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1. Introduction. In many biological systems it is necessary to 
scynchronize or otherwise organize the temporal activity of a popula
tion of cells, and this is usually achieved through stimulation or 'forcing' 
by a pacemaker, or by mutual coupling within the population. While 
the pacemaker is sometimes external to the organism, as in the case 
of circadian rhythms, many interesting examples in physiology involve 
endogenous pacemakers. Examples include the oscillatory networks of 
neurons (the central pattern generators) that underlie a variety of pe
riodic behavior [1, 2] and the SA node in the mammalian heart. In the 
SA node individual cells generate periodic outputs, and the problem 
is to understand how the output is synchronized in the population [3]. 
In central pattern generators the periodic output is often a network 
property, in that individual cells do not burst periodically in isolation 
[1], and the problem is to understand the patterns of interaction that 
can generate the observed periodic behavior. However, synchronization 
is not always desirable, as is illustrated by the fact that synchronized 
bursting of large numbers of neurons underlies epileptic seizures [4]. 
Many other examples can be given to underscore the fact that knowl
edge of how coupling affects the collective behavior of aggregates of cells 
is important for understanding both normal and pathological processes 
in numerous biological and physiological systems [5]. 

From a mathematical standpoint the simplest system that is relevant 
in this context is a single periodically-forced system, and for such 
systems much is known about the dependence of solutions on the 
period and amplitude of the forcing function [2]. However, much less 
is known about the dependence of solutions for a system of coupled 
oscillators on biologically-relevant parameters, such as the intrinsic 
frequency of the oscillators and the coupling strength. Some results 
can be gotten by asymptotic methods in the limit of very weak or very 
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strong coupling [6, 7, 8, 9, 10], but previous work on directly-coupled 
oscillators shows that much of the interesting, and perhaps biologically-
important behavior arises at intermediate values of the parameters, 
where there are subtle balances between competing processes [6, 8, 
9, 10]. For example, it is shown in [10] that, for moderate values 
of the coupling strength, a system of two identical coupled oscillators 
may simultaneously have both stable synchronized solutions and stable 
de-synchronized solutions. In addition, there are sequences of period-
doubling bifurcations and chaos as the coupling strength is varied, 
but none of this behavior exists at very weak or very strong coupling 
[8, 9, and 10]. This work has demonstrated the value of choosing 
a simple model that can be more-or-less completely understood by a 
combination of analytical and numerical techniques. Our objectives in 
this paper are to develop a perturbation technique that is applicable to 
other than directly-coupled oscillators, examples of which are given in 
[11] and [12], and to extend the results in [8, 9, and 10] to nonsingular 
linear coupling. 

In the following section we develop a procedure for studying periodic 
solutions of perturbed systems for which the unperturbed system has 
an TV-parameter family of periodic solutions. This approach, which is 
related to earlier work by Urabe [13], does not rely on the existence of 
a periodic surface for the perturbed system, and thus is applicable 
in degenerate cases where other approaches such as averaging fail. 
When N = 1 a straight-forward application of the implicit function 
theory yields a local branch of periodic solutions [14], but when N > 1 
the appropriate linear problem is singular and some form of reduction 
procedure is required. In §2 we study a system of two directly-coupled 
oscillators and show how to obtain the bifurcation equations for general 
coupling functions. This reduction procedure also enables us to prove 
that there is no subhannonic bifurcation, and to obtain persistence of 
a smooth invariant torus via a center manifold construction. 

In §3 we illustrate the reduction procedure for the system studied 
in [10] and extend the results in that paper to more general types of 
coupling. In particular, we recover the perturbation results in [10] di
rectly, without appeal to results on persistence of invariant manifolds 
and without construction of the leading-order terms in a perturbation 
expansion of the perturbed manifold. In §4 we show how the resonance 
structure found in [10] collapses as the coupling matrix approaches a 
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multiple of the identity. The results show how the infinite family of 
resonance zones found in [10] arise from a codimension-four singularity 
that exists when the coupling matrix is the identity. In §5 we prove in 
a limiting case that a certain bifurcation which was found numerically 
in [10] occurs, and we are able to construct a global branch of periodic 
solutions that result from this bifurcation. This branch varies between 
a branch on which the oscillators are n radians out of phase and one 
on which the oscillators are in phase, as the coupling parameter varies, 
and at zero coupling one of the oscillators is at rest. 

2. Perturbation of oscillators via weak coupling. To introduce 
the general reduction of equations in a neighborhood of a periodic orbit, 
we consider the parameterized autonomous system 

(i) § = ̂ M) 
where F : R n x R —• R n . Here and hereafter we assumed that all 
vector fields are smooth (i.e., Cr for r > 2) unless stated otherwise. 
Let 0(£, xo, 6) be the solution of (1) with 0(0, xo, S) = xo, and let (ßo(t) 
denote a nonconstant periodic solution of the unperturbed system 

(2) ^=F(x,0) = F0(x) 

with least period T > 0. Suppose that \I>(s) is an n x (n — 1) matrix, 
each entry of which is a smooth function of s, with the properties 

*(s + T) = #(s) 

(3) * ( ö ) T * ( ö ) = / ( n _ 1 ) x ( n _ 1 ) 

Fo(0oW)T^(5) = O l x ( n _ 1 ) 

for all s G R. We shall say that \I>() is admissable for a given pair 
(^b50o(')) if *( ') satisfies (3). If Ps is a local section at 0o(s) defined 
by restricting the range of \l>(s) to a sufficiently small neighborhood of 
the orbit at 0o(s), then for each X G P S there is a y € R n _ 1 such that 

x = <l>o(s) + y{s)y. 

The i/'s are local coordinates in a hyperplane normal to the orbit at 
0(s). If XQ is sufficiently close to the orbit of (ßo and 6 is sufficiently 
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small, then <£(£, xo, Ô) € Ps for some t, and it can be shown that there 
are smooth functions y(s) and t(s) such that 

0(t(s), x0,5) = 0o(«) + *(*M*) 

[15, 13]. The functions £ and y satisfy the periodic system 

(4) — =r(s,y,<5) 

(5) ^ = y(s,y,<5), 

where 

, fi Ä, Jb(0oW)r[Fo(^D(g)) + y(8)y] 
*o(0o(*)r ^ ( 0 o w + *(s)y,d) 

and 

(6) Y(s, y, «) = *(s)T[r(s, y, «)F(0o(«) + *(s)y, S) - ¥'(«)y]. 

By the definition of s, £(s) — t(0) is the time it takes for the solu
tion through XQ € Po to reach PSi and y(s) measures the distance 
between (ß(t(s),XQ,6) and (ßo{s). Evidently r(s,0,0) = 1, and therefore 
7(5,0,0) = 0 . 

Equations (4) and (5) are equivalent to equation (1) in the following 
sense. If XQ € Po,yo = ^(0)T[a:o ~ ^o(O)], and t(s) satisfies (4) with 
t(0) = 0, then 

y(8,yo,6) = $ ( f [ ^ ) , x o , « ) - ^ o W ] , 

where y(s, yo,£) denotes the solution of (5) with the property that 
2/(0,2/o,*) = yo- Conversely, if 

r(s,y(s,y0 , £),<$) > 0 

for all s € R, and if x0 = <M°) + ¥(0)y0, then 

4>{t, x0i 6) = 0o(«(O) + * (*WM*W. W>, «), 
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where s(-) denotes the inverse of £(•). In particular, if (j){t,XQ,8) is a 
periodic solution of (1), then y(s,yo,8) is a periodic solution of (5), 
and conversely, if y{s,yo,6) is a fcT-periodic solutions of (5) for some 
positive integer fc, then cj){t,xo,8) is a periodic solution of (1) with 
period t(kT). Thus, for small <5, (1) has a periodic solution near <J>Q if 
and only if (5) has a small periodic solution. 

The function y(s , y,ô) in (6) has the form 

Y (s, y, 6) = P(s)y + Q(«, y) + 6G(s, y, 6) 

where 

(7) P(s) = 9(s)T{DFo(<l>o(s)Ms) - *'(«)], 

Q{s,y) and G(s,2/, 6) are smooth functions of (s,2/,<^), periodic in s of 
period T, and 

Q(s,y) ~ 0{\y\2) 

uniformly for s G R. The variational equation of (2) with respect to 

Ms)is 

(8) fs=DF(<t>o(sm, 

and £ = <̂ó gives rise to 1 as a Floquet multiplier of (8). The remaining 
n — 1 Floquet multipliers of (8) are the Floquet multipliers of 

Any solution of (8) has the representation £ = acj)^ + Wy for some 
function a(-). 

Next we shall apply this reduction to a system of two identical coupled 
oscillators. The generalization to a system of N coupled oscillators is 
straightforward, although it is advantageous to take account of any 
special structure in the geometry of the coupling function in this case 
[12]. Let / : R m —• R m , and suppose that r)(t) is a nonconstant 
hyperbolic periodic solution of 
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with least period T > 0. Let zi, z2 € R m , denote x € R n by 

x = 

and define F : R n x R - • R n by 

F{x,6) = 
f{zi) + 6gi(zuz2,6) 
f(z2)-\-Sg2(zuz2iô) 

where #1,02 • R n x R —• R m . The unperturbed system (2) has a 
one-parameter family of periodic solution 

(9) 0o(M) = flit) 
v(t + o) 

parameterized by 0 € [0,T). The family {<fo(t,0)\0 G [0,T),* G R} 
defines a two-dimensional torus T§ that is invariant under the flow 
when 6 = 0. Since we do not require that gi = g%, the formulation 
includes the case of weak coupling of two oscillators whose frequency 
differs by a term that is 0{6). By modifying the formulation slightly, 
it can also be used when the ratio of the frequencies differs from any 
integer (not necessarily one) by a term that is 0(6). Thus phase-locking 
of non-identical oscillators can be studied in this framework. 

When N = 2, a given$(-) that is admissable for (/,//(•)) determines 
m — 1 normal directions to each orbit, and the remaining one of the 
2m — 1(= n — 1) normal directions is uniquely determined. Thus let 
\P(s, 0) denote the n x ( n - l ) matrix given by 

where 

a(s,0) = 

b(s,0) = 

*(M) = 
'a(s,6) *(«) O 
b(s,0) O ${s + 0) Ì 

\f(v(s + 0))\ 
\Hv(s))W\f(v(sW + \f(v(s + ô))\ 

\f(v(s))\ 

f/fato), 

wf(v(s + 0)). 
\f(v(s + *))M/(!?(*))l3 + l/fa + *))l3, 
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Clearly *(s , 0) is a smooth function of (s, 0), and it follows that \P(-, 0) 
is admissible for (F, 0(-,0)). Thus the perturbed system (1) has a 
periodic solution in a neighborhood of the orbit of ^(-,0o) for some 
fixed 0o if and only if, for some 0 near 0o, the equation 

(10) fs=Y(s,y,e,S) 

has a periodic solution. The function Y is given by 

Y (s, y, 0, 6) = 9(s, 0)T[T(S, y, 6, Ä)F(^,(«, 0) + *(«, % , <5) - * '(«, % ] , 

where 

rr, „ Ä xì - WoM)HWoM)) + *'(«,%] . U T , , , , « ^ 

as before. 

Equation (10) can be written in the form 

(11) g = P(s, 0)y + Q(s, y, 0) + 6G(s, y, 0,6) 

where the terms on the right-hand side are defined as follows: 

{8,(f) ~ [Pn(8t0) Pn(a,0) 

••^éO Pn{8,e) = ^[in-\n^W-\m^ew 
\f(v(s))\2 + \f(r)(s + e))\2J 

Pi2(s,0)=(a(s,6)TA(s),b(s,0)TA(S + 0)\ P21(s,0) = O, 

Pi2{s,0)-[ 0 ^(s + e)TA(s + 0) 

and 
A(«) = £>/(fj(«))*(«)-*'(«). 

Furthermore, 
Q(s,y,0)~O(\yf) 
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uniformly for s, 0 G R. 

The fundamental matrix Q(s, 0) of the variational system 

I-«-
with fi(0,9) = I has the form 

n(«,0) = 

where 

nn(M) nia(*,tf)' 
o na a(M)j ' 

On(»,0) = l/(*?(0))|2 + |/(*?(0))|a \f(v(sW • \Hri(s + 6)W 

l/fo(o))la • |/fo(*))|a V l/fa(«))la + \f(n(s + o))\ 

ni2(M)= / nn{s,6)nn(u,9)p1<2(u,o)n22(it,o)du 
Jo 

n f a\- \V(S) ° 1 

and V(s) is the fundamental matrix solution of 

(12) ^ = $(s)TA(s)v 
as 

with V(0) = / . Clearly nn(A;T, 0) = 1, and we assume that 
Qi2(fcT, 0) = 0, for we can always choose a coordinate system in which 
this is true, and it is easy to see that this choice does not alter the 
fact that P2i(s,0) = 0. Moreover, since P22(s,0) is the direct sum of 
the matrices P(s) associated with each m-dimensional subsystem, the 
fact that the orbit r]{t) is hyperbolic implies that f ^ C ^ Ö ) has no 
eigenvalues of modulus one. 

In the coupled system the first coordinate of y is a 'phase-like' 
coordinate, in that it measures distance orthogonal to the orbit 0o(s> 0) 
in the tangent space to TQ. (When there are N oscillators there are 
N — 1 such coordinates.) The remaining 2(ra — 1) coordinates are 
normal coordinates, and it is advantageous to split y into 'phase-like' 
and normal coordinates. Therefore we write 

y = 
{p\ r I 
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where <p is the first component and r is the vector consisting of the last 
n - 2 components of y. Similarly let 

Q(s,y,0) = 
Qi{s,tp,r,0) 
Q2{s,(p,r,0) 

G(s v 0 6)- rG i (*i<P> r>M 

Then (11) becomes 

(13) ^=Pii(s10)<p + P12(sì0)r + Q1(s,<pìr,0)+ÓG1(s,<p,r,0,6) 

dr 
(14) -=P22{s,0)r + Q2{s,ip,r,0)+èG2{s,ip,r,O,6). 

The solution of this system that satisfies the initial condition 

p ( 0 , r o , M ) = 0, r ( 0 , r o , M ) = ro. 

will be denoted 

y(s,ro,0,e) = <p{s,ro,0,ö) 
r(ö,r0,fl,Ä) 

To determine whether any of the one-parameter family of solutions 
(9) that exists at £ = 0 can be continued for 6 ^ 0, we look for solutions 
of the equations 

(15) <p(kT, r0 ,0 , <5) = 0, r(*T, r0, M ) - r0 = 0 

for some positive integer fc. Since y = 0 is a solution of (11) when 
6 = 0,(r0,£) = (0,0) satisfies (15) for any 0 € [0,T). Moreover it is 
easily shown that 

4-[r{M, r0,0,6) - r0] = n22(A:T, 0) - / . 

This matrix is invertible in light of the remarks following (12), and 
the implicit function theorem implies that there is a smooth Rk{0,6) 
defined for all 0 G [0,T) and small 6, with the properties that 

r(kT, Rk{0,«), 0,6) - Rk(0, S) = 0 
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and #fc(0,6) —• 0 as è —• 0. It follows that the equation 

(16) y>(fc ,T,A*(M),M)=0 

is satisfied at 6 = 0 for any 6 G [0,T). Thus there is a G r _ 1 function 
hk{0,6) such that 

p(fcT,fifc(M),M) = « M ^ ) , 

and, for 6 ^ 0, (16) is equivalent to the equation 

If /ifc(0,O) has a simple zero at some 0o i.e., if {dhk{0,tì)/dd)eo ^ 0, 
then the original equation (10) has a periodic solution near </>Q(-,0O) 

whose period is close to kT for all small 6. 

It can be shown that 

rkT 

MM) = / nnHMMJ^M) 

n 2 2 (w, 0 ) 0 ^ (v, 0)G2 (v, 0, 0, 0)cfo + Gì (u, 0,0,0)]du 
•i 
Jo 
to 

and therefore 
M M ) = chi (0,0). 

In other words, M # , 0 ) ^ d M M ) have the same zeros (if there are 
any) and they give rise to the same periodic solutions for small 6. Since 
hk is a smooth function of 6 these zeros are smooth functions of 6. We 
summarize these results in the following proposition. 

PROPOSITION 1. Suppose that the periodic orbit rj(t) of the uncoupled 
system is hyperbolic and that the bifurcation equation 
(17) 

rT 

/0 

/ n22(w,0)n^2
1(i;,0)G2(f,O,0,O)dt; + Gi(w,O,0,O)]dw 

Jo 

MM) = /" nü{u,o)[p12{u,o) 
Jo 
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has a simple zero at 6Q. Then, given an arbitrary neighborhood M of 
the orbit (ßoi^Oo), there is 60 > 0 such that, for all Ô G (—£o5<$o) (1) 
has a periodic solution <f>s that is a smooth function of 6, whose orbit 
is contained in M, and whose period is close to T. Furthermore, for 
sufficiently small 6 there is a neighborhood of the orbit o/0o('?0o) i>n 

which there is no periodic solution of (1) whose least period is close to 
kT for any k > 1. 

REMARK 1. Under the conditions in the proposition, bifurcation from 
the continuum of solutions that exists at 6 = 0 is transcriticai, which 
means that the bifurcating solutions exist on both sides of S = 0. If 
one does not require that the zero be simple, then the dependence of 0 
on 6 need not be smooth, and bifurcation may be one-sided. 

REMARK 2. The stability of the bifurcating branches can be deter
mined by a perturbation analysis of the critical multiplier or exponent. 
A branch is asymptotically stable for 6 > 0 and unstable for 6 < 0 if 
the 0(6) term in the critical exponent is negative. It should be noted 
that there is no exchange of stability at 6 = 0, even though there is 
a change in the stability of the bifurcating branch at the bifurcation 
point. 

REMARK 3. As we mentioned in the Introduction, this method 
for treating the continuation of periodic solutions separately from the 
continuation of an invariant surface can be used in cases where it is not 
possible to prove that the surface persists under perturbation. However, 
it is known that the invariant torus perturbs smoothly in the problem 
just analyzed [10], and in the remainder of this remark we indicate 
how this can be proven within the present framework. We can write 
the integrated form of equations (13) and (14) as 

(pt = <p(T) = <po + 7\ (r0, £>o, 6) 

ri = (T) = n22(T,0)ro + T2{rQ,<p0,6), 

and to these equations we append the equation 8\ = 60 for the 
parameter. These can be written in the form 

x1 =G(z o , 0 ) , 
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where x = (p, <S, r)T and G : R 2 m x [0, T] - • R . Since the spectrum 
of 022(7", 0) lies strictly within the unit disk, the spectrum of DG(0,9) 
has 2(ra — 1) points within the unit disk and two points on the unit 
disk. Thus the center manifold theorem for maps in the form given 
in [16] can be used to prove the existence of a center manifold, whose 
representation is 

r = h(<pi6,6) 

where h is T-periodic in 0. The (p = 0 section of this generates a 
closed curve on the section s = 0, and the perturbed torus has the 
representation 

X = 0o(M) + * ( M ) 
p(a , f t (0 ,M),M) 
r(s , f t (0 ,M),M) 

3. Preliminaries for a three-parameter analysis of coupled 
planar oscillators. In order to obtain an analytically-tractable 
problem for intermediate coupling strengths, one must choose a simple 
vector field having a periodic solution in the uncoupled state, and 
simple coupling functions. It was shown in [8, 9, and 10] that a great 
deal can be done analytically when two planar systems described by 
the vector field 

/(*,y) = 
ax + ßy- x(x2 + y2) 

-ßx + ay- y(x2 + y2) 
, c*,/?>0, 

are coupled linearly. In the coordinates 

Z\ = 
Xl 

. 2 / 1 . 
, Z2 = 

X2 

. 2 / 2 . 

the governing equations analyzed in [8, 9, and 10] are 

(18) ^• = f(zi) + 6D{zi-z1), ^~ = f(z2) + 6D(z1-z2), 

where D is the 2x2 matrix with all entries equal to one. Since the vector 
field / is invariant under rotations, the vector field for the coupled 
system is equivalent under an orthogonal transformation to one in 
which the coupling matrix is given by D = diag (Z?i, D2) = diag (2,0). 
Our purpose here is to determine how the structure of the bifurcation 
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set changes when the coupling matrix is made nonsingular. When D2 

is small an elementary perturbation argument shows that the structure 
given in [8, 9 and 10] persists, but we shall analyze the changes that 
occur as D ranges from diag(2,0) to diag(2,2). However, we first 
rederive the perturbation results given in [10] to illustrate how simple 
the reduction procedure is for this system. Without loss of generality 
we may set a = 1 and fix £>i, and in order to compare our results 
with those in [8, 9 and 10], we set D\ = 2. Furthermore, we write 
D2 = 2(1 — 2e) where e € [0,1/2]. In component form (18) becomes 

--— = Xi + ßyx - xi{x\ + y\) + 26{xx - xi) 

(19) 

x
r = -ßxx + 2/1 - yi{x\ + y\) + 2(5(1 - 2e){y2 - yi) 

dy. 
dt 

- 7 ^ = x2 + ßyi - x2(xl + y\) + 26(xi - x2) 

dy2 

dt = -ßx2 + 2/2 - 2/2(̂ 2 + VÌ) + 2«(1 - 2e)(yi - 2/2). 

Thus e = 0 corresponds to a coupling matrix that is a multiple of the 
identity, and e = 1/2 corresponds to the problem studied in [8, 9 and 
10]. 

Each two-dimensional subsystem of the uncoupled system has a 
unique periodic solution, whose period is T = 2n/ßi given by 

(20) 

An admissible $(•) is 

r,(t) = 

*(«) = 

cosßt 
— sin ßt 

cosßs 
— sin ßs 

and for this choice of $(•), a(s, 6) and 6(s, 0) are given by 

a(s,0) = V2 
sinßs 
cosßs , b(s,0) = 

V2 
sin/3(s + 0) 
cos/?(s + 0) 

Therefore P(s, 9) is given by 

P(s,Ö) = 
0 0 
0 - 2 
0 0 

0 
0 
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and it follows that fin(*,0) = l ,n i 2 (s ,0) = (0>0)> and 

~e~2s 0 
n22(M) = 0 e - 2 s 

Clearly fi22(fcT, 0) — J is nonsingular for any positive integer k. Thus 
the equation for y has the form assumed in (11) without applying a 
coordinate change. 

One finds that 

Gi(u, 0,0,0) = (-4(1 - e) sin ß$ - 2esin 2ßu + 2e sin 2/?(ti + 0))/y/2 

and according to (17), /ii(0,0) is given by 

r271"/^ 4 \ / 2 ( l - FÌ7T 
hx (0,0) = / Gì (ti, 0,0,0)dti = — g sin /?0. 

io P 

Therefore Proposition 1 applies, and the simple zeros of hi are 6Q = 0 
and 0o = n/ß f<>r all *• It is easy to show that the former is 
asymptotically stable for 6 > 0 and unstable for S < 0, and that the 
latter has the opposite stability properties. This leads to the bifurcation 
diagram shown in Figure 1. 

In the following we call the orbits of periodic solution which bifurcate 
from 0 = 0 the in-phase orbits and those that bifurcate from 0 = ir/ß 
the out-of-phase orbits, and we denote them by uo and un, respectively. 
The orbit of WQ lies in the linear subspace O C R 4 defined as 

0 = {{zuz2) | z\ =z2}, 

and because Qi{z,z) = 0,UJO exists for all 6 € R. The orbit of OJ^ lies 
in the subspace 

n = { ( * i > * 2 ) i * i = - * 2 > . 

The variational equation of (19) with respect to either uo or un splits 
into the systems 

(21) ?k = K(t)Ç1, ^ = [K(t)-28D)b 
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e 

TT 

ß 

Figure 1. The bifurcation diagram for bifurcation from the continuum 
of solutions at 6 = 0. The solution labelled 0(n/ß) corresponds to CJO 
(respectively, ojn). 

where K(t) is the Jacobian of / along the orbit, 
fundamental matrix solution of (21) has the form 

Therefore the 

W(t) = 
0 

0 
w2(t) 

where W\ and W% satisfy the first and the second equation in (21) 
respectively, and the initial conditions W\{0) = I and ^ ( 0 ) = I. 

To simplify the description of the changes in the stability properties 
of periodic orbits, we define the Floquet signature of an orbit 7 e R4 
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as follows. We associate a '+ ' , a '—', or a '0' with each multiplier of 
the periodic variational system for the orbit, according as the modulus 
of the multiplier is greater than one, less than one, or equal to one, 
respectively. The Floquet signature of the orbit is then defined as 
o-('-y) = (0i,0"2,<73,<73), where Oi is +, —, or 0. When dealing with 
orbits that lie in 0 or in JJ, the first (second) pair of entries of a(-) will 
refer to the multipliers associated with the first (respectively, second) 
equation in (21). 

It is quite easy to show that OJQ is asymptotically stable for all 6 > 0, 
and unstable for 6 < 0 and either sufficiently large or sufficiently small 
in magnitude. A sketch of the proof of this fact goes as follows. In the 
coordinates 

Z\ + Z<i Z\— Z2 

wi = — 2 — , "2 = ^ — 

adapted to 0 and fj? (18) becomes 

(22) 
-jf = 2 [/fai + w*) + /(™i - wa)] 

and UQ is given by 

cos/ft 
— sinßt 

wt(t) = 

For this orbit the matrix K(t) is given as 

K(t) = 

w2{t) = 0. 

-(l + coa2ßt) ß + sm2ßt 
-ß + sin 'Ißt - ( 1 - cos 2ßt) 

Let {A!,A2} and {A3A4} be the eigenvalues of WX(T) and W2(T) 
respectively. Since 

Wx{t) = 
cos ßt sin ßt 

— sin ßt cos ßt 
e-2t 

0 
0 

Ai = 1 and X2 = e . By an argument identical to that used in 
proposition 2 of [10], it can be shown that the pair {A3, A4} lies inside 
the unit circle when 6 > 0. Similarly one can show that at least one 
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of the pair lies outside the unit circle when 6 < 0 and either | 6 \ 
is sufficiently small or S < —1/4(1 — e). Thus the Floquet signature 
of o;o is (0, —, —, —) for 8 > 0, and (0, —, ± , +) for S < 0 and either 
sufficiently large or sufficiently small in magnitude. It is not known 
whether or not OJQ is stable on a subset of the excluded set of negative 
6 values. 

Next we determine the region of existence of un in (/?, <5, e) space. 
Because / is odd, wi = 0 is the first component of a solution of (22) 
provided that w^ satisfies 

^ - = f(w2)-26Dw2. 

The components (u, t>) of w2 satisfy the system 

^ = (1 - 46)u + ßv- u{u2 + v2) 
(23) f 

^ = -ßu + (1 - 46(1 - 2e))v - u(u2 + v2). 

For —ß/4e < 6 < min(l/4(l — e),ß/4e) we introduce the coordinate 
transformation 

0 0 - C E ) - * * CO-
A __ ( \ / l + k 0 \ p _ { cos (j) sin (j) \ 

\ 0 VT^k)' K<f>"\-sm(l) coscßj 

and 

(24) k = A« ÂC,+ M O , »0> $ = Ô a r C t a n 

where 

V ^ l ^ ^ l - V ) ] 2 * / ? 2 ' 2 l-4S{l-e)' 

Then (23) becomes 

f = {1-kcoS2ç){[l-46(l-e)]P-J^} 

^ = - / 3 \ / l - k2 + [1 - 4«(1 - £)]fc sin 2?, 
at 
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and by (24), | k |< 1 and thus § < 0. Therefore P = yj(l - k2){l - 46(1 - e)) 
is the orbit of a limit cylce in the (£/, F)-plane whose period is 

JO ßy/UHc2 - [1 - 45(1 - e)}k sin 2^ yjß2 - (46e)2 

In the polar coordinates u = pcos0,t> = psinö, (23) becomes 

-£ =p-p3 - 4Sp(l - 2esin2 0) 
(25) f 

— = - /? + 4e<5sin20, 
at 

and in these coordinates the limit cycle is given by 

P2(t) 
ßM _ [ 1 - 46(1 -4e)](l-k2) 

l + kcos2(0(t)-</)) 

where 6(t) satisfies (25). In w coordinates un is given by (0,0, 
p(t)cosO(t),p(t)sm0(t))T. 

The region of existence of un and its stability properties relative to 
J] are readily deduced from the preceding results. For convenience we 
summarize the information about uo and un in the following proposi
tion (see also Figure 2). 

PROPOSITION 2. 

(a) The periodic solution wo exists for all 6 € R and s € [0,1/2]. It 
is asymptotically stable for all 6 G R + , and there is a 6o(e) > 0 such 
that OJQ is unstable for all 6 € (—oo, —1/4(1 - e)) U (—#o>0). 

(b) The periodic solution ujn exists for —ß/4e < 6 < min{l/4(l — 
e), ß/4e}. When ß > e/(l — e) and 6 > 0, u^ disappears via a Hopf bi
furcation at the origin as 6 —> 1/4(1 — 6:). When 6 > 0 and ß < e(l — e), 
or when 6 < 0, the period Te(6,ß) —• oo as 6 —• ±ß/4e, and a pair of 
fixed points appear on un. 

4. Changes in the resonance structure for e € [0,1/2]. In 
this section we analyze how the stability of un varies with /?, £, and e. 
Since most of the results are direct extensions of those in [10] to the 
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Infinite period bifurcation 

£ = -4 €8 

Hopf bifurcation 

£=4c8 

4(1-€) 

Figure 2. The region of existence of u)n in the (5, /?)-plane for fixed 
e €[0,1/2]. 

case e T̂  1/2, we refer the reader to that paper for background. The 
variational equation of (18) with respect to (jn has the form in (21) 
with 
(26) 

~l-2p2(t)-p2(t)cos26(t) ß-p2(t)sm26(t) 1 
-ß-p2(t)sin26(t) l-2p2(t) + p2(t)cos2ô{t)\-

K(t) = 

It follows from Proposition 2 that (0-3,(74) = (0 , - ) in the Floquet 
signature of o;^, and therefore we only have to determine how {Ai,À2} 
vary with /?, 6 and e. 

According to Liouville's formula, 

aTe(6,ß) > 

trK(s)ds 
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This integral can be evaluated explicitly, and the result is that 

Consequently 

{ < 1 if 8 < 1/8(1 - e) 

= 1 if 6 = 1/8(1 - e ) , 
> 1 if 6 > 1/8(1 - e) 

which implies that u;̂  is unstable for 6 > 1/8(1 — e) and is asymptoti
cally stable whenever 6 < 1/8(1 — e) and | Ài |= | À2 |. 

In order to analyze the variational equation 

(27) *k = K{t)tl 

with K(t) as given in (26) we introduce the polar coordinates 
£1 = 

# c o s # / 2 
Ä s i n ^ / 2 

and double angle 0 = 20. Then (27) and equation (25) define the 
autonomous system 

^ = -2{ß-4e6 sin 0 ) 

(28) £ £ = _ [ /?_ 5 ( e ) s i n(vl>_e)] 
at 

^ = R{1 - 25(0) - 5 (0 ) cos(# - ©)], 

where 

s t e ) . l i - « ( i - « W ( i - f ) | , _ « , „ - * 
v ' l + fccos(0-$) l - 4 ( l - e ) 5 

When ß > 4e6 we can use 0 as the independent variable in (28) and 
obtain the system 

d* _ / ? - 5 ( 0 ) s i n ( f r - 0 ) 

1 } dR _ fl[l - 25(0) - 5 (0 ) cos(* - 0)] 
dS ~ 2(/?-4e<5sin0) 
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Let * ( 9 , 6 0 , #0><$>/?) be the solution of (29) which satisfies 
# ( 9 0 , 9 0 , # o , M ) = $o- Since the right hand side of (29) is 2?r-
periodic in 9 and # , the flow of this equation defines a circle map C of 
the section 9 = 9o to itself. The rotation number 

,* m r * (9o + 2fc7r,9o,*o,é,/?)-*o 

of this map is defined and continuous on D£ = {(£, ß) | 0 < 6 < 
1/4(1 — e), ß > 4eô} and is independent of 9o and \I>o- The relation
ship between the eigenvalues of W\ (Te{6, ß)/2) and the rotation number 
is given by the following lemma, which is proven in [10]. 

LEMMA 1. Wi(T£(61 ß)/2) has a real eigenvalue if and only if there 
are 9o and #0 for which 

tf (9o + 2TT, 9 0 , #0, «, /?) = *o + 2//7T 

for some integer n. 

Said otherwise, W\ (T£(6, ß)/2) has a real eigenvalue if and only if the 
circle map C has a fixed point. If r(6i ß) is not an integer the eigenval
ues of Wi(T£(61 ß)) are either complex conjugates, or, if they are real, 
they must be equal. The following proposition follows from Lemma 1 
and this observation. 

PROPOSITION 3. / / («, ß) e D£ n {(«, ß) \ 6 < 1/8(1 - e)} and r(«, ß) 
is not an integer, then ujn is asymptotically orbitally stable with asymp
totic phase. 

At sufficiently small 8 or sufficiently large ß the rotation niunber is 
always less than two. The proofs of the following two lemmas, which 
make this statement precise, are analogous to the proofs of similar re
sults given in [10], although the details in Lemma 3 are different. 

LEMMA 2. Let 
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Then, for each («,/?) G D6tu r{6,ß) = 1. 

LEMMA 3. There exists C > 0 independent of e G (0,1/2] such that 
if 

töen, /or a// (fi,/3) G Pe,2,r(«,/3) < 7/4. 

Next we consider the behavior of the rotation number near the half 
line C = {(S,ß)\6 = 1/4(1 -e),ß > e/(l - e)}, on which the Hopf 
bifurcations occur. For ß > e/{\ — e), let ß = 1 — 4(1 — e)Ô, and write 
(29) in the form 

d<& 
(30) — =üj+/ i / ( \ i / ,e , i u) , 

where / is 27r-periodic in \I> and 6 and the average frequency of the 
unperturbed flow is 

t
 27r 0(1 - e)dS _ ß{l - e) 

2* Jo ß{l -e)- e s i n e ^ ( ì - e ) 2 - ea" 

When /i = 0 the W — 6 flow is periodic if and only if üJ is rational, i.e., 
if and only if r ( l /4( l - e),ß) is rational, and the question is whether 
such periodic solutions can be continued for /i > 0. Equations of the 
form (30) have been studied in [17], where it is shown that the set 

Hp = {(<5, ß)eD£\ r{6, ß)=p for p rational } 

is a cusp-like region with apex at 

1 ep \ 
(M) = 4(1 -£ ) ' ( ! -e)JpZi l 

In light of Proposition 3, it is necessary to determine where the rotation 
number is an integer in order to determine the stability of UJ„. In fact, 
if 

De\U~=2HnjnU6,ß)\6<^-
e) 
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is not empty, then (jn is stable for some ((5,/?) € De. The sets 
Hn, n = 2 ,3 ,4 , . . . are called resonance horns in [10], and it remains to 
determine the behavior of these sets in D£ • 

Firstly, a horn cannot terminate in De, for this would violate the 
continuity properties of the rotation number as a function of (<5, /?). 
Moreover by the uniqueness of the rotation number of (29) different 
horns cannot intersect each other. By Lemmas 2 and 3 Hn must remain 
in the region 

^ = ( Ä \ Ä , i ) n ( Ä \ Ä , a ) . 

From these facts it follows that each horn must terminate on the 
line ß = 4e6 for some 6 G («5*, 1/4(1 — £)), where 8* is the value of 
6 for which dDe,\ intersects the line ß = 4eÔ. Furthermore, it can be 
shown that r(6,ßo) —• oo as 6 —• ßo/Ae for any ß0 G (e,£/(l — e)). 
Thus all the horns must terminate on the open interval I = {(<$, ß) \ 
ß = 460,6* < 6 < 1/4)}, and it can be shown that they accumu
late only at (<5,/?) = (1/4,6) (cf. Figure 3). On the other hand, 
Jo = I H {(£,/?) | ß > 0,0 < 6 < 1/8(1 - e)} coincides with I when 
e = 1/2, but is a strict subset of I for any e < 1/2. Thus only finitely 
many of the resonance horns intersect the region of the (£, /?)-plane in 
which À1À2 < 1 for any e < 1/2. Furthermore, one can show that there 
is an So G (0,1/2] such that for all e < £0, io is empty, which implies 
that all the resonance horns are confined to the region in which ojn is 
unstable. Finally, if we let 61 be the S coordinate at which the left 
boundary of H2 intersects J, then we can show that there exists an £\ 
such that £1 < 1/8(1 — e) when e G [si, 1/2]. We may summarize these 
conclusions as follows. 

PROPOSITION 4. For each e G [si, 1/2] there is an open set in De on 
which Un is asymptotically orbitally stable with asymptotic phase. For 
each e G [0, l/2]c«;7r is unstable for 6 > 1/8(1 — e). 

Note that we have not ruled out the possibility that u>n is stable 
in some subset of De when the resonance horns do not intersect the 
region in which A1À2 < 1. From the foregoing it is easy to see that 
the closure of Ue converges to the point (6, ß) = (1/4,0) as e —• 0, 
i.e., all the resonance horns collapse to a point at e = 0. Furthermore, 
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4(1 + €) € 4 4 (1 -€ ) 

Figure 3. Schematic of the region in the (£,/3)-plane in which the 
resonance horns exist. The rotation number is 1 in D£ji and less than 
7/4 in De,2- A1A2 < 1 for 6 < 1/8(1 - e). As e -> 0 the Hopf bifurcation 
line (6 = 1/4(1 -e)) approaches 6 = 1/4, the infinite period line (ß = 4e6) 
approaches ß = 0, and Me shrinks to the point (ß,ß) = (1/4,0). 

the period-doubling cascades suggested by numerical work in [10] must 
also disappear at this point. 

One finds that at (<5, ß,e) = (1/4,0,0) the Jacobian at the rest point 
(0,0,0,0) is similar to I2 0 O, where O is the zero matrix, and thus 
there is a codimension-four singularity at this point. Our results show 
that the resonance structure found in [10] for e = 1/2 arises from the 
three-parameter partial unfolding of this singularity analyzed herein. 
Clearly it would be desired to have a complete unfolding of this singu
larity. 
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5. Analytical results on the first bifurcation from un. The 
uncoupled system also has periodic solutions of the form ((0,0) xrj(t)) 
and (r}(t) x (0,0)), where r}{t) is given by (20). Numerical computations 
done in [10] show that the continuations of this pair of solutions for 
8 > 0 connects to un for some 6 E (0,1/2). In this section we obtain 
this result analytically when e = 0, i.e., when the coupling matrix is a 
multiple of the identity. 

When e = 0, the representation of un in z coordinates is given by 

^)=(:;S)=^=^ 
cosßt 

— sin ßt 
— cos ßt 
sinßt 

This solution exists for 6 € (—oo, 1/4) and bifurcates from the origin at 
6 = 1/4. In order to analyze the bifurcations from uw we perform the 
reduction done in §2. For each (F(-,5),zs{')), the matrix #(•) given by 

(31) 9(a) = 

I -4= sin ßs cos ßs 

I -4s cos ßs — sin ßs 

^ainßs 0 

V ^ - cos ßs 0 

\ 0 

0 
COS/?« 

— sin ßs J 

is admissible, and (7) takes the form 

46 0 
P(s,6) = 9(s)T[DF(Ms),6)9(s)-9'(s)}=\ 0 2(5« - 1) 

0 26 
26 

2(56 - 1) 

Since the eigenvalues of P(s, 6) are 46,2(66 — 1), and 2(46 — 1), the 
Floquet multipliers of the variational equation 

ds 
= P(s,6)y 

are e^^/ß^Meo^n/ß^ a n d e4(46-i)n/ßt T l m g pe riodic solutions may 
bifurcate from ojn at 6 = 1/6. To facilitate the bifurcation analysis, let 
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\x = 1/6 — 6 and let F(-,/JL) be the vector field in (19). Then one finds 
that the equations for the normal components are 

1 7 = «K*fßV<\ i l l 4 - 3 . ? -2v/3(y2 - y 3 ) + 6y22/3] as 6[v
/3/? + yi(îte+îte)] 

— = —r- ,- [4\/3t/2 + 2%/3v3 + 2 

- (V3y2 + l)(3y? + 2{VSy2 + l)2) 

- 3v/3y2(y2 + 3/3) + i2M%/%2 - \/3j/3 + 2)] 

— = —r- r- [2\/3v2 + 4\/3i/3 - 2 
ds 6 V 3 [ ^ + y i(y2+2/3)]1 y y 

- ( V 3 y 3 - l ) ( 3 j / 2 + 2(V3j/3-l) 2) 

- 3v/3y2(y2 + Vi) - 12»{Väy2 - VZya + 2)]. 

One steady-state solution of these equations is 

Î / 2 - - ^ ( V W T Ï - I ) 

Î/3 = - ^ = ( N / Ï 2 7 + Ï - 1 ) , 

and this solution corresponds to u„. It is easy to verify that another 
pair of solutions is given by 

y i = o 

(32) y2 = ^W2-Zfi-V2±3^\ 

J/3 = ^ [ - ^ 2 - 3 / z + v / 2 ± 3 v ^ ] 

whenever // € [0,2/3] or, equivalently, when 6 € [—1/2,1/6]. These 
solutions are the normal components of periodic solutions that bifurcate 
from u)„ at p = 0 (6 = 1/6) and connect with UJQ at fi = 2/3 (i.e., at 
6 = -1 /2 ) . For (F(-,n),Zi/6) as before and \t(s) as in (31), equation 
(4) becomes 

dt_ _ y/2/? 
ds ~ v/2/3 + yi{y2 + ysY 
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Consequently, 

ds 

along the solution given by (32). It follows that the two periodic 
solutions that bifurcate from ojn at 8 = 1/6 have the representation 

4(t) = 
ri cos ßt 

—ri sin ßt 
—ri cosßt 
ri sin ßt 

, *!(*) = 

/ ri cos ßt 
—ri sin ßt 
—ri cos /?£ 

V ri sin ßt 

where 

VTT26 + VT^66 J v T T 2 ? - v T ^ 6 ? 
ri = and r<i = . 

These solutions are symmetry pairs under interchange of the oscillators 
and inversion through the origin. It is clear that 

4(t) = , sg (* + */£) = 

and that these coincide with the periodic solutions (r?(£)) x (0,0) and 
(0,0) x (rf(t)), respectively. 

To analyze the stability of the solutions z\, i = 1,2, we define 

/ / r0
2

 9 sin ßs cos ßs 
V r i+ r: 

9s(s) = 
JUL 

v ^ 
•• cos ßs 

•• s in ßs 

0 

sin ßs 0 

0 cos /?s 

0 — sin ßs J 

This matrix is admissible for (F(-, 1/6), *$(•))> and (7) becomes 

PÄ(a) = *Ä(«)T[I?F(^i |6(fi),*)*«(«) - %{s)) 

1-2(5 0 0 \ 
0 1 - 28 - Zr\ 28 
0 26 1 - 26 - 3r | y 
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II W2|| 

Figure 4. The global branches of periodic solutions that exist at e = 0. 
: Floquet signature = (0, —, —, —); : Floquet signature 

= (0, - , - , +); — • : Floquet signature = (0, - , +, +) 

Since the solutions z\ exist for 6 G (—1/2,1/6) it follows that 

and 

det ( ' " 'lo' 3r? 1 - 22/- *i ) = W + W" - !) < °-

Thus the Floquet signature of z | is 

(33) (0, - , +, +) for - 1/2 < 6 < 1/6. 
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A similar argument shows that the Floquet signature of z$ is also given 
by (33), which leads to the following proposition. 

PROPOSITION 5. When e = 0 there is a supercritical bifurcation of un
stable periodic solutions from uo at6 = —1/2. These periodic solutions 
coincide with the periodic solutions (rf(t)) x (0,0) and (0,0) x (rj(t)) at 
6 = 0, and disappear via a second Hopf bifurcation from ojn at6 = 1/6. 
The Floquet signature of solutions on this secondary branch satisfy (33). 

The global branch of solutions that bifurcates from uo at 6 = —1/2 
is shown in Figure 4. It is noteworthy that this branch varies between 
solutions on OJQ and solutions on wn as 6 varies in [—1/2,1/6]. Thus 
there is a smooth transition between in-phase and out-of-phase oscil
lations. Numerical results in [10] for e = 1/2 show that the periodic 
solutions (rj(t)) x (0,0) terminates either by connecting to a periodic 
solution that bifurcates from o;̂  as for e = 0, or via an infinite-period 
bifurcation, depending on the magnitude of ß. At present it is not 
understood how the solution structure found at e = 0 relates to the 
structure found numerically at e = 1/2. 
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