 
We shall consider a function f(x,u) which is measurable in x for each 
u and continuous in u for almost every x. Our assumption on f(x, u) 
will be 

N 

(2.3) | / ( s , u)\ < Vo(x) + £ Vk(x)\u\bk 

where Vk{x) G Makjrkitk, and the parameters satisfy 

(2.4) I/o* < q < rk, 1/q < bk/p + l/tki 1 < tk < oc, 

(2.5) 0 < ak/nrk < sbk/n + 1/q - bk/p - l/tk 
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for some s,p, q such that s > 0 and 1 < p, q < oo. If £& = oo, we make 
the additional assumption 

(2.6) / \Vk{x)\rkdx -> 0 as |y| - • oo. / |Vfc(x)| 
J\x-y\<l 

The functions Vk(x) are to vanish outside f2. Thus (2.6) is unnecessary 
if Q, is bounded. We assume V0(x) is in Lq = Lq(Rn). Later we shall 
remove the requirement that N be finite. 

We let HS,P(Q) denote the restrictions to 12 of functions in H8,p. 
Under the norm 

(2.7) ||ti||?tJ, = iiif||t;||a|J„t; = u i n n 

it becomes a Banach space. Our first result is 

THEOREM 2.1. Let A be any continuous linear bijective map of 
D(A) C Hs>P(fl) to Z/*(0). Then for each R>0 either 

(2.8) Au = f(x,u),ueD(A)1 \\u\\^p < R 

has a solution or there is a X such that 0 < A < 1 and 

(2.9) An = \f(x,u),u<= D(A), \\u\%p = R 

has a solution. 

In order to allow N to be infinite in (2.3) we shall need the following 
result proved in [11]. 

THEOREM 2.2. Ifs,b> 0, l <p < oo, l < t < oo, 

(2.10) I/o < q < r < oo, 1/q < b/p + 1/t 

(2.11) 0 < a/nr < sb/n + 1/q - b/p - 1/t 

then there is a constant C{n, 5,p, q, ò, a,r , t) < oo such that 
(2.12) 

( y IVWluixWdx)1^ < C(n,s,p,q,b,a,r,t)M0hrtt(V)\\u\\b
StP. 
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If t < oo, then multiplication by iF(x)!1/6 is compact operator from 
Hsp to Lqb. If t = oo, the same will be true if we assume in addition 
that 

(2.13) / \V{x)\rdx -+ 0 as \y\ -+ oo. 
J\x-y\<l 

If we make use of this theorem, we can replace (2.3) with 

oo 

(2.14) \f(x, u)\ < Vo(x) + £ ) Vk(x)Mbk 

provided (2.4)-(2.6) hold and there is an R > 0 such that 
oo 

(2.15) W(R) = J2ckMakìrkìtk(Vk)R
bk < oo, 

where 

(2.16) Ck = C{n,s,p,q,bk,ak,rk,tk,)-

We have 

THEOREM 2.3. If (2.3) zs replaced by (2.14), tfaen the conclusions of 
Theorem 2.1 hold for any R > 0 satisfying (2.15). 

THEOREM 2.4. / / 

(2.17) INI?,p< Co||i4ti||J, uZD(A), 

and there is an R < oo such that 

(2.18) Co[| |V| | ,+ W ( Ä ) ] < Ä 
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then (2.8) has a solution. 

THEOREM 2.5. For every À > 0 sufficiently small there exists an 
R>0 such that (2.9) has a solution. 

THEOREM 2.6. Assume, in addition, that there is an R > 0 such that 

(2.19) inf | | / ( . , t i ) | | q>0/or | |u |U l l , = A. 

Then there is a X > 0 such that (2.9) has a solution 

Next we turn our attention to an elliptic boundary value problem. 
Let 

A{x,D) = Y, aÄx)Dß 

|/ i|<2ra 

be an elliptic partial differential operator of order 2m in Q, where 
ß = (/ii, ß2, • • • , Mn) is a multi-index of length |/i| = fii + • • • + \in 

and 

We assume that A(x,D) is uniformly elliptic, i.e., that 

I E M^Ml>^oK|2m,€€Rn 

|/x|=2m 

for some Co > 0. We assume also that there is a system of m boundary 
operators of the form 

Bj{x,D)= E bjß{x)D», l<j<m 
\n\<mj 

which cover A(x,D) (cf [10]). Let 1 < p < oo, and let D(A) denote 
the set of those u in H2m'p such that 

Bj(x, D)u = 0 on ÖÜ, 1 < j < m. 

We let A designate the restriction of A(x,D) to D(A). We assume 
that A is bijective from D(A) to L^fJ) (for sufficient conditions cf. 
[2,3,6,8,15-17]). We have 
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THEOREM 2.7. Assume that (2.4)-(2.6), (2.14), (2.15) hold with 
s = 2m and q = p. Then for any R > 0 satisfying (2.15) either 

(2.20) Au = f(x,u)1 \\u\\2m,p<R 

has a solution in D(A) or there is a X such that 0 < À < 1 and 

(2.21) Au = A/(ar, u), \\u\\2miP = R 

has a solution in D{A). For any X sufficiently small there is an R>0 
such that (2.21) has a solution. If (2.19) holds, then for each R > 0 
satisfying (2.15) there is a X > 0 such that (2.21) has a solution. 

We note that any constant coefficient elliptic operator of order 2m 

A(D)= £ apD* 
l/*l<2m 

such that 

(2.22) A(t)= J2 a^'VO, $€R" 
M<2m 

will satisfy the hypotheses of Theorem 2.7 for the Dirichlet boundary 
conditions 

di'1 

Bj(xiD) = ^—IÏ, l<j<m 

where ^ denotes the normal derivative to dtt, and dfl is suffi
ciently smooth. To see this we recall the estimates of Agmon-Douglis-
Nirenberg [1] 

(2.23) N|2m l P < C(\\Au\\p + |M|P), u € D(A) 

holding in general situations. Moreover,in the present case 

(2.24) ||ti| |m,p < C\\Au\\m^ u e H™*(ü) 

where H™>p(Cl) denotes the closure in Hm*{Ü) of Cg°(«) (cf. [9 p. 
55]). If dû is sufficiently regular, D{A) C H™*(Q). Thus 

pi U € D(A). 
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This combined with (2.23) gives 

N|2m,p < C'Ululi p , U eD(A). 

Next we note that we can reduce the assumptions on f(x, u) when 
n < sp. In this case the Sobolev inequality tells us that there is a 
constant C\ such that 

(2.26) IN|oo<Ci|H| s ,p . 

We have 

THEOREM 2.8. Assume that n < sp and that 

(2.27) \f(x,u)\<V(x)exp{C2\u\} 

where V(x) € Lq(Q,). Then all of the conclusions of Theorems 2.1, 
2.4-2.6 hold if we replace (2.18) by 

(2.28) Co||V||gexp{CiC2Ä} < R. 

Note that (2.28) will hold for some R if 

(2.29) eC0CiC2 | |V% < 1. 

A variation of Theorem 2.4 can be obtained as follows. 

THEOREM 2.9. Suppose there exists a function u0(x) in D(A) such 
that 

oo 

(2.30) | /(x, u) - fo(x)\ < £ Vk(x)\u - u0(x)\bk 

fc=i 
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where f0(x) = Au0 and (2.4)-(2.6), (2.15) hold. If C0W(R) < R then 
(2.8) has a solution. 

As a special case of a boundary value problem (1.1,2) satisfying our 
hypotheses, we can mention the Dirichlet problem for a second order 
elliptic operator of the form 

n n 

(2.31) A(x,D)=Y, aitj{x)DiDj + ^ &i(ar)A + c(x) 
i,jf=l i=l 

on a bounded domain Si with smooth boundary. Assume that the coef
ficients of (2.31) are continuous in Si and that c(x) > 0. If n < p, then 
the operator (2.31) is a bijective map of D(A) = H2*(Sl) H H1*{Sì) 
onto LP(SÌ) (cf. [15]). Moreover, the operator A-1 is positive, i.e., 
Au > 0 implies u > 0. For such cases we can improve Theorem 2.6 in 
the following way. 

THEOREM 2.10. Assume that (2.4)-(2.6), (2.14), (2.15) hold, and let 
A be a positive continuous linear bijective map of D{A) c HSiP(Sl) to 
Lq(Sl). Assume also that there is a nondecreasing function a(t) defined 
for t > 0 such that t/a(t) is bounded on any bounded interval and such 
that 

(2.32) a{t)<f{x,t), t>0. 

If A has a nonnegative bounded eigenfunction, then there is a X > 0 
such that (2.9) has a solution u>0. 

COROLLARY 2.11. Let Q be a smooth bounded domain and let A be 
the operator (2.31) acting on D(A) = H2*{Q) DH^P(Ü) under the as
sumptions described above. Let a(t) be as described, and assume that 
(2.4)-(2.6), (2.14), (2.15), (2.32) hold with q=p and s = 2. Then there 
is a A > 0 such that (2.9) has a solution u positive in Si. If n < 2p, we 
can replace (2.14) with (2.27). 

3. Compactness criteria. In this section we show that certain 
operators are compact. 

LEMMA 3.1. Let BN(X,U) denote the right hand side of (2.3). 
If (2.4)-(2.6) hold, it is a compact and continuous operator from 
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H8*(iï)toL<i(n). 

PROOF. Suppose 

(3.1) ll«A<Ä. 

Since H8iP is reflexive and continuously embedded in IP, there is a 
subsequence (also denoted by{uj}) which converges weakly to some 
u G Hs'p and such that 

(3.2) Uj —• u a.e. 

i i 

By Theorem 2.2, each V£k Uj converges to V£k u in Lqbk. In particular, 
we have 

\\VkWi\bh\\q^\\vMhh\\q-
Since 

\Vk{x){\uk\
b" - \u\b>)\ < V*(a:)(|u/* + |M|6*) 

and the left hand side approaches 0 as j —» oo, we have 

(3-3) £lWk(l«/*-l«l6*)ll,-o 

1 

which implies 

(3.4) WBN^U^-BNMWC^O. 

LEMMA 3.2. LetB(x,u) denote the right hand side of'(2.14). 7/(2.15) 
holds as well, then B(x,u) is a compact and continuous operator from 
the set 

(3-5) ||u||?,p < R 

to L«(îî). 
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PROOF. Let e > 0 be given, and take N so large that 

oo 

Y,CkMak^tk(Vk)R
bk<e. 

k=N 

Put BN(x,u) = B(x,u) - BN(x,u). Then by (2.12) 

oo oo 

\\BN(;u)\\g < J2 II W % < Y.C^M^kM(Vk)Pbk < e 
N N 

whenever u satisfies (3.5). Thus if (3.1) and (3.2) hold, then 

\\B{',uk) - B{;u)\\q <\\BN{^Uj) - BN{^u)\\q + 2e. 

Hence B(x,Uj) converges to B(x,u) in Lq. 

THEOREM 3.3. Under hypotheses (2.4)-(2.6), (2.14), (2.15), f(x,u) is 
a compact and continuous map from the set (3.5) to Lq(ü). 

PROOF. Suppose (3.1), (3.2), hold. Then 

|/(ar, Uj) - f(x, u)\ < B(x, Uj) + B(x, u) 

The right hand side converges to 2B(x, u) in Lq by Lemma 3.2. The 
left hand side converges to 0 a.e. Hence f(x,Uj) converges to f(x,u) 
i n i A 

In proving Theorems 2.1 and 2.3, we shall make use of a simple con
sequence of the Schauder fixed point theorem (cf. Schaefer [14]). 

THEOREM 3.4. Let X be a normed vector space and let S be a closed 
bounded convex subset of X containing 0 as an interior point. Let T 
be a continuous compact map of S into X. Then either 

(a) There is a u € S such that u = Tu or 

(b) There are u G dS and real X such that 0 < À < 1 and u = XTu. 
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PROOF. For each u G X, let g(u) = inf{c > 0|^ G S}. Clearly 
(?(ii) < 1 for u G S,g(u) > 1 for u ^ S and u/g(u) G #5. Define the 
mapping 

{ w if w; G 5 

w/g(w) iî w £ S 
The mapping rT is continuous and compact from S to 5. Hence we 
may apply the Schauder fixed point theorem to conclude that there is 
a u G 5 such that u = rTu. If Tu G S, then rTu = Tu and (a) is true. 
If Tu is not in S, then r(Tu) = XTu G <9S, where A = l/g(Tu) < 1, 
and (b) holds. 

Now we can give the Proof of Theorems 2.1 and 2.3. Let S be the set 
(3.5), and put Tu = A~1f(x,u). By Theorem 3.3 and the hypotheses 
on A, T is a compact continuous map from S to HSiP. The results now 
follow from Theorem 3.4. 

PROOF OF THEOREM 2.4. By Theorem 2.2 
(3.6) 

oo oo 

1 1 

If u satisfies (3.5), then by (2.15) and (2.17) 

(3.7) ÌÌA-ifMllsjKCoWoìlq + WiR)) 

By (2.18), Tu = A~1f(x,u) also satisfies (3.5). Since T is a compact 
operator on the set of those u G D(A) satisfying (3.5) (Theorem 3.3), 
we can apply the Schauder fixed point theorem to obtain the desired 
conclusion. 

PROOF OF THEOREM 2.5. If u satisfies (3.5), then by (3.15) and (3.7) 
there exist R > 0, A > 0 such that 

If we apply the Schauder fixed point theorem to AT = AA_ 1/(x, u), we 
see that there is a u satisfying (3.5) such that u = XTu. Note that we 
have not excluded u = 0. 



M. SCHECHTER 531 

P R O O F OF THEOREM 2.6. By (2.19) 

inf||Tu||5>p > 0 , |M|,,„ = Ä 

where Tu = A~lf{x, u) is a compact operator on this set. We can now 
apply a theorem of Krasnoselskii [18, p. 161] to obtain the desired 
conclusion. 

Theorem 2.7 is n immediate consequence of Theorems 2.3-2.6. 

PROOF OF THEOREM 2.8. In this case we have 

oo 

B(x,u) = V{x)ec*W = V(x)^2c^\u\k/k\ 
k=i 

Moreover, by (2.26) 

\\V\u\% < \\V\\qC*\\u\\k
StP 

and consequently 
oo 

ll*(-,«)| | , < MU'ZciCÏUuWÎJkl = ||F||<îexp{C71C2||U||â)P}. 

This expression is finite for all u € Hsp. All of the proofs go through 
as before. 

PROOF OF THEOREM 2.9. We follow the proof of Theorem 2.4. By 
Theorem 2.2 

oo 

(3.8) | | /( . ,u) - Ml« < £ \\Vk\u - «of* ||« < W(\\u - «oil",). 
1 

If u € D(A)satisfies 

(3.9) | | t i - t i o | | ? f P <Ä 

then by (2.15) and (2.17) 

P " 7 ( ' , u ) - wolkp < CoW(R) < R. 
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Thus the mapping Tu = A 1f(x1u) maps the set (3.9) into itself. 
Again the conclusion follows from the Schauder fixed point theorem. 

In proving Theorem 2.10 we make use of the following theorem due 
to Kransnoselskii [18, p. 178]. 

THEOREM 3.4. Let B, N be operators defined on a cone K of a 
Banach space X such that 

(3.10) 0 < Bu < Nu, u > 0, 

N is compact on K and 

(3.11) 0 < Bu < Bv when 0 < u < v. 

Assume that there is an element UQ > 0 such that UQ ^ 0 and 

(3.12) 7 = mî{r\tuQ <v,\\v\\<R implies t < r} 

is finite. Assume finally that there is a constant a > 0 such that 

(3.13) atu0 < B(tu0), 0 < t < 7. 

Then there exist X > 0,u > 0 such that \\u\\ = R and Nu = Xu. 

PROOF. For 6 > 0 put Nsu = Nu + 6u0. Then Ng is compact on K 
and 

Nsu > Bu + ÖUQ > 8UQ. 

Thus 
infiligli >0, u>0, \\u\\ =R. 

By the theorem of Krasnoselskii used in the proof of Theorem 2.6 ([18, 
p. 161]), there is a Â  > 0 and a ^ > 0 such that 

(3.14) N6U6 = X6us, ||iia|| = Ä 

Thus 

(3.15) Bus < ^6V>6, öuo < Xsus 
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This implies the existence of a number ts such that 

(3.16) 0 < t6 < 7, Uuo < us 

and 

(3.17) t < tg when tuo < us. 

Hence by (3.11), (3.13), (3.15) and (3.16) 

atsuo < B(tsu0) < B{us) < X6u6. 

In view of (3.17), this implies a < \s. By the compactness of Ns and 
(3.14), there is a sequence of {6n} converging to 0 such that Nsus —> y in 
X. Thus Xs = \\Nsus\\/R also converges to some number À > a. Hence 
us = Nsus/Xs —• y/X = u. Then u > 0, ||w|| = R and Nu — y = Xu. 

PROOF OF THEOREM 2.10. Put Nu = A-lf(x,u),Bu = A^aiu). 
We show that the hypotheses of Theorem 3.5 are satisfied. Clearly 
(3.10), (3.11) hold and N is compact. Let u be a positive eigenfunction 
of A~l with positive eigenvalue \i. If tuo < v, then t||wo||p <: \\v\\p 5: 
| | Î ; | |S ) P . Thus 7 given by (3.12) is finite. It remains to verify (3.13). By 
hypotheses, there is a constant ß > 0 such that 

ß < ot(t)lt, 0<t<jM 

where M = maxi/o- Thus 

ßfituo = ßtA~xu0 < ^4_1a;(^o) = B(tu0) 

and (3.13) is verified. 
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