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ON A THEOREM OF CELLINA FOR 
SET VALUED FUNCTIONS 

GERALD BEER 

1. Introduction. By a multifunction T from a metric space X 
to a metric space Y, we mean a function that assigns to each a: G X 
a nonempty subset T(x) of Y. It is natural to identify V with its 
graph in X x Y, the set {(#, y) : x G X and y G T(x)}. In so doing, 
we can consider a variety of approximation problems with respect to 
Hausdorff distance in X x Y. Two fundamental questions have been 
these: (1) when can we approximate a multifunction from above by 
a decreasing sequence of "continuous" multifunctions? (2) when can 
we approximate a multifunction by continuous single valued functions? 
All of the positive results with respect to these questions assume that 
the multifunctions be convex valued, for they ultimately depend on 
paracompactness arguments. With respect to the first question, the 
fundamental result is Hukuhara's Theorem [9], recently extended and 
sharpened by De Blasi [4] and De Blasi and Myjak [5]. Here, we are 
interested in the second question, where the fundamental result is due 
to Cellina [3]. Specifically, we show that Cellina's Theorem admits a 
converse precisely when X is locally compact and Y is complete, and 
we extend his result to continuous starshaped valued multifunctions. 

2. Background material. We first recall the notion of Hausdorff 
distance between nonempty subsets of a metric space. For this purpose, 
we denote the union of all open £-balls whose centers run over a subset 
E of a, metric space (X, d) by Se[E] (abbreviating 5£[{a:}] by S^z]). 
If Fi and F2 are nonempty subsets of X and for some e > 0 both 
Se[Fi] D F2 and Se[F2] D Fi, then the Hausdorff distance hd between 
them is given by the formula 

hd(FuF2) = mî{e : Se[F±] D F2 and S£[F2] D Fx}. 

Otherwise, we write hd(Fi, F2) = 00. If we restrict hd to the nonempty 
closed subsets of X, then hd defines an infinite valued metric. Basic 
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facts about this metric can be found in Castaing and Valadier [2] or 
Klein and Thompson [11]. Of course, we are interested in Hausdorff 
distance in a product of metric spaces (X,dx) and (Y,dy)- We first 
need a metric on X x Y to induce Hausdorff distance on its subsets. 
Since any two metrics compatible with the product uniformity induce 
equivalent Hausdorff metrics, for computational simplicity, we choose 
the box metric p: 

p[(^i,2/i),(^2,2/2)] =max{dX(xi,X2),dy(2/i,y2)}. 

We next turn our attention to multifunctions. If T is a multifunction 
from X to Y and E c X, we write T(E) for U{T(x) : x G E}. 
The fundamental notion of upper semicontinuity is that of Kuratowski 
[13]: r is upper semicontinuous (u.s.c.) at a point p of X if for each 
neighborhood W of T(p), there exists a neighborhood V of p such that 
r(V) C W. A multifunction T is globally upper semicontinuous if 
for each open set W in y , the set {x : T(x) C W} is open in X. 
Evidently, upper semicontinuity so defined is a stronger notion than 
so-called Hausdorff upper semicontinuity: for each e > 0 there exists 
a neighborhood V of p such that r(V) C Se[r(p)]. However, these 
notions do coincide provided T is compact valued [11] (see also Theorem 
3.1 below). We call T continuous if it is continuous with respect to the 
topology of Hausdorff distance on the subsets of the target space. 

Salient characteristics of u.s.c. multifunctions with values in a com
plete target space were revealed by Dolecki and Rolewicz [7] and 
Dolecki and Lechicki [6] using measures of noncompactness; we shall 
find their approach indispensable. Simply put, a measure of noncom
pactness is an extended real valued functional defined on the power set 
of a metric space X that measures the degree to which subsets of X 
fail to be totally bounded. Such measures have a well established place 
in fixed point theory (see, e.g., [10] and the references therein). Here, 
we work with the Hausdorff measure of noncompactness functional x* 
we set x(0) = 0? and if A is a nonempty subset of X, then 

x(A) = inf{e : A has a finite e - dense subset}. 

Evidently, the functional has these properties: 

(i) X{A) = x(cM): 

(ii) UACB, then X(A) < 2x(B); 
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(in)x(Se[A]<x(A)+£. 

The fundamental result regarding x is an analog of Cantor's Theorem, 
due to Kuratowski [12]. 

KURATOWSKFS THEOREM. A metric space (X, d) is complete if and 
only if whenever (Fn) is a decreasing sequence of nonempty closed 
subsets of X with limn_oo x(^n) = 0, then D^L1Fn is nonempty. 

3. A converse to Cellina's theorem. We choose to state Cellina's 
Theorem in the context of normed linear spaces, rather than in the more 
general setting of a locally convex metric linear space in which it was 
proved. 

CELLINA'S THEOREM. Let X and Y be normed linear spaces, and 
let C be a convex subset of X. Suppose p denotes the box metric in 
X x Y. Let T be a convex valued multifunction from CtoY. IfV is 
Hausdorff upper semicontinuous and has totally bounded values, then 
for each e > 0 there exists a continuous function f : C —+Y for which 
hp(T,f)<e. 

Actually, if T(C) is contained in some closed convex set, then / can be 
chosen such that f(C) lies in the same set, from which the Kakutani 
Fixed Point Theorem easily follows. In [1] this author showed that 
C could be replaced by an arbitrary metric space, provided T maps 
isolated points to singletons. Obviously, that T have convex values 
is in no way necessary for the existence of such approximations (see 
Section 4 below). But does this approximation property force T to have 
totally bounded values, or T to be Hausdorff upper semicontinuous? 
Note that two multifunctions admit the same approximations provided 
their graphs have the same closure. Thus, in a sense, there is no 
loss of generality in restricting our attention to multifunctions with 
closed graph, and without this restriction, there is no hope of obtaining 
Hausdorff upper semicontinuity as a necessary condition. Our main 
result falls neatly out of Theorem 3.1 below, which can also be derived 
from the general results of Dolecki, Rolewicz, and Lechicki. 

THEOREM 3.1. Let X be a metric space and let Y be a complete 
metric space. Suppose T is a multifunction from X to Y with closed 
graph. The following are equivalent: 

(1) r is upper semicontinuous and compact valued; 
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(2) r is Hausdorff upper semicontinuous and has totally bounded 
values; 

(3) For each p in X and e > 0 there exists a neighborhood V of p for 
which x(r(V)) < e. 

PROOF. (l)->(2). Trivial. 

(2)—>(3). Fix e > 0 and p € X. Since T is Hausdorff u.s.c, there 
exists a neighborhood V of p for which T(V) C 5£r/2[r(p)]. Since T(p) 
is totally bounded, we have 

X(T(V)) < 2X(5e/a[r(p)]) < 2(x(r(p)) + | ) = e. 

(3)—»(I). By the essential monotonicity of x {A C B implies x(A) < 
2\{B)), it is clear that V has totally bounded values. Since V has a 
closed graph, T has closed values, whence by the completeness of the 
target space, T has compact values. Suppose T failed to be u.s.c. at 
some point p in X. We can then find an open neighborhood W of T(p) 
such that for each n, T(Si/n\p]) meets Wc. For each n, choose xn in 
r(Si/n[p]) H Wc, and for each n set Fn = cl ({xy : j > n}). We have 

x(Fn) < 2X(cl(r(51/n[p])) = 2X(r(51/n[p])). 

By condition (3), we have limn—oo x(r(5i/n[p])) = 0; so, Kuratowski's 
Theorem yields a point y in C\^>

=1Fn. Clearly, y is a cluster point of 
(xn) which lies in Wc. Thus, viewing T as a subset of X x Y,the point 
(p, y) is in the closure of V but not in V itself, a contradiction. 

THEOREM 3.2. Let X be a locally compact and Y complete. Suppose 
r is a multifunction from X to Y with closed graph, and for each 
e > 0, there exists a continuous function f : X —• Y for which 
hp(fiT) < e. Then T is Hausdorff upper semicontinuous and has 
totally bounded values (equivalently, T is upper semicontinuous and has 
compact values). 

PROOF. We show condition (3) of Theorem 3.1 holds. Fix p in X 
and e > 0. Choose 6 6 (0,£) for which cl(S$[p]) is compact. Next, 
choose a continuous function / for which hp(f,T) < 6/2. As a result, 
r(5^/2[p]) C S6/2[f{S6\p))]. Since f(c\(Ss[p})) is compact, it measure 
of noncompactness is zero; so, 

x(Ss/2[f(Ss[p])i) < X(/(S«IP])) + f = f • 



SET VALUED FUNCTIONS 41 

Again, by the essential monotonicity of %, we have x(r(S£/2[p])) < 6 < 
e. 

It turns out that Theorem 3.2 is quite sharp, i.e., the necessary 
conditions fail to be necessary if either X is not locally compact or 
Y is not complete, even if we restrict our attention to convex valued 
multifunctions. 

EXAMPLE 3.3. We show that if Y is any normed linear space and X 
is a metric space that is not locally compact, then there exists a convex 
valued multifunction with closed graph from X to Y which admits 
/ip-approximations by continuous functions from X to 7 , but which 
does not have totally bounded values. Let C be a separable closed 
convex subset of Y containing the origin 0 with x(C) > 0, e.g., C 
could be a finite dimensional subspace. Suppose pE X has no compact 
neighborhood. Let S\ = 1, and choose a countably infinite subset E\ 
of {x : 0 < d(xip) < £i} with no limit point. Choose e<i > 0 for 
which E\ n S2e2 [PÌ = 0- Now let E<i be a countably infinite subset of 
{x : 0 < d(x,p) < 62} with no limit point. Choose £3 > 0 for which 
S2e3[p] nl?2 = 0- Continuing, we produce for each n G Z + a countably 
infinite set En with no limit points and a real sequence (en) such that 
for each n, 0 < en+i < \zn and En C {x : en+i < d(x,p) < en}. 
By the Dugundji Extension Theorem [8], for each n we can find a 
continuous function gn : X —+ C such that gn{En) is dense in C, and 
gn(x) = 6 if either d(z,p) < en+i or <2(x,p) > en. Set g = Y^=i 9n, 
and define T by 

r(x)"{{<?(*)} \il/p. 

The set T(p) is not totally bounded, but for each n, ^fc=i 9k '- X ^>Y 
is continuous, and Äp(r ,X^ = 1 Qk) < 2 2~ n . 

EXAMPLE 3.4. Let F be a normed linear space that is not a Banach 
space. We produce a compact convex valued multifunction T with 
closed graph from [0,1] to Y that admits continuous approximations 
in the above sense, yet is not upper semicontinuous. Let (yn) be 
a nonconvergent Cauchy sequence in Y. Let g : (0,1] —• Y map 
[l/(n + 1), 1/n] linearly onto the line segment joining t/n+i to yn for 
each n € Z+. Since {[(1/n + l ) , ( l /n) ] : n G Z+} is a locally finite 
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closed cover of (0,1], g is continuous. Thus, T : [0,1] —• Y defined by 

T(x) = ({9} i f x = ° 
v ; \ conv{0, g(x)} otherwise 

is u.s.c. at each x in (0,1]. Thus, to show T has a closed graph, 
we need only look at x = 0. If not, there exists a sequence (xn) in 
(0,1] convergent to 0 and a sequence (an) in (0,1] such that {ang{xn)) 
converges to a nonzero vector z. Since {yn : n € Z+} is bounded, 
0((0,1]) is bounded, and we conclude that lim infn_*oo otn > 0. By 
passing to a subsequence, we may assume (an) converges to a positive 
number a, so that (g(xn)) converges to ^z. It follows that {yn) has 
the same limit, an impossibility. Thus, T is closed. Obviously, T is not 
u.s.c. at x = 0 

Now we turn to the approximation of T by continuous functions. Let 
£ > 0 be arbitrary, and choose n > 2/e is large that \\yk — yn\\ < s/2 
for each k > n. By Cellina's Theorem, there exists a continuous 
g : [1/n, 1] - • Y such that hp{g,Y\[l/n, 1]) < e/2. Define / : [0,1] -* Y 
by 

/7 \ _ f n x 9i ( l / n ) if 0 < x < 1/n 
/ W ~ \g(x) if l / n < * . 

Continuity of / is obvious, and it is a routine matter to show hp(f, T) < 
e. 

The completeness of the target space Y plays no role whatsoever in 
the necessary condition of totally bounded values. On the other hand, 
local compactness of the domain is not superfluous for the necessary 
condition of Hausdorff upper semicontinuity. 

EXAMPLE 3.5. We construct a single valued discontinuous function 
/ from the unit ball B in £2 to itself with a closed graph that can 
be approximated in Hausdorff distance by continuous functions. The 
function, viewed as a multifunction, will be compact convex valued, but 
will not be upper semicontinuous. To this end, let {en : n G Z~*~} be 
the standard orthonormal basis for £2. To describe / , we first introduce 
an auxiliary function ip : [0,1] —• [0,1] defined by 

U i f 0 < < < ! / 2 
V(t) \2-2t if 1/2 < t < 1. 

file:///2-2t
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For each n G Z+, let an = ^ — ^~-, and define / by 

(0 \îx = 0 
f{x) = W à U " INI)J *e* if HTÎ < INI * i for some n-

If we restrict / to any ray emanating from the origin, then its graph 
looks like a series of spikes rotating about an axis in infinite dimensional 
space. Evidently, / is continuous at all points except x — 0, and if 
((xnif{%n))) converges to (0,y), we must have y = 0. Thus, / has 
a closed graph. To show that / can be approximated by continuous 
functions, let e be positive, and choose n G Z+ for which 2/n < e. 
Choose Ö G (0,2j^) such that {Ss[^e3] : j € Z + } is a disjoint family 
of balls. Define g : B —> B as follows: 

(f(x) i f | N | > l / n 
g{x) = < (1 - i | |x - ^ | | ) • e n + i _i if ||x - ^ej\\ < 6 for some j 

y 6 otherwise. 
The function g so constructed is well defined and continuous. For each 
j G Z + , g maps Se[(l/2n)ej] onto the line segment joining 6 to en+J-_i. 
As a result, the image of S\/n [0] under # is the union of the line segments 
joining 0 to ej for j = n, n -f 1, n + 2, From this observation, it is 
easy to check that hp{g, f) < 2/n < e. 

4. Some extensions of Cellina's theorem. In this section we 
look at some extensions of Cellina's Theorem to multifunctions that 
do not have convex values. At the heart of these extensions, as well 
as Cellina's Theorem itself, is the following paracompactness theorem 
(see pages 414-415 of [3] and page 181 of [1]). 

LEMMA 4.1. Let (X,d) be a metric space with no isolated points and 
let Q be an open cover of X. Then there exists a locally finite open 
refinement {Vi : i E 1} of fi and closed balls {B{ : i G / } such that 
Bi C Vi for each i G i", and Bi C\Vj = 0 whenever i i=- j . 

LEMMA 4.2. Let p be a limit point of metric space X and let E be 
a path connected totally bounded subset of a metric space Y. If e > 0, 
6 > 0 and y E E are arbitrary, then there exists a continuous function f 
from X to E such that f{Ss\p]) is e-dense in E and f(x) = y whenever 
dx{x,p) > 6. 

PROOF. Let {yi, 2/2? • • • ^ 2/n} be an e-dense subset of E\ w.l.o.g., 
we may assume that yn = y. Let {xi,X2,... , x n } be n points in 
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Sß\p] such that dx(p,Xi) < dx{p,Xj) whenever i < j . For each 
i G {1 ,2 , . . . , n — 1}, let Ai = dx(p, £t+i) — dx(p, Xi). For each such i, 
let (ßi be a path from [0,1] to E such that 0i(O) = yi and 02(l) = 2/i+i-
The desired function / is given by 

{ Vi if dx(p,x) <dx{p,xi) 

$i[j-(dx(p,x) - dx(p,Xi))] ììdxfaxi) < dx(p,x) < dx{p,xi+1) 
Vn if dx (p, xn ) < dx (p, a;). 

THEOREM 4.3. Z/e£ (X, d) be a metric space and let Y be a normed lin
ear space. Suppose T is Hausdorff upper semicontinuous multifunction 
from X to Y with totally bounded path connected values, and V contains 
some Hausdorff upper semicontinuous convex valued multifunction J^. 
/ / r maps isolated points of X to singletons, then for each e > 0 there 
exists a continuous function f : X —• Y for which hp(fìT) < e. 

PROOF. For simplicity, we assume that X has no isolated points (the 
general case can be handled as in Theorem 1 of [1], using Lemma 5 of 
[1]). By the Hausdorff upper semicontinuity of T and $^, there exists 
for each x G X a positive number Xx < e such that if z G S\x [a;], then 
both T(z) C S£/2[T(x)] and £ ( * ) c &[£(*) ] . Let {Vi : i G / } and 
{Bi : i G / } satisfy the conditions of Lemma 4.1 with respect to the 
cover H = {S\x/2[x\ : x G X} of X. For each i G / , choose x{i) in 
X such that Vi C 5'AX(Ì)/2[^Ì]Ì and let / t : X —• r(x(f)) have these 
properties: 

(i) fi(Bi) is é:/2-dense in T(x(i))\ 

(ii) fi(B%) is a singelton subset of ^2(x(i)). 

Now let {pt : i G / } be a partition of unity subordinated to 
{Vi : i G / } . We claim that / = Y^Pih 1S the desired continuous 
function. First,we show that r C ^ [ / ] . If z G X is arbitrary, choose 
i G / such that z G Vi C «SrAl(t)/2[a;t]- By construction, we have 

r(z) C S£/2[T(x(i))} C Se[/i(Si)]. 

Now since f\Bi = / , for each y G r(^) there exists x in S» such 
that \\y — f(x)\\ < e. Also, since x and z both lie in Vi, we obtain 
dx{x,z) < \x(i) < e. This proves V c Se[/]. We finally show 
that / C S£[T]. Again, let z G X be arbitrary. If there exists an 
index i for which z G £», then /(z) lies in r(x(i)), whence (z, /(z)) G 
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S\x(i) [{x(i)} x T(x(i))] C S£[T]. Otherwise, let {ii, t*2,. • . , in) be those 
indices for which Pi(z) is nonzero. Now fij{z) is actually a point in 
^2(x(ij)) for each j G {1 ,2 , . . . , n}, and there exists some fixed index 
j such that {x(ii),a;(Ì2),... ,x(in)} is contained in the ball of radius 
Xx{i) with center x(ij). As a result, f(z) is a convex combination of 
points of the convex set Se[%2(x(ij))]. Since J2(x(ij)) C r (x (^ ) ) , the 
point /(z) has distance less than e from some point in T(x(iJ))i and it 
easily follows that {z, f(z)) G S£[T]. 

A continuous single valued function, when viewed as a multifunction, 
is upper semicontinuous. Thus, a Hausdorff upper semicontinuous 
multifunction with path connected totally bounded values can be 
approximated in Hausdorff distance by continuous functions, provided 
it admits a continuous selection. But we have a completely different 
application in mind. Recall that if x and y are points of a set E in a 
linear space, then we say x sees y via E if the line segment conv{x,y) 
joining x to y lies in E. The set E is called starshaped if there exists 
some point p of E that sees each other point of E via E. The set of 
points with this property is convex [16], and is called the kernel of E. 
We denote this set by kerE. 

LEMMA 4.4. Let X be a metric space and let Y be a normed linear 
space. Let T be a continuous multifunction from XtoY with compact 
starshaped values. Then the kernel multifunction Yl associated with 
r defined by Yl{x) = kerT(x) is Hausdorff upper semicontinuous and 
convex valued. 

PROOF. Fix p in X. If ]|T) is not Hausdorff upper semicontinuous at 
p, then there exists e > 0, a sequence (xn) convergent to p, and for 
each n yn € Yi(xn), such that yn & SeE(p)]- Since T(p) is compact 
and r is u.s.c. at p, by passing to a subsequence, we may assume 
that (yn) is convergent to some point y € T(p) fi {Se[Yl{p)ì)c- Now let 
z E r(p) be arbitrary. Since (T(xn)) converges to T(p) in Hausdorff 
distance, we have T(p) = l imr(x n) in the sense of Kuratowski, i.e., 
LiT{xn) = Lsr (x n ) = r(p) (see e.g., [13], [14], or [15]). Since 
r(p) C LiT(a;n), there is a sequence (zn) convergent to z such that for 
each n, zn G T(xn). Since yn sees zn via r (x n ) and LsT(a;n) C T(p), 
we conclude that y sees z via T(p), an impossibility, for y does not lie 
in the kernel of T(p). 
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EXAMPLE 4.5. A continuous compact starshaped valued multifunc
tion need not have a continuous kernel: consider T from [0,1] to R2 

defined by T(x) = conv {(0,0), (0,1)} U conv {(0,1), (z, 2)}. An u.s.c. 
compact starshaped valued multifunction need not have an u.s.c kernel: 
consider T from [0,1] to R2 defined by 

T(r\ = f conv {(0,0), (1,0)} if x > 0 
w \ conv {(0,0), (1,0)} U conv {(0,0), (0,1)} if x = 0. 

THEOREM 4.6. Let (X, d) be a metric space and let Y be a normed 
linear space. Suppose T is continuous multifunction from X to Y 
with totally bounded starshaped values. If T maps isolated points to 
singletons, then for each e > 0, there exists a continuous function 
f :X — Y for which hp(f, T) < e. 

PROOF. Let W be a complete normed linear space in which Y is 
linearly and isometrically imbedded, and let T* from X to. W assign 
to each x in X the W-closure of T{x). Clearly, each set T*(x) is both 
compact and starshaped, and the kernel of T* (x) contains the kernel 
of T(x). Also, for each x and z in X, we have hp[T*(x),T*(z)] = 
hp[T(x)iT(z)]: so, T* is continuous. By Lemma 4.4 and Theorem 4.3, 
r* can be approximated in Hausdorff distance by continuous functions 
from X to Z. Now with respect to T*, the functions {fi : i G 1} in the 
proof of Theorem 4.3 can be constructed so that the range of each fi 
lies in T(x(i)) rather than in the larger set r*(x(i)), because an e/2-
dense subset of T*(x(i)) can be chosen from T(x(i)), and the kernel 
of T(x(i)) contains the kernel of T*(x(i)). Thus, with respect to T*, 
the values of the amalgamated function / in the proof of Theorem 4.3 
can be arranged to be convex combinations of points of Y rather than 
W. As a result, T*, and hence T, can be approximated in Hausdorff 
distance by continuous functions from X to Y. 

EXAMPLE 4.7. Not all continuous continua valued multifunctions can 
be approximated by continuous functions in Hausdorff distance. Let 
C denote the unit disc in the plane. Our continua valued multifunc
tion r is defined on C as follows: T maps the origin to the unit circle, 
and each point of C with polar coordinates (r, <t>) to an antipodal arc 
with center (1,<£ + w) and arc length 2t{l — r). We claim that for 
some e > 0 there is no continuous function from C to the plane that 
^-approximates T in Hausdorff distance. Otherwise, for each n G Z+ 
we can find fn'-C -+ R2 with hp{fn, V) < 1/n. If we follow each fn by 
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the standard retraction of R2 onto C, we obtain a self-map / * of the 
disc which still satisfies / ip( /*,r) < 1/n. By Brouwer's Theorem, each 
/ * has a fixed point, and we conclude T contains some point (xn,yn) 
whose p-distance from the diagonal in C x C is at most 1/n. Since 
the diagonal is compact and T is closed (in fact, compact), T meets 
the diagonal. This means that for some x G C, we have x € T(x), a 
contradiction. 
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