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ON THE ISOMORPHISM P R O B L E M FOR G R O U P R I N G S 
A N D C O M P L E T E D A U G M E N T A T I O N IDEALS 

FRANK RÖHL 

1. Introduction. Let G be a group, AzG its integral and AG 
its modular augmentation ideal, i.e., over the field F p of p elements. 
In this note, we consider the integral isomorphism problem-whether 
AzG = AzH implies G^H- for certain finite p-groups and empha
size the aspect of how much of our methods carry over to the modular 
case. 

Having finite p-groups at our disposal, the most obvious approach to 
attack the isomorphism problem is to try some kind of induction. To 
put this idea to work, two ingredients turn out to be essential: One has 
to be able to lift automorphisms of AzG, resp. AG, G a homomorphic 
image of G, to automorphisms of the augmentation ideal of a free group 
F with F -» G, and the lifting has to leave certain ideals invariant. Al
though it is not possible to solve the first problem in general, since the 
group ring of a free group does not contain enough units, one can do it 
for the completed group rings: Lemma 3.1 gives a solution, which can 
be easily generalized to other rings of coefficients. 

However, to guarantee that the lifting is again an automorphism, we 
have to impose one further condition on the automorphisms under con
sideration: They have to induce the identity on AG/A2G. Although 
this seems to be a severe restriction on the first glance, it is always 
satisfied for the start of the induction (and looks rather natural for 
these cases). The isomorphism A ^ A z A / A | A for an abelian group A 
gives, in case AzA = Az-B, an automorphism of ZA sending A onto B 
with the above property, and hence, even the Whitcomb isomorphism 
for metabelian torsion groups has it. Furthermore, the lifting, too, has 
this property (see (3.1)). 

All these considerations lead to the following concept: A group G is 
Fp-strongly characterized by its integral group ring, if AzG = A z # 
implies the existence of an isomorphism G^>H, whose extension to an 
automorphism of AzG induces the identity on AG/A2G. Although 
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we are not able to solve the second problem in general-invariance of 
certain ideals-there are a few cases in which it becomes trivial, thereby 
giving us our main result: (3.3) Let F be a finitely generated free group, 
R a normal subgroup contained in F2 • Fp,p any prime such that F/R 
is a finite p-group. If F/R is Fp-strongly characterized by its integral 
group ring, then so are F/[R, R] • Rp and F/[F, R)RP- (F2 denoting the 
second term of the lower central series and [, ] denoting group commu
tators). 

Analyzing the proof of Whitcomb's theorem shows that finite metabel-
ian p-groups are Fp-strongly characterized by their integral group ring; 
hence our theorem applies to this situation. 

Further on, we give in (3.6) an example of how the induction works. 
All of these results would carry over to the modular case, if only there 

were ideal correspondence for AG = AH as in the integral case (see 
for example [6; Chapter III.4]); and there seems to be some hope, that 
our results can be generalized to residually finite p-groups. 

To be able to put this work into the proper context, it is recom
mended that the interested reader consult Sandling's excellent survey 
article The isomorphism problem for group rings: a survey in Orders 
and their applications (Springer LNM 1142, edited by I. Reiner and 
K.W. Roggenkamp). 

Acknowledgements. The author would like to thank S.K. Sehgal 
for his helpful comments and the Department of Mathematics of the 
University of Alberta for its hospitality. 

2. Preliminaries. In this section, we collect some more or less 
well-known facts on A-adic completions and some terminology. 

Let G be a finite p-group and 

(2.1) 1 -+ R - • F^G - • 1 

a minimal presentation of G (i.e., F is finitely generated free with 
R C F2 - Fp. Such presentations of finite p-groups G can always be 
found because G modulo its Frattini-subgroup is a finite-dimensional 
Fp-vector space, each basis of which can be lifted to a generating 
system of G.) This gives rise to the following exact sequence 

0 - • A(F, R) -+ A F ^ A G - • 0; 

A(FiR) denoting the ideal generated by all 6(r) : = r - l , r G i ? . (We 
always denote the map 6(g) := g — 1 of a group into its augmentation 
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ideal by 6 without any distinction of the groups and rings of coeffi
cients under consideration). Provide A F and AG with the A-adic and 
A(F, R) with the induced filtration, and denote completions with re
spect to the topologies defined by these filtrations by a"-". For their 
construction and their properties, we refer to [1; Chapter III] and [2; 
Chapter IX §3]. Then we know that the filtrations are exhaustive on 
each object, and ir maps AkF onto AfcG. Hence, IT has the Artin-Rees 
property, (see [4, p. 291]) and since A(F, R) carries the induced topol
ogy, the inclusion A(F, R) C AF, too, has the Artin-Rees property. 
By III.8 Thm. of [4, p. 291], we obtain for the completed sequence 

LEMMA 2.2. 0 -> A(F,i?) - • Ä F A Ä G -> 0 is exact 

Since G is a finite p-group, AG is a nilpotent Fp-algebra, and the 
A-adic topology on AG is discrete so that AG coincides already with 
its A-adic completion. 

For A F the situation is not quite that simple: By construction, one 
has 

AF := lim AF/A*+1F C JJ AF/A*+1F, 
*"" i€N 

where each quotient is equipped with the discrete topology, and 
fi AF/A%JrlF is given the product topology. Thus, A F carries-when 
considered as the completion of AF-the induced topology. On the 
other hand, the "A-adic filtration" given by A F defines a topology 
on AF, too, and it is natural to ask, in which way these topologies are 
related. 

LEMMA 2.3. Both topologies on AF coincide; in particular, AF is 
complete in the A-adic topology, 

PROOF. Since both topologies make A F a topological ring, it is 
sufficient to show that some fundamental system of neighbourhoods 
of 0 in one of these topologies is a fundamental system in the other 
one. Since the AF/A f c + 1 F are discrete, a fundamental system of 
neighbourhoods of 0 for the completion-topology is given by restricting 
the natural projections 
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prk : J ] AF/A i+1F - AF/Ak+1F 
i 

to A F and taking kernels. This gives 

KeTprK\^w=AF^\ 

which shows this assertion. 

We will make use of this coincidence of topologies in the sequel with
out mentioning it explicitly. 

As a first application of (2.3), we recall that 

LEMMA 2.4. AF is a radical ring. 

PROOF. Since Ä F c r i A F / A i + 1 F , where n ^ F / A ^ F - a s a di
rect product of radical rings-is already a radical ring, all we have to 
do, is to show that the quasi-inverse x^~^ of an element x G A F (i.e., 
the inverse of x under the circle-composition uo v := u + v + uv) is 
contained in AF. But x^-1) = J2i>i(~lYxli a n ( i since the sequence 
(xl)ieN converges to 0 in AF, this is clear. 

LEMMA 2.5. Let I be an ideal in AG and J its full preimage under 
TT : A F -^ AG. Then IT1 (/) = 7 . 

PROOF. Since AG is already complete, we can form IT1 (I). We now 
have / = 7r( J ) C W(7) C W(J) = TT(J) = / ; hence, IT1 {I) = 1 + Ker W. 
Since Ker TT = A(F, R) C J implies Ker W = A(F, R) C J, the assertion 
follows. 

LEMMA 2.6. i / H is an arbitrary group and N a normal subgroup of 
H, then 6 : H —> AH induces 

a) N/[N, N]NP^>A(H, N)/AH • A(# , N) 
b) N/[H, N]N*^A(H, N)/AHA(H, N) + A(i7, N)AH. 
(2.6a) is well-known (see for example [6; Prop III. 1.15, p. 76]) and 

(2.6b) is an easy corollary: One obviously has S ([H", N]), 6 (Np) C 
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AH • A(H,N) + A{H,N) • AH; the latter follows from 6{n^) = 6{n)* 
in an Fp-algebra. Thus we may assume [H,N] = 1 = Np, hence 
AHA(H,N) = A{H,N)AH. Since 

TV -» A{H,N)/AHA(H,N) 

n*-+6(n) + AHA(H,N) 

is by (2.6a) surjective with kernel [iV, JV]7VP = 1, the result follows. 

3. Lifting isomorphisms. For the next Lemma, let the situation 
be as in (2.1), resp. (2.2). We then have 

LEMMA 3.1. 7/7 is an algebra endomorphism of AG, then there exists 
an algebra endomorphism T of AF with 

ÂF —^—• ÄF 

AG • AG 

and if furthermore (77*17 = Id (i.e., 7 induces the identity on AG/A2G), 
then griT — Id. 

PROOF. By (2.2) it is sufficient to show the assertion for 

AF/A(F,Ä) • AF/A(F,Ä), 

where the vertical maps are the natural homomorphisms. Let F =< 
fi\i E I > be freely generated by the fi. Then 

6fi + A(F, R)Axi + A(F, Ä), % E / , 
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where Xj denotes an arbitrary but fixed preimage in A F of 7(6 fi + 
ÄCFVR)). 

Define 
TS (fi) :=Xi for iel. 

By (2.4), the circle monoid (AF, o) of A F forms already a group so 
that r extends to a group homomorphism T : 8F —• (AF, o), which 
by the universal property of the augmentation ideal can be extended 
to an Fp-algebra homomorphism 

r : A F - • Ä F . 

As a homomorphism of algebras, T is continuous with respect to the 
A-adic topologies, and since A F is dense in AF, we can extend T still 
further to obtain an algebra endomorphism 

T : Ä F — Ä F . 

We are now going to show T(A(F, i?)) c A(F, R), thereby obtaining 
an algebra endomorphism 

ÄF/A(F,Ä) -+ Ä F / A ( F , # ) , 

which, by construction, coincides with 7. 
By continuity of T, it is sufficient to show T6(R) C A(F,Ä). Let 

Since for radical rings A with a two-sided ideal / , the relation x + / = 
xo I defines an isomorphism (A/1, o)^(A, o)/(J, o) (see for example 
[5; 1.1 Lemma p. 301]), we obtain 

(Sftl]) ° • • • ° Mr)lkir) oÄCFVR) = Äpvß). 
(To avoid confusion with ordinary powers, we have denoted powers 
in the circle composition by round brackets.) Since, as an algebra 
homomorphism, 7 preserves the circle composition, we obtain 

= (7(6/^0 A(F, fl)))<fc'i ) o . . . o ( 7 ( ^ ° A ( F , Ä))fc-> 

= (Xil oA(F,fi))(fc 'i) o • • • o (xir oA(F,Ä))(fc->) 

= x l
( f l ) o - - - o x ^ ) o Ä ( f r R ) ; 

thus r ^ / * ' 1 ) = x\kil) o • • • o zj* i r ) e A(f ,Ä) . 
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Now let grii = W. Because of the natural isomorphism 

(AF/A(F, R)){AF + A(FÄ)/A(F, R))^AF/AF + A(F, Ä) 

and by minimality of (2.1), which implies A(F,i?) c A 2 F and thus 

A(F,R) C Ä F 2 , the diagram (3.2) (with T) induces 

AF/AF — • AF/AF 

Id III Id 

AF/AF2 • AF/AF2 

gm=id 

REMARKS. 1) griT = Id (resp. gr^ = Id) implies that T 
(resp. 7) is an automorphism: gr\T = Id forces already gr T G 

End 2 t > i e A F ' / Ä F ^ 1 to be the identity. Hence, KerT C AF™ for 
all n G N, and since A F is Hausdorff, V is inj ec tive. And V is surjec-
tive, for r = Id + <p, where <p : 'AF —*• A F is linear with the further 
property <p(xy) = <p(x)y 4- x<p(y) + (p(x)<p(y), which shows inductively 

ip(Af) C AF 4 " 1 . Hence, for a given x G ̂ E ^ o H l ' ^ W e x i s t s 

and 

r E H ) V W ) = (id + P ) ( E H ) V ' W ) - *• 

The same applies to 7. 
2) The reasoning in the last part of the proof giving gr\T = Id holds 

also for the following situation: Let r : AG —• AH be induced by a 
surjective homomorphism G —• H and J an ideal contained in kerr. 
Then r induces f : AG/I -> AH. If 

AG 11 —T—> AG 11 

III 
AH • AH 

with Kerr C A2G and gr\~j = Id, then gr\T = Id (because, once 
again, f induces an isomorphism AG/A2 G —• AH/A2 H). 
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Now, we have the tools together to prove 

THEOREM 3.3. Let F be a finitely generated free group andR C F2-Fp 

a normal subgroup such that F/R is a finite p-group. If F/R is 
Fp-strongly characterized by its integral group ring, then so are 

F/[F,R]RP and F/[R,R]RP. 

PROOF. For notational convenience let us call G : = F/R and Go : 
= F/[F,R]RP resp. G0 : = F/[R,R)RP (we will handle both cases 
simultanously). Then it is well-known that "G a finite p-group" implies 
the same for Go- Now let HQ be a group such that AzGo = A Z # 0 Î 

and let Ab : = R/[F, R]RP, resp. Ro : = R/[R, R)RP. Then there exists 
a normal subgroup iVo of HQ such that Az(Go, Ro) = Az(#o> No) and, 
moreover, if J is an ideal in AzGo with / n 8GQ = 0, then / D ÔH0 = 0 
and vice versa. By means of the natural (!) isomorphism 

A z Go/A z (Go, i îo ) -Az(Go/ /uo)^AzG, 

we may identify AzG and AZ{HQ/NQ). Passing to the modular 
situation, this gives 

, . A(Go,Äo) = A(Äo,JVo), 
1 ' J AG = A(fTo/JV0), 

and the "intersection zero property", too, carries over. Since G is 
Fp-strongly characterized by its integral group ring, there exists an 
isomorphism 7 : G^HQ/NQ, which-when extended to an automor
phism of AG-induces the identity on AG/A2G. Thus, we obtain, by 
(3.1), 

SF —T—* S F 

»i /// j» 
A G • A G 

1 

with griT = Id. In particular, r(Ker7f) C KerJr, i.e., T(A(F,R)) C 
A(F,R). If 7T0 : F —• F/[F,R]R? denotes the natural homomorphism 
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and 7To its extension to A F —• A (F/[F, R]RP), then the full preimage J 
of J := AGo(Go, Ro) + A(Go, fio) AGo under 7f0 is, according to (2.5), 

J = A(F, [F, R]RP) + AFA(F, fi) + A(F, fi)AF, 

and since A(F, [F, R)W>) C A F • A(F, R) + A(F, fi)AF by (2.6b), one 
has 

7 = AFA(F, R) + A(F, fi)AF. 

Now, A(F, R) was already seen to be invariant under T, so we obtain 

r (AFA(F, R) + A(F, fi)AF) c A F • A(F, R) + A(F, fi) • A F c J . 

Since r is continuous with respect to the A-adic topology, this implies 
that J is invariant under T, so that T induces an endomorphism 70 
of AGo/F By fi C F2 • F p , one has J C A2G0 and by the remarks 
following (3.1), 70 is already an automorphism. (To deal with the case 
F/[R,R]RP, one has to replace AG0A(G0,fio) + A(G0,fio)AG0 by 
AGp • A(Gp,fip), and the corresponding preimage J turns out to be 
7 = AF-A(F , f i ) by (2.5a).) Since T(A(F,fi)) C A(F,fi) and thus 
7o(A(Go,fio)A0 C A(G0 ,fio)//,7o induces 7 on AG. Altogether, we 
have established 

(3.5) 

A T 1 A T 

I /// I 
AGo/ / • AGo/I 

I /// I 
A G • AG, 

To 

where the vertical maps are given by 

*(/) ^ S(J • [F, R}RP) + 1^ S(fR), 

respectively 

*(/) •-» Hf • [Ä, R]Rp) +11- 6{fR). 
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By (2.6), 6 with Go —> AGQ/I with g H-• ê(g) + I is injective; and since 
A(Go,#o) = A(HQ,RQ) and (3.4), the same applies to H0; and 

Äo^A(G 0 ,Äo) / / = A(Ho,N0)/I^No 

r . - 6{r) = 6{r) + J Ä(n) + J = <5(n) H n -

So £G, resp. <5/f, considered as subsets of AG has <5Go, resp. SHQ, 
resp. 6HQ1 as full preimage under AGQ/I —• AG. By 7ÓG = 6H and 
commutativity of the bottom part of diagram (3.5), we thus obtain 

7o^(Go) C S(H0), 

and since 70 is an automorphism, equality holds. This defines an 
isomorphism 

a : GQ-+HQ, 

and since 7o(A(Go,Äo)//) = A(GQ,RQ)/I, we obtain 

v(Ro) = N0. 

Extending a to an automorphism of AGo thus gives 

a(A(Go,Ro)) = A(H0,No) = A(G0,fio); 

hence, a (I) = J, and o induces 

* : AGo// — AGQ/I. 

Because à coincides on <5Go with 70,<J and 70 are equal, and we have 

AGQ/I — ^ — AGQ/I 

1 ", 1 
AG • AG 

1 

The remarks following (3.1) now imply gr\o = gr^ = Id. 

REMARK. The only reason to start in (3.3) with integrally isomorphic 
augmentation ideals is to carry over ideal correspondence as in (3.4) 
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to the modular case. Once one could establish ideal correspondence 
for the modular situation AGo = AH0 (or find a suitable substitute), 
(3.3) would hold for modular group algebras. 

For an arbitrary group H define Xi(H) : = H and An + i( iJ) : = 
[#, Xn(H)]Xn{H)p, p a prime. Then the series Xt(H) D • • • Xn{H) D • • • 
forms a descending central series of H, and it turns out that 

An(JET) = Hf~l • Hf~2 Hn 

(see [3, p. 242, 243]). If F is now a finitely generated free group, then 
F/F2FP = F/X2{F) is - as an abelian group - Fp-strongly character
ized by its integral group ring, and (3.3) thus, inductively, gives 

COROLLARY 3.6. F/Xn(F) is Fp-strongly characterized by its inte
gral group ring for all n € N. 

Addendum. With the (trivial) generalization of (3.1) to the situa
tion where 7 is an algebra endomorphism of AG/A nG, n arbitrary, it 
is possible to show, along the same lines as in (3.6): If F is a finitely 
generated free group and R a normal subgroup lying between two suc
cessive terms of the series of modular dimension subgroups of F with 
respect to the prime p-say, Mn+\iP(F) C R C Mn ) P(F)-then F/R is 
characterized by FP(F/R). This generalizes Sehgal's result that groups 
G with M3iP{G) = 1 are characterized by FPG (see [6; III.6.25, p. 117]). 
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