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A N INVARIANCE PRINCIPLE FOR A CLASS 
OF MONOTONE SYSTEMS A N D APPLICATION 

TO DEGENERATE PARABOLIC EQUATIONS 

N.D. ALIKAKOS AND P.W. BATES 

1. Introduction. By extending the concept of Liapunov functional 
to define a Liapunov operator in an ordered Banach space we develop 
a method of proving stabilization of solutions to a class of monotone 
systems. This method is employed to prove that solutions to certain 
degenerate parabolic equations approach equilibria as t approaches 
+00. 

Given a function p and a semi dynamical system we define the upper 
Liapunov operator, V(p), to be the smallest (in the order of the Banach 
space) super solution greater than or equal to p. The lower Liapunov 
operator, V(p), is defined in an analogous way. These operators are 
used to squeeze points on trajectories onto equilibria when the semi 
dynamical system has certain monotonicity and stability properties. 
This idea is inspired in part by work of C. Dafermos [5]. The general 
parabolic equation which can be treated in this way has the form 

ut = [a(x, u, (ß(u)x) + b{x, u)]x on [0,1] x (0, oo) 

a(x, u, <j)(u)x) + b(x, u) = 0 at x = 0,1, for all t > 0, 

where <j) is increasing and a(x, u,p) is increasing in p. 

In this paper, for illustrative purposes, we restrict applications to 
equations of the form 

ri 2) Ut = ((Wx)m + u"(u- VVx>>x o n t0'1! x (0'°°) 
* {ux)

m + ua(u - 1)VX = 0 at x = 0,1, for all t > 0, 

where V is a specified potential (see Figure 1). More varied and general 
applications will appear elsewhere. 

Equation (1.2) is related to a model for the movement of two species 
with very different rates of mobility (e.g., cows and grass) and these 
rates are governed by biological pressure. 
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Figure 1. The potential. 

Figure 2. The equilibria. 

Bertsch and Hilhorst [4] were the first to establish stabilization for 
a subclass of (1.1) using an idea due to Osher and Ralston [10]. For 
that approach to apply, however, it is necessary that the equation has 
no intertwining equilibria and this is not the case in (1.2), for example 
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(see Figure 2). 

Equation (1.1) is associated with a contraction semigroup on I 1 

that is order preserving. Hirsch [6] (see also Matano [9]) establishes 
stabilization for strongly order preserving contraction semigroups on 
Hilbert space. There are easy counterexamples if strong monotonicity 
is relaxed to simple monotonicity. We note that (1.1) is not strongly 
order preserving, in general. We shall prove the following. 

THEOREM. Let u0 G £°°(0,1), u0 > 0. 

(i) If m < a < 2m — 1, then u(x,t) converges to an equilibrium in 
the C1([0,1]) norm, as t —• oo. 

(ii) If a > 2ra—1 and if fQ UQ > / 0 qo, thenu(x,t) becomes unbounded 
in L°° as t —• oo. 

Here qo is the minimal unbounded positive equilibrium (see Figure 
2), and u(x, t) is the solution to (1.2) with initial datum ^o- We remark 
that fQ qo < +00 when a > 2m - 1. 

2. The Liapunov operator. Let X be a Banach space with 
a partial order defined by a cone üf, that is a closed convex subset 
of X such that (i) ax G K whenever a > 0 and x G K, and (ii) 
K fi (-K) = {0}. We shall use some of the notation and results found 
in Krasnoselskii [8], (see also Amann [2]). The order is given by y > x 
if and only if y — x G K. A set, S, is said to be order bounded if and 
only if there exist elements y,z E X such that y > x > z for all x G S. 
Assume 

(I) K is regular, that is, order bounded monotone sequences converge 
i n X 

(II) K is minihedral, that is, given x, y G X there exists z E X such 
that z <x,z <y and if w < a, w < y for some w G X then tu < z. We 
also assume that this element z is unique and write z = inf(x, y). 

(Ill) There exists a functional, J on K such that if x, y G X, then 

(i) y > x and y ^ x implies J(y) > J(x) (strict monotonicity), 

(ii) J(x + y) > J(x) + J(y) (super additivity). 

REMARK. If X is separable then there exists a continuous linear 
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functional, L such that L(x) > 0 for all x G Ä'\{0}, so (III) holds. 

REMARK. If X is a space of real valued functions and K is the cone of 
functions which are nonnegative then (II) is satisfied, the greatest lower 
bound of two functions being their pointwise minimum. If X = Lp for 
some p > 1, then K is regular. 

Let S(t) be a semi dynamical system on X, that is, a one parameter 
family of maps from X into itself parametrized by t G R + and satisfying 
the axioms. 

(a) S(t) : X —• X is continuous for each t > 0; 

(b) S(t + r)f = S(t)S{r)f for t > 0, r > 0 and / G X; and 

(c) S(-)f : [0,oo) —• X is continuous for each f EX. We assume in 
addition that S(t) is order preserving, that is, it satisfies 

(d) / < g => S{t)f < S{t)g for t > 0. 

Following Matano [9] and Amann [2] we give the 

DEFINITION. An element / G X is called a super solution if S(t)f < f 
for all * > 0 and subsolution if S(t)f > f for all t > 0. 

DEFINITION. For p G X let Ep = {p e X : p > p and p is a super 
solution } and ap = {p G X : p < p and p is a subsolution }. 

We shall assume \nî(x,y) G Ep if x,y G Ep and sup(x,y) = 
- inf (-a;, -T/) G GV if a:, t/ G av. This is not unreasonable if one consid­
ers the motivating examples. 

Using the regularity of K and the existence of the strictly monotone 
functional, J , it is not difficult to prove 

LEMMA 2.1. / / Ep is nonempty, then it contains a unique minimal 
element. Ifap is nonempty, then it contains a unique maximal element 

DEFINITION. The upper Liapunov operator, V, is given by 

domV = {peX:i:p^<t)} 

V(p) = minimal element of Ep . 
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The lower Liapunov operator, V, is given by 

dornV = {peX :ap^(ß} 

V(p) = maximal element of ov. 

REMARK. Even in the simple case when S(t) is the heat semigroup 
with homogeneous Dirichlet conditions, V is nontrivial. In that case if 
p has compact support in fi it can be shown that V(p) is actually the 
solution to the obstacle problem (see [7]). 

As may be anticipated, these Liapunov operators have certain mono-
tonicity along trajectories. 

_LEMMA 2.2. Let u G dorn F ; then for t > 0, S(t)u G dorn F and 
V(S(t)u) < V(u). A similar statement holds for V. 

The proof relies on the definitions of super solution, the minimality 
of V and the fact that S(t) is order preserving. 

DEFINITIONS. 

(i) The trajectory S(-)u is called Liapunov stable if, for any e > 
0, there exists 8 = 6{e) > 0 such that \\u — v\\ < 6 implies 
||S(£)ti — S(£)v|| < e for all t > 0. Contraction semigroups clearly 
produce Liapunov stable trajectories. 

(ii) The orbit of u is the set i{u) = {S(t)u : t > 0}. 

(iii) The uj-limit set of u is 

u)(u) = {v € X : v = lim S(tn)u for some sequence tn —• oo}. 
n—•oo 

This brings us to our main abstract result. 

THEOREM 2.1. (THE INVARIANCE PRINCIPLE). Let u e domF. 
Suppose that ^(u) is relatively compact and bounded below, and that 
the trajectory through any point of 7(1/) is Liapunov stable. Then V 
takes the same value on u(u) and that value is an equilibrium, i.e., it 
is fixed under S(t) for allt>0. A similar result holds for u G dorn V. 

SKETCH OF PROOF. First, the relative compactness of the orbit and 
the Liapunov stability assumption imply that OJ(U) ^ 0 and that, for 
any v 6 w(w), we have UJ(V) = o;(i/), respectively. 
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Consider v, w G u(u) and choose an increasing sequence {tn} such 
that S(tn)v —• w in X. By monotonicity, {V(S(tn)v)} is decreasing 
and this sequence is bounded below since {S(tn)v} C 7(w) is bounded 
below. Regularity implies limV(S(tn)v) = q exists. Clearly, q is a 
supersolution by continuity of S ^ and V(S(tn)v) ^_5(^n)v implies 
that q > w so q > V(w). We h_ave V{v) = V{s{0)v) > V{s{tn)v) >q> 
V{w). Symmetry shows that V takes only one value on OJ(U), namely q. 
For v e u{u),v <qso S(t)q and q = V(s(t)v) < V(s{t)q) = S{t)q < q 
for all t > 0. This shows that q is an equilibrium. 

REMARK. Under the hypotheses of Theorem 2.1, to establish stabi­
lization it is sufficient to show that OJ(U) consists of equilibria or even 
supersolutions since these remain fixed under V. 

3. An example. Consider the problem 

(3.1) ut = {{ux)
m +ua(u- l)Vx)x on (0,1) x (0, oo) 

[ux)
m +ua{u- 1)VX = 0 for x = 0,1, * > 0, 

^ ' ^ u{x,0)=uo{x) >0<EL°°(0,1). 

Suppose a > m > 1 and V € C2(0,1) has the form given in Figure 1. 
By convention zm = ^ |^ | m _ 1 . Let X = L^O, 1) and let K be the cone 
of nonnegative functions in X. Then (I), (II) hold. One can show [1] 
that (3.1), (3.2) generates a contraction semigroup on X which is order 
preserving and conserves the integral and that, for a < 2m — 1,7(1*0) 
is relatively compact in C1([0,1]) and bounded away from 0. Let q$ 
be the minimal unbounded positive equilibrium of (3.1) and (3.2) (see 
Figure 2.) 

THEOREM 3.1. 

(i) If a < 2m — 1, then u(-,t) converges as t —• 00 in C1([0,1]) to an 
equilibrium. 

(ii) If a > 2m—1 (in which case f0 qo(x)dx < 00) and if JQ uo(x)dx > 

/o qo{x)dx, then u(-,i) becomes unbounded in L°°(0,1) in finite or 
infinite time. 
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REMARKS, (a) The case a = 2m - 1 has been settled by C. Grant 
and will appear elsewhere. 

(b) If a > 2ra — 1 and / 0 uo(x)dx > fQ qo(x)dx we have established 
in work in progress that the solution blows up in finite time. 

PROOF OF PART (i). Suppose first that u0(x) < q0(x) on [0,1]. Then 
there exists an equilibrium q such that 1*0(2) < q(x) < qo{x) on [0,1], 
and by definition of q0 we know that q € L°° C X. Hence, UQ G dorn V, 
Also, since UQ > 0 and 0 is an equilibrium, UQ € domV. The above 
remarks and those preceding the statement of the theorem show that 
the hypotheses of Theorem 2.1 hold and so to establish stabilization it 
suffices to show that U(UQ) consists of equilibria. Let £ € u(uo) and 
suppose that £ is not an equilibrium. By Theorem 2.1 and using the 
invariance of UJ(UQ) we note that there exist equilibria q and c[ in X 
with 

V{S(t)Ç) = q and V(S(*)£) = a for all t > 0. 

Noting the distribution of the equilibria, that is, functions satisfying 
(3.2) on the interval [0,1] (see Figure 2.), we know that either ^(0) > 
c[(0) or Ç(l) > 3(1). We shall assume the latter and omit the argument 
for the other case since it is similar. Either £(1) < q(l) or £(1) > 3(1). 
Again, we assume the latter and omit the proof in the other case. For 
e > 0 and small, define 

o(T\- Jfl(«) on[0,l-e] 
P[X) " \ linear on [1 - s, 1] 

such that 

p < £ and (p')m > -pa{p - 1)VX on [0,1] (see Figure 3). 

Let 
rX pX 

«Jote) = / p{y)dy and v(x, t) = / S(t)p(y)dy, 
Jo Jo 

where S is the solution semigroup determined by (3.1), (3.2). Then v 
satisfies 

(3.3) Vt = (vxx)
m+v2(vx-l)VX9 0 < x < l , 0 < * 
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kC^ 

Figure 3. 

(3.4) v(0, t) = 0, v(l, t)= p{y)dy (by conservation), for t > 0, 
Jo 

and v{x,0) = vo{x),0 < x < 1. Now K ^ ) ™ + v&fao* - 1)** = 
(p')m + pa(p - i)Vx > 0 on [0,1]. Using an argument similar to 
those found in Sattinger [11] on can show that v(x,t) is nondecreasing 
in t. Since v(x,t) < /0

X?(î/)dt/ we see v(x,t) converges to some 
functions Voo(z) as t tends to +oo. By the compactness of ^f{p) we 
know that u>(p) ^ 0. The uniqueness of VQO implies that oj(p) must 
be a single point and, hence an equilibrium, q. But now we have 
a = V(cü(f )) > V(u;(p)) = q > g, so q = g. The inequalities result from 
£ > P > a- We have reached a contradiction since / 0 q = J0 p > / 0 3. 
Now we relax the condition uo < qo-

Since ti0 is in L°° and a < 2m - 1, |U(-,*)|L«» < C (see [1].) Let 
f(u) = ua(u - 1) for u < C + 1 and extend this function in a positive 
smooth and bounded fashion, / , on R + . Note that the equilibria of 
the new equation do not blow up for finite x, and so, by the above 
argument, u(x,t) stabilizes to some equilibrium #, 

(qx)
m + ~f(q)Vx=0. 

Hence q <C, and so q is an equilibrium solution to (3.1) and (3.2). 
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PROOF OF PART (ii). Note that, near the blow-up point x = 1,<?0 

satisfies essentially an equation of the form 

Qo = qlm -

Therefore 

</O(X)~(I-*)T^, \ = 2L±±i 
m 

and so if a < 2m — 1 the mass of qo is infinite. A consequence of this 
is that, in this range, there are bounded equilibria of arbitrarily large 
mass. On the other hand, if a > 2m — 1, then qo has finite mass. If 
|̂ (-> 0k°° is uniformly bounded, by the proof of (i) above, the solution 
has to converge to a bounded equilibrium of (3.1), an impossibility by 
conservation since all the bounded equilibria have mass less than that 
of go due to the ordering. 

REMARKS. 

(1) From Figure 2 one can see that the integral does not uniquely 
determine the equilibrium. 

(2) The principal part of the operator in (3.3) is known as the dual 
of porous medium operator. 
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